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Quantum-mechanical diffraction theory of light from a small hole: Extinction-theorem approach
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In a recent paper [Phys. Rev. A 90, 043830 (2014)] it was shown that the so-called aperture response tensor is
the central concept in the microscopic quantum theory of light diffraction from a small hole in a flat screen. It was
further shown that the quantum mechanical theory of diffraction only requires a preknowledge of the incident
field plus the electronic properties of identical screens with and without a hole. Starting from the quantum
mechanical expression for the linear conductivity tensor, we study the related causal conductivity tensor paying
particular attention to diamagnetic electron dynamics. Using a nonlocal-potential separation assumption, we
present a calculation of the diamagnetic causal surface conductivity for a jellium quantum-well screen using
a two-dimensional Hartree-Fock model. In the diamagnetic case the difference between the light-unperturbed
electron densities for screens with (n0) and without (n0

∞) holes are the primary quantities for the diffraction
theory. In a central part (Sec. IV) of this article we determine n0 via a quantum-mechanical two-dimensional
extinction-theorem approach related to elastic electron scattering from a hole with an electronic selvedge. For
heuristic purposes we illustrate aspects of the extinction-theorem theory by applying the approach for an infinitely
high potential barrier to the vacuum hole. Finally, we calculate and discuss the aperture response tensor in the
small hole limit and in the zeroth-order Born approximation. Our final result for the aperture response tensor
establishes the bridge to the anisotropic electric dipole polarizability tensor of the hole. It turns out that the
effective optical aperture (hole) size relates closely to the extension of the relevant electronic wave functions
scattered from the hole.
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I. INTRODUCTION

According to Huygens’ scalar construction, every point of
a given optical wave front may be considered as a center of
emission of secondary noninterfering spherical wavelets, and
the wave front at any later instant may be regarded as the
envelope of these wavelets [1,2]. By supplementing Huygens’
construction with the postulate that the secondary wavelets
interfere mutually, Fresnel was able to account for a number of
important observations [3]. The Huygens-Fresnel scalar theory
was put on a sounder mathematical basis by Kirchhoff [4,5]
using a procedure already known from Helmholtz’s studies
in acoustics [6]. The resulting Helmholtz-Kirchhoff integral
theorem [7,8], possibly with a vectorial generalization in-
cluded, has since been the starting point for many electromag-
netic diffraction studies. In the Huygens-Fresnel-Kirchhoff
approach there exists in a certain sense sources for emission of
electromagnetic fields, e.g., light, in every point in vacuum.
In a given diffraction scenario these sources are active at
the centers of the various wavelets. Although it appears
from the Maxwell equations that the sources or sinks of
electromagnetic fields are seated in electrically charged matter
(massive) particles, the Huygens-Fresnel-Kirchhoff idea has
its place in modern notation, where the field propagation even
in the photon approach may be described in terms of the
transverse electromagnetic propagator in so-called spherical
contraction [9,10].

Once it is realized that electromagnetic diffraction has its
roots in field-matter interaction, and as such is a scattering
phenomenon, one is faced with (i) a boundary value problem
at the matter-vacuum (air) interface(s) and (ii) a dynamical
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problem for the space-time evolution of the particle motion
induced by the given incoming electromagnetic field, a motion
subsequently responsible for the emission of the diffracted
(scattered) field. In diffraction from an aperture (a hole) in
a solid screen, it is intuitively plausible that the field-matter
interaction in the vicinity (edge) of the aperture plays the
major role in understanding the diffraction characteristics. The
importance of the edge was already known to Young, who
regarded the diffraction pattern as arising from the interference
of the incident wave and a reflected “boundary wave” from the
edge [11]. It was left to Sommerfeld to put the idea of Young
on a firm theoretical basis. He did this via his mathematically
rigorous solution for the diffraction of plane waves by a plane
semi-infinite perfectly reflecting screen [8,12].

In the so-called rigorous diffraction theories [8,13–17] point
(i) above is in focus, and point (ii) in a sense completely
neglected assuming that the given screen, usually taken as
infinitely thin, is black or a perfect reflector. The enormous
amount of literature (see, e.g., Refs. [15] and [18] and
references therein), not least on perfectly conducting metal
screens, has shown that the “rigorous diffraction theory” leads
to quantitatively good prediction in many cases, not least at
long wavelengths. However, it is not completely correct to
claim that a perfect conductor (reflector) screen is dynamically
inactive. The screen must carry a finite current density to
satisfy the necessary (macroscopic) boundary conditions on
the various electromagnetic-field quantities. Mathematically,
the product of an infinite conductivity (σ → ∞) and an
internal electric field which goes to zero (E → 0) must equal
the relevant finite screen current density J = σE.

