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Muonic bound systems, virtual particles, and proton radius

U. D. Jentschura
Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
(Received 26 November 2014; revised manuscript received 30 March 2015; published 27 July 2015)

The proton radius puzzle questions the self-consistency of theory and experiment in light muonic and electronic
bound systems. Here we summarize the current status of virtual particle models as well as Lorentz-violating
models that have been proposed in order to explain the discrepancy. Highly charged one-electron ions and muonic
bound systems have been used as probes of the strongest electromagnetic fields achievable in the laboratory. The
average electric field seen by a muon orbiting a proton is comparable to hydrogenlike uranium and, notably, larger
than the electric field in the most advanced strong-laser facilities. Effective interactions due to virtual annihilation
inside the proton (lepton pairs) and process-dependent corrections (nonresonant effects) are discussed as possible
explanations of the proton size puzzle. The need for more experimental data on related transitions is emphasized.
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I. INTRODUCTION

Recent muonic hydrogen experiments [1,2] have resulted
in the most severe discrepancy of the predictions of quantum
electrodynamics with experiment recorded over the past few
decades. In short, both (electronic, i.e., atomic) hydrogen
experiments (for an overview see Ref. [3]) and recent scattering
experiments lead to a proton charge radius of about 〈rp〉 ≈
0.88 fm, while the muonic hydrogen experiments [1,2] favor
a proton charge radius of about 〈rp〉 ≈ 0.84 fm.

Few-body bound electronic and muonic systems belong to
the most intensely studied fundamental physical entities; a
combination of atomic physics and field-theoretic techniques
is canonically employed [4–14]. Here we aim to discuss
conceivable explanations for the discrepancy and highlight
a few aspects that set the muonic systems apart from any other
bound states that have been studied spectroscopically so far.
To this end, in Sec. II we briefly summarize the status of virtual
particle models discussed in the literature and supplement
previous approaches with a discussion of the role of axion
terms that might be significant in the strong magnetic fields
used in the muonic hydrogen experiments. In Sec. III we
show that muonic hydrogen (as well as muonic hydrogenlike
ions with low nuclear charge number Z) constitute some
of the most sensitive probes of high-field physics to date;
concomitant speculations about novel phenomena in the strong
fields inside the proton are discussed. Finally, a possible role
of process-dependent corrections in experiments is mentioned
in Sec. IV. Conclusions are reserved for Sec. V. We use SI
mksA units unless indicated otherwise.

II. VIRTUAL PARTICLES AND MUONIC HYDROGEN

From the point of view of quantum field theory, the most
straightforward explanation for the proton radius puzzle in
muonic hydrogen would involve a subversive virtual particle
that modifies the muon-proton interaction at distances com-
mensurate with the Bohr radius of muonic hydrogen,

aμ = �

αQEDmrc
= 2.847 08 × 10−13 m, (1)

where αQED is the fine-structure constant and mr =
mμmp/(mμ + mp) is the reduced mass. The distance regime

of aμ ≈ 300 fm is intermediate between the Bohr radius of
(ordinary) hydrogen and the proton radius.

In consequence, the possible role of millicharged parti-
cles, which modify the Coulomb force law in this distance
regime, has been analyzed in Ref. [13]. These particles could
conceivably modify the photon propagator at energy scales
�c/aμ via vacuum-polarization insertions into the photon line.
Supplementing this analysis, in Ref. [12], conceivable hidden
(massive) photons are analyzed. Particles with scalar and
pseudoscalar couplings are the subject of Ref. [15]. A model
that explicitly breaks electron-muon universality, introducing
a coupling of the right-handed muonic fermion sector to a
U (1) gauge boson, is investigated in Ref. [16]. One should
notice, though, that the explicit breaking of the universality
according to Eq. (7) of Ref. [16] appears as somewhat
artificial. The reduction in the muonic helium nuclear radius
by �r2

He = −0.06 fm2 as predicted by the model proposed in
Ref. [16] has the opposite sign as compared to the results of
experiments [17,18] that were carried out about four decades
ago and observe a roughly 4% lower cross section for muons
scattering off of protons as opposed to electrons being scattered
off the same target.

Likewise, in a recent paper on Lorentz-violating terms
in effective Dirac equations [19], the authors assume an
explicit breaking of electron-muon universality (see Sec.
II C 3 of Ref. [19], where the authors explicitly state that
they assume only muon-sector Lorentz violation, so effects
arise in Hμ spectroscopy but are absent in H spectroscopy
and electron elastic scattering). Viewed with skepticism, this
assumption appears to be a little artificial because it would
modify the effective Dirac equation for muons as compared
to that of electrons. In general, Lorentz-violating parameters
may break rotational invariance and thus have an effect on
the S-P transitions measured in [1,2] [see the derivation in
Eqs. (21)–(25) of Ref. [19]].

In the virtual particle models from Refs. [13,15,16], it
has been found necessary to fine-tune the coupling con-
stants in order to avoid conflicts with muon and electron
g − 2 measurements, which otherwise provide constraints on
the size of the new physics terms due to their relatively
good agreement with experiment (for a discussion, see
Ref. [13]). Furthermore, attempts to reconcile the difference
based on higher moments of the proton charge distribution
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ALP (0−)

FIG. 1. The ALP-photon conversion in a strong magnetic field
according to the interaction term in the Lagrangian given in Eq. (2).
The large encircled cross denotes the interaction with an external
magnetic field.

(its higher-order shape; see Ref. [20]) face difficulty when
confronted with scattering experiments that set relatively tight
constraints on the higher-order corrections to the proton’s
shape.

