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We propose a method to calculate the operator entanglement and entangling power of a noisy nonunitary
operation in terms of linear entropy. By decomposing the Kraus operators of noisy evolution as the sum of
products of Pauli matrices, we derive the analytical expression of the operator entanglement for a general
nonunitary operation. The definition of entangling power is extended from the ideal unitary operation case to the
nonunitary case via a Kraus operator representation and the analytical expression of the entangling power for a
general nonunitary operation is derived. To demonstrate the effectiveness of the above method, we investigate
the properties of operator entanglement and entangling power of nonunitary operations caused by phase damping
noise. Our findings imply that the pure phase damping noise has its own operator entanglement and entangling
power, which increase exponentially with time and asymptotically approach their respective upper bounds.
In addition, when the phase damping noise is added to an ideal operation, such as an ISWAP operation or a
controlled-Z operation, it can make the operation’s entangling power grow exponentially with the strength of
noise, but leave its operator entanglement invariant. In this sense, we can conclude that, for a general operation,
operator entanglement is a more intrinsic property than entangling power.
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I. INTRODUCTION

Quantum entanglement has been thought to be an essential
resource for quantum communication and quantum compu-
tation. Considerable effort has been made to investigate the
properties of entanglement for the quantum state. It has been
shown that product states can be transformed to entangled
states by nonlocal evolution operations [1,2]. Consequently, it
is natural to study the entangling properties of nonlocal unitary
evolution operations.

The nonlocal property of quantum evolution has been
investigated regarding different aspects, such as entangling
power [1,3–11], operator entanglement [5,12–18], entangle
capacity [19–24], disorder power [25], and disentangling
power [26]. The notion of operator entanglement was in-
troduced by Zanardi [12]. The quantum operator belongs
to a Hilbert-Schmidt space, so we can lift all the notions
developed so far for the entanglement of quantum states to the
level of operators. The entanglement of the quantum operator
has been discussed in several works [5,12,14]. Wang et al.
demonstrated that the entangling power of a general controlled
unitary operator acting on two equal-dimensional qudits is
proportional to the corresponding operator entanglement if
linear entropy is adopted as the common measure for both of
them, which implies that the entangling power and operator
entanglement are two inequivalent notions in general [5].
Balakrishnan and Sankaranarayanan compared two different
measures of the operator entanglement of two-qubit quantum
gate, namely, Schmidt strength and linear entropy, and showed
that there is a one-to-one relation between two different
measures only for the Schmidt number 2 class of gates [13].
Wang and Zanardi investigated the entanglement of unitary
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operators on d1 × d2 quantum systems [14]. Additionally, Ma
and Wang indicated that the entangling power and operator
entanglement of quantum unitary operations can be calculated
by the matrix realignment and partial transpose [15]. The
operator entanglement of the geometric quantum phase shift
gate was studied by Yang et al. [16]. Balakrishnan and
Lakshmanan discussed the chaining property for two-qubit
operator entanglement measures [17]. Xia et al. studied the
operator entanglement of the two-qubit joint unitary operation
in terms of the Schmidt number [18].

Although there have been many studies on operator
entanglement, most of them are based on the ideal unitary
operations without considering the influence of environment.
Actually, the nonlocal operations are always implemented
in an environment such as a generic noisy reservoir or a
heat bath that is commonly thought of as counteracting
entanglement creation because of its decoherence and mixing-
enhancing effects. However, several works showed that two
noninteracting qubits can be entangled if the two qubits
interact with a common heat bath, which implies that the pure
noise induced evolution might have entangling power [27,28].
Zanardi et al. defined the partial entangling power of a unitary
transformation based on completely positive (CP) maps [1].
Although a bipartite nonunitary evolution process corresponds
to a CP map, the partial entangling power and entangling power
of nonunitary evolution are two different concepts. One of the
states of the input products is fixed in the definition of the
partial entangling power, but no state in the input products is
fixed for the entangling power of the nonunitary evolution. In
fact, there have been several advances in the entangling power
for operations in a noise environment. Bandyopadhyay and
Lidar studied the entangling capacities of a noisy two-qubit
Hamiltonian by phenomenologically considering stochastic
noise [29]. Vallejos et al. studied the entangling power
of quantum Baker maps with controlled-NOT coupling and
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their numerical evidence indicates that the control subspace
becomes an ideal Markovian environment for the target map in
the limit of large Hilbert space dimension [30]. However, as we
mentioned above, entangling power and operator entanglement
are two entirely different notions, though they are proportional
under certain conditions [5]. So it is necessary to investigate
the operator entanglement of pure noise induced evolution
or noisy operation and compare the influences of noise on
entangling power and operator entanglement.