Recent optical studies, not least in near-field optics and
of diffraction from micro (nano)-sized holes (see, e.g., the
experimental studies in Refs. [19–23]), have made it necessary
to put more emphasis on point (ii). Following a long tradition
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in physical optics, the field-matter interaction is almost always
treated on the basis of a macroscopic refractive index (n)
[or equivalently a complex dielectric constant (ε)] concept
(see, e.g., Refs. [24–31]). In such an approach, the variable
light-induced matter dynamics is hidden in the frequency
dependence of the dielectric constant (tensor), ε = ε(ω).

To obtain a deeper (better) understanding of the diffraction
of light from mesocopic holes, it is, in general, necessary to
include the concept of spatial nonlocality when dealing with
the field-matter interaction. Some studies of nonlocality have
appeared in recent years within the field of nanoplasmon-
ics [32–37]. However, most of these studies are performed
within the hydrodynamical approximation. A full incorpora-
tion of nonlocality in most situations means that one has to
abandon macroscopic electrodynamics and instead base the
calculations on the microscopic Maxwell-Lorentz equations.
In these the fields are generated by the microscopic charge
and current densities, and to obtain these the field-coupled
(many-body) Schrödinger equation must be combined with the
microscopic Maxwell-Lorentz equations in a self-consistent
manner [9].

The quantum regime of plasmon resonances in subnanome-
ter gaps between metallic nanodimers has for some years been
studied using time-dependent density functional theory and
the phenomenological quantum-correction model [38–45]. In
the present work, we present a quantum-mechanical theory
of diffraction of light from a small hole based on a different
approach. We take as a starting point a microscopic theory of
diffraction recently established by the present authors [46].
On the basis of linear microscopic response theory, we
showed how the diffraction characteristics can be expressed
solely in terms of a preknowledge of the incident field
and the optical electronic properties of the given screen.
Indirectly, quantum physics entered our previous paper via
the nonlocal microscopic conductivity tensor σ (r,r′; ω), an
object in the space (r,r′)-frequency (ω) domain. By comparing
(subtracting) the fields scattered by the same incident field from
screens with and without a hole, the diffraction stemming from
the field-matter interaction in the vicinity of the hole is brought
in focus. In the heart of our diffraction theory [46] stands the
so-called effective causal aperture response tensor, �(r,r′; ω),
which is the central quantity that needs to be calculated in order
to apply the microscopic theory of diffraction [46]. In this work
we show how the effective causal aperture response tensor may
be calculated quantum mechanically for a plane quantum-well
jellium screen in the case where the diamagnetic coupling
dominates the field-matter interaction.

In Sec. II and Appendix A we present some general aspects
of the quantum-mechanical diffraction theory. In Appendix A a
few remarks on classical diffraction theory and its limitations
are given (Sec. 1 of Appendix A), whereafter we proceed
with a brief summary of the microscopic formalism [46]
leading to a general expression of the effective causal aperture
response tensor (Sec. 2 of Appendix A). In Sec. II the
quantum-mechanical structure of the microscopic conductivity
tensor (Sec. II A), the theory of diamagnetic electron dynamics
(Sec. II B), and the framework for our study of jellium
quantum-well screens (Sec. II C) are presented. From Sec. II B,
and in the subsequent part of our work, we limit ourselves to the
diamagnetic response. The locality of σ dia(r,r′; ω) simplifies

the integral equation for the local-field tensor somewhat and
leads to a spatially local relation between the causal (cau)
diamagnetic conductivity tensor, σ cau

dia (r,r′; ω), and the local
field tensor.

When the plane screen is sufficiently thin it behaves
like an electric dipole (ED) absorber and ED radiator sheet
(ED-ED sheet) [46] and the electron motion in the direction
perpendicular to the screen becomes bound-state dynamics in a
quantum-well (QW) potential. For such QW screens the central
concept of the microscopic quantum theory of diffraction is the
ED-ED approximation of �(r,r′; ω), i.e., the ED-ED causal
effective aperture response tensor �(r‖,r′

‖; ω) [46]. In this
article, we focus on diamagnetic QW screens and we pursue a
calculation of �(r‖,r′

‖; ω). We start in Sec. II C by assuming
that the screen potential can be separated in such a manner
that the time-independent Schrödinger equation decouples into
parts associated with the stationary-state problems along and
perpendicular to the plane of the screen. The electron dynamics
in the plane of the QW screen we treat on the basis of the
well-known jellium model. As described in Appendix B, a
two-dimensional (2D) Hartree-Fock calculation gives us for
a screen without a hole the eigenenergies associated with a
complete set of 2D plane waves.

From our previous work [46] we know that the ED-ED
aperture response tensor is given by the difference between the
causal surface conductivity tensors for identical screens with
[S(r‖,r′

‖; ω)] and without [S∞(r‖,r′
‖; ω)] a hole: �(r‖,r′

‖; ω) =
S(r‖,r′

‖; ω) − S∞(r‖,r′
‖; ω). In Sec. III, we determine the

diamagnetic causal surface conductivity tensor for a screen
without a hole S∞(r‖,r′

‖; ω), retaining only the self-field part
of the electromagnetic Green’s function. In the self-field
approximation the integral equation for the local-field tensor,
�∞(r,r′; ω), is replaced with an algebraic equation, and this
allows one to obtain an “exact” solution for �∞(r,r′; ω). In
general, a Born series approximation is needed to determine
�∞(r,r′; ω) from the underlying integral equation. In the
self-field approximation electromagnetic retardation effects
across the QW screen are neglected [47,48]. Apart from a few
cases related to paramagnetic QW resonance excitation [48],
the neglect of retardation is justified. The one-electron density
needed for an explicit calculation of S∞(r‖,r′

‖; ω) is calculated
in Sec. III B.