One class of models that have not been explored hitherto
concerns electrodynamics with axionlike particles (ALPs) (see
Refs. [21–24]). In the experiments [1,2], strong magnetic
fields on the order of about 5 T are used to collimate
the muon beam. Axion terms could potentially influence
the results of the spectroscopic measurements. We start
from the Lagrangian [25–29] for a pseudoscalar (0−) axionlike
particle (temporarily setting � = c = ε0 = 1)

L = −1

4
FμνFμν − g

4
φF̃ μνFμν + 1

2
∂μφ∂μφ − 1

2
m2

φφ

= 1

2
( �E2 − �B2) + gφ �E · �B + 1

2
∂μφ∂μφ − 1

2
m2

φφ. (2)

Here, according to Ref. [29], the axion’s two-photon coupling
constant reads

g ≡ GAγγ = αQED

2πfA

(
E

N
− 2

3

4 + z

1 + z

)
, (3)

where φ is the axion field, mφ is the axion mass, mφfA ≈
mπfπ with fπ the pion decay constant and mπ the pion
mass, and z = mu/md is the quark mass ratio. Grand unified
models [30–34] assign rational fractions to the ratio E/N of
the electromagnetic to the color anomaly of the axial current
associated with the axion. Possible values are E/N = 8/3 (see
Refs. [30,31]) or zero [32,33]. In Eq. (2), the electromagnetic-
field-strength tensor Fμν and its dual F̃μν have their usual
meaning.

It is interesting to consider the leading correction to the
Coulomb potential in strong magnetic fields, on the order of
5 T, due to the axion-photon conversion amplitude inherent
to the Lagrangian (2) (see Figs. 1 and 2). We shall first
assume that the vacuum expectation value of the axion field
vanishes [35,36] and consider the tree-level correction to the
Coulomb potential given in Fig. 2.

We match the scattering amplitude according to Chap. 83
of Ref. [37] (see also [38]) and calculate the poten-
tial, generated by the axionlike particle, due to the di-
agram in Fig. 2. The pseudoscalar ALP potential is

e, µ e, µ

ALP (0−)

p p

FIG. 2. The leading (tree-level) correction to the Coulomb po-
tential due to the ALP-photon interaction is given by the tree-level
diagram shown. The upper fermion line corresponds to an electron e

(ordinary hydrogen) or a muon μ (muonic hydrogen).

given as

VALP0− (�k) = (�k · �B)2 4πZαg2

�k4
(�k2 + m2

φ

) = (�k · �B)2f (�k),

f (�k) = 4πZαg2

�k4
(�k2 + m2

φ

) .

(4)

In coordinate space, we therefore have

VALP0− (�r) = −( �B · �∇)2f (�r),

f (�r) = 4πZαg2

(
e−mφr − 1

4πm4
φr

− r

8πm2
φ

)
.

(5)

With f (�r) = f (r), we have the second derivative as

( �B · �∇)2f (r) =
( �B2

r
− ( �B · �r)2

r3

)
f ′(r) + ( �B · �r)2

r2
f ′′(r). (6)

Differentiating and expanding for small mφ , one obtains

VALP0−(�r) = Zαg2

( �B2

3mφ

−
�B2�r2 + ( �B · �r)2

8r

)

∼ −Zαg2

8r
[ �B2�r2 + ( �B · �r)2], (7)

where we subtract the constant shift. This effective potential is
independent of the ALP mass mφ provided mφ is much smaller
than other mass scales in the problems, such as me and mμ (see
also Fig. 3). The 1S expectation value is

δE = 〈1S| − Zαg2

8r
( �B2�r2 + ( �B · �r)2)|1S〉

= −g2 �B2

4mr

= −ε0(�c)3 g2 �B2

4mr

, (8)

where mr is the reduced mass of the bound system and SI
mksA units are restored in the last step. Otherwise, according
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FIG. 3. (Color) Plot of the average field strength E ≡ 〈E〉 [see
Eq. (13a)] experienced by a bound electron or muon in a one-muon
ion (red line, 1 � Z � 5) and for hydrogenlike (electronic) ions in
the range 1 � Z � 92. For comparison, the average field strength in
a laser field of intensity 1024 W cm−2 is given [39]. The Schwinger-
critical-field strength is denoted by Ecr.

to Table 5 of Ref. [27], we have

g < 4.9 × 10−7 GeV, mφ � 0.5 meV. (9)

For the parameters | �B| = 5 T and g = 5 × 10−7 GeV−1, we
obtain

δEH = −1.67 × 10−31 eV, δEμH = −6.28 × 10−34 eV.

(10)

The smallness of these results excludes ALPs as possible
explanations for the proton radius puzzle. A possible scenario
with a nonvanishing vacuum expectation value of the axion
field (see also Refs. [40,41]) is studied in Appendix A.

III. STRONG-FIELD ELECTRODYNAMICS

Muonic bound systems have been used as probes of
the strongest electromagnetic fields since the 1970s (see
Ref. [5]), but progress was eventually hindered due to electron
screening [42]. Typically, transitions in high-Z muonic ions
involve highly excited, non-S states [43–45], where the
average field experienced by the orbiting electron is reduced
due to the higher principle quantum number. In view of the
current muonic hydrogen discrepancy, it is useful to recall
just how strong these fields are, especially in very simple
bound systems, where shielding electrons are absent [46,47].
The conceivable presence of novel phenomena in the very
strong electromagnetic fields within highly charged ions has
been mentioned as a significant motivation for the study of
these systems [7,8,48,49]. According to Eq. (2) of Ref. [7]
and the more comprehensive discussion of Ref. [48], a

conceivable nonlinear correction term (contact interaction)
has been mentioned for high-field quantum electrodynamics.
In view of this situation, it is indicated to compare the field
strengths in highly charged (electronic) ions to those reached
for low excited states in muonic hydrogen and low-Z muonic
ions.