In this paper we study the operator entanglement and
entangling power of pure noise induced evolutions and noisy
operations. The results show that noisy quantum operations
are equivalent to some mixed operations and Kraus operators
can be regarded as the operational elements of the noisy
evolution process [31]. An ideal unitary operation corresponds
to a pure corresponding state [32], so a noisy nonunitary
operation corresponds to a mixed corresponding state. By
decomposing the Kraus operators of noisy evolution as the sum
of products of Pauli matrices, we can use the linear entropy
of the mixed corresponding state as the entanglement of the
noisy evolution process. Based on this formulation, we derive
the analytical expressions of the entanglement of some noisy
operations, such as phase damping, nonunitary evolutions
for realizing the ISWAP gate and controlled-Z gate, and the
dynamics of the entanglement of these nonunitary evolutions
was studied too. In addition, the entangling power of the
above-mentioned nonunitary quantum evolutions was studied
in terms of Kraus operators and we compared the influences
induced by phase damping noise on entangling power and
entanglement of those quantum evolutions. The results showed
that phase damping noise does not affect the entanglement of
ideal quantum operations; however, the entangling power of
the two operations grows exponentially with the increase
of the strength of phase damping noise.

This paper is organized as follows. In Sec. II we introduce
the linear entropy as an operator entanglement measure and
the notion of corresponding state and demonstrate that the
corresponding state of nonunitary evolution is a mixed state. In
Sec. III we study the mixed corresponding state of two-qubit
noisy nonunitary evolutions in terms of the Kraus operator
approach and explicitly derive the analytical expressions of
operator entanglement and entangling power for two-qubit
nonunitary evolutions. In Sec. IV, taking the phase damping
noise as an example, we study the operator entanglement and
entangling power of pure noise induced evolution and the
noisy nonunitary evolutions for realizing an ISWAP gate and
a controlled-Z gate. The results are summarized in Sec. V.

II. OPERATOR ENTANGLEMENT
AND THE CORRESPONDING STATE

An operator UA acting on the Hilbert space HA of
system A belongs to the Hilbert-Schmidt space HHS, which is
isomorphic toH⊗2

A as a Hilbert space. The natural isomorphism
|�(UA)〉 from the operator to the state space is known to be

|�(UA)〉 := (UA ⊗ I)|�0〉, (1)

where |�0〉 = 1√
dA

∑dA

i=1 |i〉A|i〉A′
[32], A′ is a copy of system

A, dA is the dimension of system A, and the maximally
entangled state |�0〉 is a normalized basis in HA and H′

A. Here

|�(UA)〉 is the corresponding state [12,32] of the operator UA.
Moving to the bipartite case, we obtain the corresponding state

|�(UAB)〉 := (UAB ⊗ IA′B ′)|�0〉⊗2
(
UAB ∈ H⊗2

HS

)
(2)

of the operator UAB acting on the bipartite composite sys-
tem [12], where systems A and B have the same dimension dA.

The linear entropy E(ρAB) = 1 − trρ2
A quantifies entan-

glement in a state (with density operator ρAB) of the total
system, where ρA = trB(ρAB) is the reduced density operator
of subsystem A. For a product of corresponding states,
E(ρAB) = 0, so the linear entropy measures the impurity of the
subsystem and thus indirectly measures the entanglement of
the composite system. The idea for defining the entanglement
of an operator is to lift the notion of entanglement from the state
level to the operator level [12]. Generally, linear entropy of the
corresponding state |�(UAB)〉 is adopted as the entanglement
measure of the bipartite operator UAB .