A measure for the strongest electromagnetic fields that
can be described by perturbative electrodynamics is the
Schwinger-critical-field strength [50–53]

Ecr = 1.32 × 1018 V/m. (11)

The electric field around the proton reaches the Schwinger crit-
ical field already at a distance 0.116aμ Bohr radii of the muonic
hydrogen system, where aμ is given in Eq. (1). Let us consider
bound one-muon ions in the region of low nuclear charge
numbers 1 � Z � 5. The probability of finding a 1S muon
inside the region of supercritical-field strength, in one-muon
ions of nuclear charge number 1 � Z � 5, is evaluated as

pcr(Z = 1) = 0.17%, (12a)

pcr(Z = 2) = 1.18%, (12b)

pcr(Z = 3) = 3.36%, (12c)

pcr(Z = 4) = 6.73%, (12d)

pcr(Z = 5) = 11.2%. (12e)

The field scales as 1/r2 for small distances. In Fig. 3,
to supplement a corresponding investigation in Fig. 2 of
Ref. [7], we investigate the electric-field strength experienced
by a bound muon in a muonic hydrogenlike system (only
one orbiting particle) in the region of low nuclear charge
number. We start from the ground-state expectation value of the
electric-field operator, which is obtained as the gradient of the
Coulomb potential. Within the nonrelativistic approximation
(in SI mksA units), the result reads

〈E〉 = 〈1S|
(

− ∂

∂r

Z|e|
4πε0r

)
|1S〉 = 2Z3 m2

r

m2
e

E0, (13a)

E0 = eα2
QEDm2

ec
2

4πε0�
2

= 5.14 × 1011 V/m. (13b)

Here mr is the reduced mass of the atomic system, me is
the electron mass, and E0 denotes the standard atomic field
strength observed at one Bohr radius in a standard hydrogen
atom (which is equal to the atomic unit of the electric-field
strength). The prefactor 2 in Eq. (13a) is a consequence of our
taking the quantum-mechanical expectation value as opposed
to evaluating the classical expression at the (shifted) Bohr
radius. For ultrarelativistic systems, Eq. (13a) is replaced by
the expectation value of the fully relativistic Dirac-Coulomb
wave function [54]; the relativistic correction factor amounts
to the replacement

〈E〉 
→ 〈E〉
2 − √

1 − (ZαQED)2 − 2(ZαQED)2
, (14)

which does not change the order of magnitude of the result.
The decisive factor in Eq. (13a) is the prefactor Z3(mr/me)2,
which is responsible for an enhancement of the field strength
by six orders of magnitude in the range 1 � Z � 92 for the
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electronic system, but also for a considerable enhancement in
muonic systems, where(

mr

me

)2

→
(

mμmp

(mμ + mp)me

)2

≈ 3.45 × 104. (15)

For a one-muon ion, the average electric-field strengths at
Z = 4 and 5 surpass the average electric-field strength in
hydrogenlike uranium (see Fig. 3).

Furthermore, the average field strength experienced by a
bound 1S electron in one-muon ions with Z = 4 and 5 is
given as

〈E〉μ,Z=4 = 1.72Ecr, (16a)

〈E〉μ,Z=5 = 3.36Ecr, (16b)

thus surpassing (in terms of quantum mechanical average) the
Schwinger-critical-field strength.

The HERCULES laser [39] (still) sets the standard for the
highest achievable laser intensities to date, with a peak inten-
sity of about 2 × 1022 W cm−2. In the future, such facilities are
supposed to reach intensities in the range 1023–1024 W cm−2.
An intensity of 1024 W cm−2 corresponds to an electric-field
strength of

EL = 2.74 × 1015 V/m, (17)

which is surpassed in the muonic system (1 � Z � 5) as
well as medium-Z and high-Z bound quantum electrodynamic
(QED) systems (with Z � 14; see Fig. 3). It is thus evident
that bound muonic systems offer a competing alternative to the
exploration of the strong-field QED regime, complementary to
strong laser systems [55].

One might argue that the time average of the oscillating
laser field is zero, as much as the spatial (vector) average of
the electric field (vector) in a bound system, taken over the
spherically symmetric S wave function, vanishes. However,
the exploration of the strong-field domain of electrodynamics
is not precluded by the oscillating or spherically symmetric
nature of the fields. One easily estimates that the (fluctuating)
electric fields inside the proton, given the fact that the three
valence quarks cannot be further apart than 0.8 fm, are of order
Ep ∼ 1021 V/m and thus exceed the Schwinger-critical-field
strength Ecr of about Ecr = 1.32 × 1018 V/m by three orders
of magnitude. Conceivable corrections to the muonic hydrogen
spectrum due to the high-field strengths have been discussed
in Refs. [56–58]. Just to avoid a misunderstanding, we should
clarify that the recently discussed hypothesis of nonpertur-
bative lepton pairs inside the proton [56–58] certainly does
not imply the production of such pairs from the vacuum
inside the nucleus; the vacuum is known to “spark” only
if the critical-field strength is maintained over a sufficiently
large space-time interval that is absent in muonic hydrogen.
The hypothesis discussed in Refs. [56–58] merely implies
that the highly nonperturbative nature of strong interactions
(quantum chromodynamics) inside the proton, which involves
electrically charged constituent as well as sea quarks, might
lead to effective lepton-proton interactions, which have so far
been overlooked in theoretical treatments (see Refs. [56–58]
and Appendix B).

Finally, a remark on the relationship of the light muonic
systems and the strong electric fields to the classical
strong-field systems (highly charged ions) is in order. In
these latter systems, the (initially positive-energy) 1S level
can be shown to approach the negative continuum, effectively
“sparking” the vacuum [59,60]. A single proton of course
is unable to create such an effect, but the proximity of the
bound muon to the proton (nucleus) generates the extreme
fields and the corresponding quantum-mechanical expectation
values that contribute to the interest in muonic bound systems.

IV. NONRESONANT EFFECTS AND
TRANSITION FREQUENCIES

Discrepancies of Lamb shift experiments and theory have
been explored for a long time. For example, a rather well-
known accurate Lamb shift experiment in helium [61] had
long been in disagreement with theory (the discrepancy was
resolved in Refs. [62,63]). A measurement of the 4He nuclear
radius using muonic helium ions is currently in progress [64].
In many cases, nuclear radius determinations using electronic
and muonic bound systems complement each other [13]. One
may add that additional experiments on electronic helium ions
(as opposed to muonic helium ions) would be able to shed
additional light on the generalized proton radius puzzle, or
nuclear size effect puzzle, because they would enable us to
compare the electronically measured radius of 4He with the
muonically measured radius; a corresponding experimental
setup was recently proposed [65]. In particular, it would be
rather interesting to compare the anisotropy method used in
Refs. [61,62] with other spectroscopic techniques.

Historical developments encourage us to search for addi-
tional conceivable explanations of the proton radius puzzle in
systematic effects that may not have been fully appreciated in
even the most carefully planned experiments. One such set of
corrections is given by so-called off-resonant corrections to
frequency measurements. In Ref. [66], it was stressed that an
accurate understanding of the line shape of quantum transitions
to neighboring levels can lead to surprising phenomena such
as prevention of fluorescence; for precision experiments, this
finding highlights the necessity of including a good line-shape
model. Because the nonresonant corrections to the line shape
involve mixed products of dipole operators connecting the
resonant and off-resonant levels, these effects are also referred
to as cross-damping terms in quantum optics [67,68] [see also
Eq. (9) of Ref. [69]]. In Sec. III of Ref. [69] [see also the
text after Eq. (15) in [69]], the authors investigate off-resonant
effects in differential as opposed to angular-averaged cross
sections. Quantum interference effects can be excluded as
an explanation of the proton radius discrepancy in muonic
systems [70], mainly because the proton radius discrepancy,
converted to frequency units, is much larger than the natural
linewidth of the transitions in the muonic systems. However,
the situation is different for atomic hydrogen, where spectral
lines have to be split to much higher relative accuracy. In
order to gauge possible concomitant systematic shifts of the
accurately measured frequencies, especially those involving
highly excited states of (atomic) hydrogen and deuterium, im-
proved measurements of hydrogen 2S-nP lines are currently
being pursued [71], while an improved measurement of the
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“classic” 2S-2P1/2 Lamb shift also is planned [72]. Both of
these experiments have the potential of clarifying the electronic
hydrogen side of the proton radius puzzle.

In order to understand the importance of the nonresonant
terms and see if they can potentially contribute to the
explanation of the proton radius puzzle, let us recall that a
typical nonresonant energy shift due to neighboring levels,
still displaced by an energy shift �En commensurate with a
change in the principal quantum number, is [69,73]

δE = (��)2

�En

∼ α8
QEDmec

2, (18)

where � is the decay width of the reference state and the
term after the ∼ sign is a parametric estimate according to
the ZαQED expansion [4]. The shift (18), which according to
Low [73] defines the ultimate limit to which energy levels
can be resolved in spectroscopic experiments, is too small to
explain the proton radius puzzle (we have �� ∼ α5

QEDmec
2,

while �En ∼ α2
QEDmec

2 for a transition with a change in the
principal quantum number). By contrast, in differential cross
sections, the shift due to neighboring levels removed only by
the fine structure is proportional to [69]

δE = (��)2

�Efs
∼ α6

QEDmec
2, (19)

where �Efs ∼ α4
QEDmec

2 is of the order of a typical fine-
structure interval. According to Eqs. (9) and (12) of Ref. [69],
there is an additional prefactor 1/2 to consider for the shift of
the center of the half-maximum values of the resonance curve,
while this prefactor is 1/4 for the Lorentzian maximum itself.
The presence of this additional prefactor has no effect on the
phenomenological significance of the estimates to be discussed
in the following. The shift given in Eq. (19) is of sufficient
magnitude to explain the muonic hydrogen discrepancy.