We start by writing � = |�(UAB)〉〈�(UAB)|, where the
reduced density matrix is �AA′ = trBB ′(|�(UAB)〉〈�(UAB)|)
and the operator entanglement of UAB is given by [12]

E(UAB) = 1 − tr(�AA′)2, (3)

where UAB is an ideal operator that is not affected by noise
and its corresponding state |�(UAB)〉 is a pure state. However,
the general quantum operations are often implemented under
a noise environment and are described by completely positive
maps that can be written as the operator sum representation
E(ρAB) = ∑

n DnρABD
†
n. This allows us to associate E with

the following operator over H⊗4 [12]:∑
n

|�(Dn)〉〈�(Dn)| = (EAB ⊗ IA′B ′)(|�0〉〈�0|)⊗2. (4)

So we can conclude that the corresponding state of a noisy
nonunitary evolution described by the operator sum represen-
tation is a mixed state.

III. ENTANGLING POWER AND ENTANGLEMENT
OF A NONUNITARY EVOLUTION

Because the corresponding state of a nonunitary evolution
is a mixed state, in this section we derive the operator entan-
glement of the noisy nonunitary evolution by decomposing its
Kraus operators as sums of the products of Pauli matrices and
the entangling power of the noisy nonunitary evolution.

A. Entanglement of a noisy evolution for a two-qubit system

In general, we can suppose there is no initial correlation
between systems and their environments and any noisy
nonunitary evolution process for a two-qubit composite
system composed of subsystems A and B is given by
E(ρAB) = ∑

n DnρAB(0)D†
n with the Kraus operators satisfy-

ing
∑

n D
†
nDn = I . Furthermore, the Kraus operators can be

decomposed as

Dn =
3∑

i,j=0

μnijσ
A
i ⊗ σB

j , (5)

where σ0 = I , σ1 = σx , σ2 = σy , and σ3 = σz denote the
Pauli matrices and μnij are the decomposition coefficients.
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Consequently, the noisy evolution of the two-qubit composite
system can be represented as

E(ρAB) =
3∑

i,j,k,l=0

νijklσ
A
i ⊗ σB

j ρAB(0)σA
k ⊗ σB

l , (6)

where νijkl = ∑
n μnijμ

∗
nkl . According to the Jamiolkowski

isomorphism theory [32], the corresponding mixed state of
this noisy nonunitary evolution process can be given by

∑
n

|�(Dn)〉〈�(Dn)| =
3∑

i,j,k,l=0

νijkl|�i〉|�j 〉〈�k|〈�l|, (7)

where |�(Dn)〉 is the corresponding state of the Kraus operator
Dn and |�0〉, |�1〉, |�2〉, and |�3〉 form a complete Bell basis.
The formula |�i〉AA′ = (σA

i ⊗ IA
′
)|�0〉AA′

has been used here.
Now we can give the expression of the entanglement for the
nonunitary evolution of two-qubit system in terms of the linear
entropy of its corresponding mixed state

E(E) = 1 − tr

⎡
⎣trBB ′

⎛
⎝ 3∑

ij,kl=0

νijkl|�i〉|�j 〉〈�k|〈�l|
⎞
⎠

⎤
⎦

2

. (8)

B. Entangling power of the nonunitary evolution

Entangling power quantifies the entanglement capability of
a unitary operator U acting on a bipartite quantum system with
state space H = HA ⊗ HB and is defined as [1,15]

ep(U ) := E(U |ψA〉 ⊗ |ψB〉)ψA,ψB
, (9)

where the overbar stands for the average over all product states
distributed according to a probability density P (ψA,ψB ). It
tells us how much entanglement the operator U can produce,
on average, when acting on product states. According to
this definition, the entangling power of any noisy nonunitary
evolution, described by E(ρ) = ∑

n Dnρ(0)D†
n, can be given

as follows:

ep(E) := E

(∑
n

Dn|ψA〉 ⊗ |ψB〉
)ψA,ψB

. (10)

If we use the linear entropy as an entanglement measure and
the initial product states |ψA〉 ⊗ |ψB〉 belong to a uniform
distribution, the entangling power of the nonunitary evolution
is given by

ep(E) := 1 −
∑
m,n

tr(Dn ⊗ Dm	p0D
†
n ⊗ D†

mS13), (11)

where

	p0 :=
∫

dμ(ψA,ψB)(|ψA〉〈ψA| ⊗ |ψB〉〈ψB |)⊗2

= 1

dAdB(dA + 1)(dB + 1)
(I + S13)(I + S24), (12)

where dμ(ψA,ψB) is the measure over the product state
manifold induced by P (ψA,ψB), dA(B) = dim[HA(B)], and Sij

(i,j = 1, . . . ,4) denotes the transposition between the ith and
j th factors of H⊗2 ∼= (CdA ⊗ CdB ) ⊗ (CdA ⊗ CdB ) [1].

IV. ENTANGLING POWER AND OPERATOR
ENTANGLEMENT OF NOISY NONUNITARY

QUANTUM EVOLUTIONS VIA PHASE DAMPING

After generalizing the operator entanglement and entan-
gling power from unitary operations to nonunitary cases,
we will explicitly study the entangling power and operator
entanglement of the pure phase damping induced noisy
operation and the phase damping induced noisy ISWAP and
controlled-Z gates.

A. Entangling power and operator entanglement
of the phase damping noise

If we consider two noninteracting qubits that are both
coupled to a common phase damping noise environment, the
total Hamiltonian (set � = 1) of this model can be expressed as
H = H0 + HI , where the free Hamiltonian H0 of the system
and the interaction Hamiltonian HI are given by

H0 = 1

2
ωσA

z + 1

2
ωσB

z +
∑

j

	ja
†
j aj , (13)

HI =
∑

j

σA
z (λ∗

j a
†
j + λjaj ) +

∑
j

σB
z (λ∗

j a
†
j + λjaj ), (14)

where ω is the frequency of the qubits A and B, a
†
j (aj )

is the creation (annihilation) operator of the j th mode of
the environment with the frequency 	j , λj is a coupling
constant between the system (A or B) and the j th mode of the
environment, and σA

z (σB
z ) denotes the Pauli matrix of system

A (B). In the interaction picture the evolution operator of the
total system is given by U = U

†
0e−iHI tU0, where U0 = e−iH0t .

In the standard product basis, the evolution operator can be
expressed in the form

U =

⎛
⎜⎜⎝

O†V O 0 0 0
0 1 0 0
0 0 1 0
0 0 0 O†V †O

⎞
⎟⎟⎠, (15)

where O = exp(−it
∑

j 	ja
†
j aj ) and V =

exp[−it
∑

j 2(λ∗
j a

†
j + λjaj )]. If we assume that there is

no initial correlation between systems A and B and their
environment, the initial state of the environment is the
vacuum state |{0}〉 ≡ ∏

j ⊗|0j 〉 = | · · · 0 · · · 〉. According to
the discussion in Ref. [31], the Kraus operator for systems A

and B can be defined as follows:

Dk =
k∑

{kj }

′〈{kj }|U |{0}〉, (16)

where
∑ ′ stands for summation under the condition∑

j kj = k, |{k}〉 ≡ ∏
j ⊗|kj 〉 = |k1 · · · kj · · · 〉. Substituting

Eq. (15) into Eq. (16), we can get the Kraus operators that
describe the phase damping of the composite system. By
definition, there is an infinite number of Kraus operators when
the two qubits suffer from phase damping noise. Rearranging
all Kraus operators Dk �=0 as one group, we can redefine the
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FIG. 1. (a) Operator entanglement of phase damping noise versus
τ . (b) Entangling power of phase damping noise versus τ . Here
τ = √


t .

following two Kraus operators:

D0 =

⎛
⎜⎜⎝

e−
t2/2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−
t2/2

⎞
⎟⎟⎠, (17)

D1 =

⎛
⎜⎜⎝

√
1 − e−
t2 0 0 0

0 0 0 0
0 0 0 0

0 0 0
√

1 − e−
t2

⎞
⎟⎟⎠, (18)

where 
 = 4
∑

j |λj |2 and
∑

i D
†
i Di = I is satisfied. By

applying Eqs. (5)–(8), we can calculate the entanglement of
the pure phase damping induced evolution of two qubits as
follows:

E(E) = 1
2 − 1

2e−
t2
. (19)

By applying Eqs. (11) and (12), the entangling power of the
pure phase damping induced evolution can be calculated as
follows:

ep(E) = 1
3 − 1

3e−
t2
. (20)

Figure 1 shows that both operator entanglement [Fig. 1(a)]
and entangling power [Fig. 1(b)] of the pure phase damping
induced evolution increase exponentially with time. That
is to say, the phase damping noise has its own operator
entanglement and entanglement power like other operations
and its entangling power and operator entanglement increase
gradually with time up to their respective maxima 1

3 and 1
2 .