Let us perform some order-of-magnitude estimate to ex-
plore the possibility of explaining the proton radius puzzle
on the basis of nonresonant corrections. The reduced electron
Compton wavelength is λC = �/mec = 386.159 fm. The ratio
of λC to the proton radius, which we assume to be given by
rp ≈ 0.88 fm, is given as

ξ = rp

λC

= 2.27 × 10−3. (20)

According to Eq. (51) of Ref. [74] (see also Table 10 of
Ref. [10]), the leading-order finite-size effect for the 2S state
is (nonrecoil limit)

EFS = 1
12 (Zα)4mec

2ξ 2 ≈ 150 kHz. (21)

We define the proton puzzle prefactor χPP as

χPP = 0.882−0.842

0.882 = 0.089, (22)

leading to a proton puzzle energy shift EPP for the 2S state of

EPP = χPPEFS ≈ 13 kHz. (23)

We aim to investigate the possible presence of significant off-
resonance corrections to the 2S-4P1/2 and 2S-4P3/2 frequen-
cies [75], as well as 2S-8D3/2 and 2S-8D5/2 frequencies [76],
and 2S-12D transitions [77]. To this end, we first recall that
the fine-structure energy difference, for P and D states in

hydrogen, is

FnP = EnP3/2 − EnP1/2 = χFP

(Zα)4mec
2

n3
, (24a)

FnD = EnD5/2 − EnD3/2 = χFD

(Zα)4mec
2

n3
, (24b)

χFP = 1

4
, χFD = 1

12
. (24c)

According to Ref. [4] (see p. 266), the one-photon decay width
of nP and nD states can be estimated as (independent of the
total angular momentum)

�nP ≈ χ�P

α(Zα)4mec
2

�n3
, χ�P = 0.311, (25a)

�nD ≈ χ�D

α(Zα)4mec
2

�n3
, χ�D = 0.107. (25b)

We now focus on a potential nonresonant correction to the
transition frequencies, due to neighboring fine-structure levels.
This choice is motivated in part by a remark in Ref. [76], where
it is confirmed that neighboring hyperfine structure levels are
taken into account in the line-shape model used in Ref. [76]
(but those levels displaced by the fine structure apparently are
not taken into account).

According to Ref. [69], in an angle-differential cross sec-
tion, the off-resonance shift due to neighboring fine-structure
levels can be estimated as follows. For a 2S-nP transition,

EOR = (��)2
n

Fn

= χ2
�

χF

α2(Zα)4mec
2

n3
, (26)

where one has to replace the prefactors as χ� → χ�P,D and
χF → χFP,D , respectively, according to the estimates given
in Eqs. (24) and (25).

It is interesting to investigate the ratio of the proton size
puzzle energy shift to the natural linewidth as a measure of
how precisely the line has to be split in order to resolve the
proton size puzzle. It is given as (2S-nP transitions)

RP = EPP

��nP

= n3χPPξ
2

12αχ�P

= 1.68 × 10−5n3. (27)

Example values for 2S-nP are RP (n = 4) = 0.0011, RP (n =
8) = 0.008, and RP (n = 12) = 0.029. So, in order to resolve
the proton size puzzle based on the 2S-4P transition, one
has to understand the linewidth to better than 1 part in 1000.
The work in [75] reaches an accuracy close to this limit:
The experimental accuracy for the 2S-4P transitions is on
the order of ∼12 kHz, to be compared to a natural linewidth of
∼13 MHz. The ratio RP becomes significantly more favorable
for transitions to higher excited P states.

The corresponding estimate for 2S-nD transitions is

RD = EPP

��nD

= n3χPPξ
2

12αχ�D

= 4.86 × 10−5n3. (28)

For 2S-nD transitions with n = 4,8,12, we have RD(n =
4) = 0.0031, RD(n = 8) = 0.025, and RD(n = 12) = 0.084.
It means that in order to resolve the proton size puzzle based on
the 2S-12D transition [77], one has to understand the linewidth
only to (roughly) 1 part in 12.
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Another interesting quantity is the ratio of the off-resonance
terms to the natural linewidth. It measures how accurately the
natural linewidth has to be split in order to see the off-resonant
effects. For 2S-nP transitions and 2S-nD transitions, it is
given by

SP = EOR

��nP

= αχ�P

χFD

≈ 1

110
, (29a)

SD = EOR

��nD

= αχ�D

χFD

≈ 1

106
, (29b)

independent of n. It is also very important to compare the
proton size puzzle energy shift to the off-resonance shift. It is
given by (2S-nP transitions)

TP = EPP

EOR
= RP

SP

= n3χPPχFP ξ 2

12α2χ�P

= 1.85 × 10−3n3. (30)

For the 2S-4P transition, one has TP (n = 4) = 0.118, im-
plying that the off-resonance cross-damping shift due to
neighboring fine-structure levels is roughly ten times larger
than the energy shift corresponding to the proton size puzzle for
the 2S level. We conclude that, unless one uses an appropriate
4π detector to eliminate the nonresonant terms, one has to
understand the line shape of the 2S-4P transition extremely
well in order to resolve the proton radius puzzle based on this
transition. From a complementary viewpoint, the line shape of
the 2S-4P transition could be an an excellent tool for studying
the nonresonant cross-damping terms.

For 2S-nD transitions, we have

TD = EPP

EOR
= RD

SD

= n3χPPχFDξ 2

12α2χ�D

= 5.16 × 10−3n3. (31)

Examples are TD(n = 8) = 2.64 and TD(n = 12) = 8.92. For
the 2S-8D transitions and 2S-12D transitions studied in
Refs. [76,77], respectively, this means that the estimated ratio
of the proton size puzzle energy shift to the off-resonance
contribution is larger than unity. One could thus tentatively
conclude that the inclusion of any conceivable nonresonant
corrections is not likely to shift the experimental results
reported in Refs. [76,77] on a level commensurate with the
proton radius puzzle energy shift.