B. Entangling power and entanglement of nonunitary
evolutions for realizing ideal operations

In this section we study the entangling power and en-
tanglement of evolutions for realizing the ISWAP gate and
controlled-Z gate in the presence of phase damping noise.
Consider the interaction Hamiltonian between qubits A and
B, which is used to implement the ISWAP quantum gate

Hs = J
(
σA

x σB
x + σA

y σB
y

)
, (21)

where J is the coupling constant between qubits A and B.
If the phase damping is taken into consideration, the total
Hamiltonian of the composite system and its environment is
H = H0 + Hs + HI , where H0 is the free Hamiltonian and HI

is the interaction Hamiltonian between the composite system

and its environment, which causes the phase damping. The evo-
lution operator of the whole system is Ũs = U

†
0e−i(HI +Hs )tU0 in

the interaction picture. Suffering from the phase damping, the
evolution of qubits A and B can be described by the following
two Kraus operators:

Ds
0 =

⎛
⎜⎜⎜⎜⎝

e−
t2/2 0 0 0
0 cos 2J t −i sin 2J t 0
0 −i sin 2J t cos 2J t 0
0 0 0 e−
t2/2

⎞
⎟⎟⎟⎟⎠, (22)

Ds
1 =

⎛
⎜⎜⎜⎜⎝

√
1 − e−
t2 0 0 0

0 0 0 0
0 0 0 0

0 0 0
√

1 − e−
t2

⎞
⎟⎟⎟⎟⎠. (23)

Therefore, we can calculate the entangling power and entan-
glement of the evolution for realizing the ISWAP gate in the
presence of phase damping noise as follows:

ep(Es) = 1
3 − 1

9e−
t2 − 2
9 cos4 2J t

− 2
9

(
e−
t2 − 1

)
cos2 2J t, (24)

E(Es) = 3
4 − 1

4 cos4 2J t − 1
2e−
t2

cos2 2J t (25)

Whether the phase damping is present or not, Figs. 2 and 3
show that both entangling power and entanglement of the
evolution for realizing the ISWAP gate oscillate periodically
with time. The phase damping noise leads to a significant
increase of entangling power of the evolution for realizing
the ISWAP gate [Fig. 2(b)] and its maximum exceeds the
upper bound ( 1

3 ) for a two-qubit unitary operation [1], which
means that the entangling power of a noise-assisted nonunitary
operation is larger than that of the corresponding unitary
one. In addition, the phase damping noise suppresses the
oscillation amplitude of both entangling power [Fig. 2(b)] and
entanglement [Fig. 3(b)] of the evolution. If the evolution
time is accurately controlled, the ideal ISWAP gate can be
realized. Surprisingly, whether there is phase damping or not,
the entanglement of the evolution is always 3

4 at the moment
when the ideal ISWAP gate is realized. In other words, the phase
damping noise does not affect the operator entanglement of
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FIG. 2. (a) Entangling power of the evolution for realizing an
ISWAP gate versus J t without noise. (b) Entangling power of the
evolution for realizing an ISWAP gate versus τ in the presence of
phase damping noise. Here τ = √


t .
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FIG. 3. (a) Entanglement of the evolution for realizing an ISWAP

gate versus J t without noise. (b) Entanglement of the evolution for
realizing an ISWAP gate versus τ in the presence of phase damping
noise. Here τ = √


t .

the ISWAP gate. However, at the moment t = t0 when the ideal
ISWAP gate is realized, i.e., when cos 2J t0 = 0 is satisfied, the
entangling power of the evolution for realizing the ISWAP gate
becomes ẽp(ISWAP) = 1

3 − 1
9e−
t2

0 , which has an exponential
relation with the strength of phase damping noise.