In summary, our estimates would suggest that 2S-nD

transitions to highly excited D states provide for the most
favorable “signal-to-noise” ratio EPP/EOR [ratio of proton
size puzzle energy shift to the off-resonance energy shift,
with TD(n = 12) = 8.92]. In view of RD(n = 12) = 0.084,
the proton puzzle energy shift enters at about 1/12 of the
natural linewidth [77] for n = 12. Because SD ≈ 1/106, the
off-resonant terms are suppressed by about two orders of
magnitude in relation to the natural linewidth, which is smaller
than the proton radius puzzle energy shift by roughly another
order of magnitude. An inspection of Fig. 1 of Ref. [78] (see
also Fig. 1 of Ref. [79]) would indicate that the 2S-8D and
2S-12D transitions are consistent with a proton radius, derived
from hydrogen experiments, which is significantly larger than
the muonic hydrogen result. A least-squares analysis of all
accurately measured hydrogen transitions yields the proton
radius rp = 0.8802(80) fm (see Table XLV of Ref. [80]).
For comparison, we have exclusively taken the data from
the 2S-8D and 2S-12D transitions reported in Refs. [76,77],

together with the latest 1S-2S result [81] and current theory as
summarized in Refs. [74,80], and calculated a naive statistical
average of the proton radii derived from 2S-8D and 2S-12D

transitions (disregarding the covariances among the data,
which otherwise leads to a much more accurate value for
the proton radius [3]). With this approach, the result from
2S-8D and 2S-12D transitions alone is rp = 0.873(17) fm,
still larger than the muonic hydrogen value by 2σ . While
the reconsideration of cross-damping terms for hydrogen
transitions would be very helpful in clarifying a conceivable
contribution to the solution of the proton size puzzle, our
estimates suggest that it would be very surprising if the proton
size puzzle were to find a full explanation based on the
cross-damping terms alone (even if cross damping constitutes
a significant effect which will require a more thorough analysis
for hydrogen transitions in the near future). The off-resonant
terms seem to be most effectively suppressed in transitions to
highly excited D states.

V. CONCLUSION

In this paper we explored the remaining options for the
explanation of the persistent proton radius discrepancy [1,2].
Specifically, in Sec. II we supplemented previous attempts
to find an explanation for the proton radius puzzle based on
“subversive” virtual particles; all of these appear to require
fine-tuning of the coupling constants and no compelling set
of quantum numbers has as yet been found for the virtual
particle, which could potentially explain the discrepancy of
theory and experiment in (muonic) hydrogen within the limits
set by other precision experiments such as the electron and
muon g factors. Virtual particle explanations appear to be
disfavored at the current stage and other models depend on
rather drastic hypotheses such as symmetry breaking terms
that affect only the muon sector of the Standard Model (but not
electrons or positrons). Here we supplemented the discussions
of virtual particles by a calculation of the effective potential
describing the leading correction to the Coulomb interaction
due to axion-photon conversion in the (strong) magnetic fields
used in the muonic hydrogen experiments [1,2].

In Sec. III we continued to explore the typical electric fields
in a low-Z bound muonic system. These fields are seen to be
commensurate with or even exceed the Schwinger-critical-
field strength. Because of the lack of electron screening, the
one-muon ions can be interpreted as the most sensitive probes
of high-field physics to date. The hypothesis of nonperturbative
lepton pairs inside the proton and their conceivable influ-
ence on electron-proton and muon-proton interactions (see
Refs. [56–58]) is based on the interplay of nonperturbative
quantum chromodynamics with quantum electrodynamics
(see Appendix B). A breakdown of perturbative quantum
electrodynamics is not necessary for the existence of the
conjectured effect [58]. Muon-proton scattering experiments
will be an important cornerstone in the further clarification of
the electron-muon universality in lepton-proton interactions
(see Ref. [82]).

Finally, in Sec. IV the role of nonresonant line shifts in
differential as opposed to total cross sections was mentioned.
Two ongoing experimental efforts [71,72] share the aim
of analyzing the process-dependent line shifts [73] further.
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Transitions to highly excited D states (2S-nD transitions) in
hydrogen are identified in terms of favorable parameters for the
suppression of nonresonant correction terms (cross-damping
terms), which otherwise could account for hitherto unexplored
systematic effects in atomic hydrogen experiments. For the
muonic hydrogen experiments, in contrast to the experiments
on ordinary hydrogen, it is not necessary to split the resonance
line in order to make the proton radius puzzle manifest; the
discrepancy is much larger than the width of the resonance line
itself (see Fig. 5 of Ref. [1] and the discussion in Ref. [70]).

The binding field strengths in muonic ions exceed those
achievable in current and projected high-power laser systems.
The benefit of the low-Z muonic ions produced in the high-
intensity muon beams at the Paul-Scherrer-Institute lies in the
clean environment provided by the one-muon ions, where all
other bound electrons have been stripped and the interaction of
the muon and the nucleus can be investigated spectroscopically
to high accuracy. From a theoretical point of view, it appears
to be hard to shed any further light on the proton radius
puzzle without significant further stimulation from additional
experimental spectroscopic or scattering data.
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APPENDIX A: HEISENBERG-EULER LAGRANGIAN AND
VARIATIONAL CALCULUS

In many cases, the leading perturbation to the Coulomb
potential due to a new interaction can be obtained by varia-
tional calculus; we illustrate the procedure here, on the basis of
the Wichmann-Kroll correction to the Coulomb potential. The
Maxwell Lagrangian with the Heisenberg-Euler Lagrangian
reads (we switch to natural units with � = c = ε0 = 1)

L = 1

2
( �E2 − �B2) + 2α2

QED

45m4
( �E2 − �B2)2 + 14α2

QED

45m4
( �E · �B)2.

(A1)

If �E is given by the gradient of a Coulomb field and the
magnetic field vanishes ( �B = �0), then L is redefined to the
expression

L = 1

2
( �∇�)2 + 2α2

QED

45m4
( �∇�)4 − ρ�, (A2)

where we add the source term. In view of the relations

∂L
∂ �∇�

= �∇� + 8α2
QED

45m4
�∇�( �∇�)2,

∂L
∂�

= −ρ, (A3)

the variational equation �∇ · ∂L
∂ �∇�

= ∂L
∂�

becomes

�∇2� + 8α2
QED

45m4
[ �∇2�( �∇�)2 + �∇� · �∇( �∇�)2] = −ρ, (A4)

which can be reformulated as

�∇2� + 8α2
QED

45m4

(
∂r + 2

r

)
(∂r�)3 = −ρ, (A5)

where we assume that � is radially symmetric. We set
� = �C + �, where �C is the Coulomb potential and � is a
quantum correction. The charge density of the nucleus and the
Coulomb potential are given by

ρ(�r) = Z|e|δ(3)(�r), �C(�r) = Z|e|
4πr

, (A6)

where �∇2�C(�r) = −ρ(�r), so that, to first order in �,(
∂2
r + 2

r
∂r

)
� + 8α2

QED

45m4

(
∂r + 2

r

)
(∂r�C)3 = 0. (A7)

It is straightforward to observe that Eq. (A7) is solved by a
potential proportional to r−5,

� = �C + � = Z|e|
4πr

(
1 − 2

225

αQED

π

(ZαQED)2

(mr)4

)
. (A8)

This is equal to the long-distance tail of the Wichmann-Kroll
potential [83,84], which is relevant to a distance range r ∼ a0,
where a0 is the Bohr radius; we here confirm the result given
in Appendix III of Ref. [84].

A few remarks are in order. Matrix elements of a term
of order (αQED/π )(ZαQED)3/m4r5 [see Eq. (A8)] generate an
energy shift proportional to αQED(ZαQED)8m in hydrogenlike
systems. By contrast, the leading term in the Wichmann-Kroll
potential is otherwise proportional to a Dirac δ function and
generates an energy shift of the order of αQED(ZαQED)6m.
The latter term is given by the high-energy (short-distance)
regime not covered by our variational ansatz. Namely, the
atomic nucleus and the Coulomb potential and its derivative,
the Coulomb field, vary considerably on the length scale
of an electron Compton wavelength, which exceeds the
“operational parameters” of the Heisenberg-Euler Lagrangian,
so the result (A8) cannot be used for distances closer than an
electron Compton wavelength, i.e., it fails in the immediate
vicinity of the nucleus.

One might wonder why the functional form of the long-
distance tail (1/r5 for the Wichmann-Kroll potential) is dif-
ferent from the corresponding term for the Uehling potential,
which decays exponentially at large distances (see [12] and
references therein). The answer to this question is that the
Wichmann-Kroll potential, which is generated by Feynman
diagrams with at least four electromagnetic interaction terms
inside the loop, can be related to the Heisenberg-Euler effective
Lagrangian, which is valid for the long-distance tail of
the potential, while the corresponding term for the Uehling
potential (with only two electromagnetic interaction terms
inside the loop) would otherwise generate a term proportional
to �E2 that is absorbed in the Z3 renormalization of the
electromagnetic charge [85]. Hence, the tail of the Uehling
potential decays exponentially, akin to a Yukawa potential,
with a range of the potential being proportional to the electron
Compton wavelength (Sec. 2.4 of Ref. [12]).

After these intermediate considerations, we may proceed
to apply our variational ansatz to a calculation of interest in
the context of the subject matter of the current investigation.
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Namely, for a nonvanishing vacuum expectation value 〈φ〉 �=
0 of the axionlike particle as a dark matter candidate, the
Lagrangian [40,41]

LA = 1
2 ( �E2 − �B2) + g〈φ〉 �E · �B (A9)

is exact up to possible QED or axion loop corrections; in
contrast to the Heisenberg-Euler Lagrangian, it is not the result
of integrating out the fermionic degrees of freedom, which
limits the “operational parameters” of the Lagrangian (A1).
Hence, we are not at risk of exceeding the operational
parameters of the variational ansatz when we use the axion
background Lagrangian (A9) to calculate a possible correction
to the Coulomb potential due to dark matter physics. If
�E = −�∇� is generated by a (possibly distorted) Coulomb
field and �B is the (possibly inhomogeneous) external magnetic
field, then the Lagrange densityLA is redefined to read (adding
the source term ρ�)

LA = 1
2 ( �∇�)2 − g〈φ〉 �B · �∇� − ρ�. (A10)

The variational equation

�∇ · ∂LA

∂ �∇�
= ∂LA

∂�
(A11)

becomes

�∇2� − g〈φ〉 �∇ · �B = −ρ. (A12)

In the absence of magnetic monopoles, the leading correction
to the Coulomb potential mediated by the axion vacuum
expectation value thus vanishes, even for very strong and
inhomogeneous external magnetic fields �B.