Next we study the entangling power and the entanglement
of the evolution for realizing the controlled-Z gate under the
phase damping noise circumstances. The total Hamiltonian of
the whole system is H = Hcz + HI . As shown in Eq. (61)
of Ref. [33], the Hamiltonian Hcz = g

2 (σA
z + σB

z − σA
z σB

z ) is
introduced for realizing the controlled-Z gate, with g being a
constant. In a similar way, we can get the Kraus operators for
qubits A and B:

Dcz
0 =

⎛
⎜⎜⎝

e−igt e−
t2/2 0 0 0
0 e−igt 0 0
0 0 e−igt 0
0 0 0 eigt e−
t2/2

⎞
⎟⎟⎠, (26)

Dcz
1 =

⎛
⎜⎜⎝

e−igt
√

1 − e−
t2 0 0 0
0 0 0 0
0 0 0 0

0 0 0 eigt
√

1 − e−
t2

⎞
⎟⎟⎠.

(27)

In the presence of phase damping noise, the entangling power
and the entanglement of evolution for realizing the controlled-
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FIG. 4. (a) Entangling power of the evolution for realizing a
controlled-Z gate versus gt without noise. (b) Entangling power of
the evolution for realizing a controlled-Z gate versus τ in the presence
of phase damping noise. Here τ = √


t .
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FIG. 5. (a) Entanglement of the evolution for realizing a
controlled-Z gate versus gt without noise. (b) Entanglement of the
evolution for realizing a controlled-Z gate versus τ in the presence
of phase damping noise. Here τ = √


t .

Z gate can be calculated as follows:

ep(Ecz) = 1
3 − 2

9e−
t2 − 1
9e−
t2

cos 2gt, (28)

E(Ecz) = 1
2 − 1

2e−
t2
cos2 gt. (29)

Figures 4 and 5 show that the phase damping noise
suppresses the oscillation behavior of entangling power and
entanglement of the evolution for realizing controlled-Z gate.
The entangling power [Fig. 4(b)] and entanglement [Fig. 5(b)]
of the noisy evolution for realizing the controlled-Z gate
asymptotically approach their upper bound without oscillation.
Additionally, the entanglement of the evolution for realizing
the controlled-Z gate is a constant ( 1

2 ) in the presence of
the phase damping noise at the moment t = t0 (here t0 is
given by cos gt0 = 0) when the controlled-Z gate is realized.
However, the entangling power of the controlled-Z gate
ẽpcz

= 1
3 − 1

9e−
t2
0 grows exponentially with the increase of

the strength of phase damping noise.

V. CONCLUSION

We have extended the definitions of operator entanglement
and entangling power from the ideal operation case to the
general noisy operation case, i.e., a method of how to
calculate the operator entanglement and entangling power of
a nonunitary operation has been proposed in terms of linear
entropy. When an ideal operation is implemented in a noise
environment, the operation is no longer a pure operation and
it can be regarded as a mixed operation composed of several
operation elements, i.e., the Kraus operators describing the
noisy evolution. Then we can use the linear entropy of its
mixed corresponding state as the entanglement measure of
the noisy evolution. Because a noisy nonunitary operation can
be described by a mixture of the evolutions induced by the
corresponding Kraus operators, the definition of entangling
power can be generalized from the ideal unitary operation
case to the nonunitary case. So, for a given input product
state, the output state of a nonunitary noisy operation can
be described by a mixture of those states generated by the
corresponding Kraus operator acting on the input product
states. Consequently, the entangling power of a nonunitary
noisy operation can be measured as the mean entanglement of
the output states averaged over all possible input product states.
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In this paper we mainly considered operator entanglement
and entangling power of nonunitary operations caused by
phase damping noise. Our results show that the pure phase
damping noise has its own operator entanglement and entan-
gling power. When the phase damping noise is added to an
ideal operation, such as the ISWAP operation or the controlled-Z
operation, it can increase the entangling power of the operation,
but leave its operator entanglement invariant. These results
indicates that, for a general operation, operator entanglement
is a more intrinsic property than entangling power.
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