One more remark is in order. The direct coupling of the
fermion to the axion [29] is of the derivative form LAff =
(Cf /2fA)ψf γ μγ5ψf ∂μφ, where Cf is a model-dependent
constant. The Yukawa coupling is gAff = Cf mf /fA and the
fine-structure constant is g2

Aff /4π ; energy loss arguments
from the SN1987A supernova typically give bounds in the
range g2

Aff /4π ∼ 10−21 (see Refs. [86,87]). This implies that
a single axion exchange, or an axion interaction insertion (e.g.,
into the fermion line of a vacuum polarization diagram), suffers
from a suppression factor on the order of g2

Aff /4π ∼ 10−21 and
is thus suppressed with respect to the corresponding photon
exchange diagram (coupling parameter αQED) by roughly 18
orders of magnitude. The fermion-axion coupling thus is too
small to explain the proton radius puzzle. Axion-mediated
effects as well as weak interactions [88] can thus also be
excluded as possible explanations for the proton radius puzzle.

APPENDIX B: STRONG FIELDS IN THE PROTON AND
THE INTERPLAY OF QED AND QUANTUM

CHROMODYNAMICS

The presence of a very small fraction of light sea fermions,
conceivably due to a nonperturbative mechanism, inside
the proton, was recently mentioned in Refs. [56,57]. One
might counterargue that the QED running coupling constant,
at distances commensurate with the proton radius, still is
small against unity and that this precludes a nonperturbative
mechanism leading to sea fermions inside the proton. In
Sec. III of Ref. [56], it is argued that the highly nonperturbative

quantum chromodynamic (QCD) nature of a hypothetical
electrically neutral proton receives a correction due to the
electroweak interactions, as they are switched back on, and
that, due to the highly nonlinear nonperturbative nature of
quantum chromodynamics, this reshaping can be much larger
than the electromagnetic perturbation itself.

Alternatively, one might argue that the fundamentally
nonperturbative nature of the QCD interaction inside the
proton might leave room for effects that cannot be described
by dispersion relations and perturbation theory alone. Namely,
due to the nonperturbative nature of quantum chromodynam-
ics, the three valence quarks of the proton are supplemented,
at any given time, by a large number of virtual sea quarks that
emerge from the vacuum due to quantum corrections to the
gluon exchange [89]. The sea quarks, as much as the valence
quarks, are electrically charged, off of their mass shell, and
may exchange photons. The propagator of these photons, in
turn, receives a correction due to vacuum polarization; hence,
at any given time, the proton wave function has a nonvanishing
electron-positron content due to the light fermionic vacuum
bubbles. This is a persistent phenomenon because the quarks
inside the proton are always highly virtual (off mass shell) in
view of their strong (mutual) interactions [58].

In Ref. [58] [see the text following Eq. (22) ibid.], the lepton
pair content has recently been estimated based on a (perturba-
tive) calculation of the electron-positron vacuum polarization
insertion into the radiative correction to a constituent quark’s
vector and axial vector current matrix elements. According to
Ref. [56], the virtual annihilation channel in positronium,

δH = παQED

2m2
e

(3 + �σ+ · �σ−)δ3(r), (B1)

corresponds to an effective Hamiltonian for electron-proton
interactions of the form

Hann = εp

3παQED

2m2
e

δ3(r), (B2)

where εp measures the electron-positron pair content inside the
proton and a value of εp = 2.1 × 10−7 is found to be sufficient
to explain the proton radius puzzle. Near Eq. (22) of Ref. [58],
it is argued that instead of Eq. (B1), one should rather consider
the Hamiltonian

δH = παQED

2m2
q

(3 + �σ+ · �σ−)δ3(r), (B3)

where mq is a quark mass. According to Ref. [58], an
appropriate choice is mq ≈ 600me (constituent value of one-
third of the mass of a proton). Comparing Eqs. (B1)–(B3),
one is led to the identification εp ∼ m2

e/m2
q ≈ 2.8 × 10−6,

which is “too large” to explain the proton radius puzzle.
An estimate of the lepton pair content of the proton, based
on electron-positron vacuum polarization insertions into the
radiative correction to a constituent quark’s vector and axial
vector current, likewise leads to estimates for εp that are much
larger than the discrepancy. According to Eqs. (13) and (21) of
Ref. [58], an estimate based on matrix elements of the current
leads to values in the range

εp ∼ 10

(
αQED

π

)2

∼ 10−5  10−7. (B4)
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Conversely, if one starts from Eq. (B3) instead of (B1), arguing
that the effective mass in the virtual annihilation diagram
should be the quark mass, and additionally invokes the sup-
pression factor εp [see the text following Eq. (22) of Ref. [58]],
then the resulting effect in muonic hydrogen becomes negligi-
ble on the level of the proton radius discrepancy. Guidance for
the exploration of the conjectured sea lepton effect in future
experiments is given by the discussion surrounding Eq. (23)
of Ref. [58], where the functional dependence on the charge
and mass numbers of the nucleus is discussed.

Nuclear structure corrections (nuclear polarizability cor-
rections) are usually taken into account with the use of
dispersion relations [90]. This is certainly a valid approach
for genuine excitations of the valence quarks into excited

states. However, the light sea fermions are generated by
a QED correction to a nonperturbative process, namely, a
correction to the nonperturbative QCD interaction inside the
proton; the latter gives rise to the ubiquitous sea quarks.
Dispersion relations (Cutkosky rules) are available for the
treatment of the genuine excitations of the proton into its
own excited states, but it is unclear if the use of dispersion
relations could capture the effect of the sea fermions. Because
the sea quark interaction is nonperturbative and the light
fermion vacuum bubbles are inserted into the photon exchange
among the (nonperturbative) sea quarks, one does not know
where to cut the nonperturbative diagram and the dispersion
relation is not available. For further details, we refer to
Refs. [56–58].
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