Having obtained the surface conductivity tensor
S∞(r‖,r′

‖; ω) we turn our attention towards a calculation
of S(r‖,r′

‖; ω) in Sec. IV. In the diamagnetic case, and
within the framework of the self-field approximation for the
electromagnetic Green’s function, the central problem is a
determination of the electron density, n0(r). To obtain n0(r),
one must calculate the relevant electronic energy eigenstates
and the associated Fermi-Dirac factors for a screen with a
hole. In the plane of the screen the relevant energy eigenstate
wave functions are determined comprehending the hole as a
2D scatterer of incident plane waves. The potential scattering
from the hole is attacked using a 2D microscopic extinction-
theorem approach for the electrons. Readers interested in the
basics of potential scattering, the 3D extinction theorem, and
its use in physical optics may consult Refs. [49–51]. The
theorem was established first by Ewald [52,53] and Oseen [54]
(in the framework of molecular optics) and later extended
to nonrelativistic quantum-mechanical potential scattering
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by Pattanayak and Wolf [55]. The extinction approach is
particularly convenient because it allows one to treat a hole
surrounded by an electronic selvedge. The selvedge area (in
2D) is the region in which the electron density changes from
its bulk value to zero (in the vacuum hole). In Sec. IV A,
we start from a 2D electron version of the famous optical
(acoustic) integral theorem of Helmholtz and Kirchhoff [4–6].
The associated outgoing 2D scalar propagator is the Hankel
function of zeroth order and first kind. In Sec. IV B, the relevant
extinction theorems for the hole, selvedge, and bulk areas
are established, and it is shown how one from these may
obtain integral equations, basically form identical to those
used in conventional potential scattering theory [49,50]. The
Fermi-Dirac factors entering the calculation of n0(r) and n0

∞(r)
must be identical because the potential scattering from the hole
selvedge area is elastic. We prove this assertion by an explicit
calculation. In Sec. IV C, we discuss the simplified case in
which it is assumed that the potential barrier to vacuum is
infinitely high.

In Sec. V, we finish our paper with a calculation of the
ED-ED aperture response tensor �(r‖,r′

‖; ω) = S(r‖,r′
‖; ω) −

S∞(r‖,r′
‖; ω), paying particular attention to its integrated form,

�(ω), which is the primary quantity in the small-hole limit.
The tensorial form of �(r‖,r′

‖; ω) [identical to that of �(ω)]
is discussed and compared to the form obtained for �(ω) in
our previous article [46] for a 2D screen-plus-hole system
exhibiting infinitesimal rotational symmetry and reflection
symmetry.

II. QUANTUM THEORY OF DIFFRACTION:
DIAMAGNETIC COUPLING IN A JELLIUM

QUANTUM-WELL SCREEN

As indicated in the Introduction, the present authors
recently established a quantum theory of diffraction of light
from a small hole based on the solution of the microscopic
Maxwell-Lorentz equations [46]. In Sec. 2 of Appendix A, we
present a short summary of our quantum theory of diffraction.
From a knowledge of the difference between the microscopic
conductivity tensors for screens with [σ (r,r′; ω)] and without
[σ∞(r,r′; ω)] a hole, one can obtain the causal effective
aperture (hole) response tensor, �(r,r′; ω). A comprehensive
literature exists for the calculation of σ∞(r,r′; ω) in various
approximations (see, e.g., Refs. [9], [56], and [48] and
references therein). Here we base our analysis on a single-
particle random-phase-approximation (RPA) expression for
σ∞(r,r′; ω) and its form-identical version for σ (r,r′; ω).
Apart from the electromagnetic angular frequency (ω), only
light-unperturbed electronic properties and statistics enter the
formula for σ (r,r′; ω) [and σ∞(r,r′; ω)].

A. Quantum theory of the microscopic conductivity tensor

We start by turning our attention towards the quantum-
mechanical structure of the conductivity tensor σ (r,r′; ω)
[or σ∞(r,r′; ω), as they are form identical]. The quantum-
mechanical calculation of σ (r,r′; ω) can be found, e.g., in
Ref. [9]. Readers interested in a deeper understanding of linear
nonlocal quantum-mechanical theory as such may also consult
Ref. [57], where also a comprehensive list of relevant literature

is given. Although a many-body calculation of σ (r,r′; ω) can
be carried out, it is for the present purpose sufficient to base our
considerations on the single-particle (one-electron) expression
for σ (r,r′; ω). For a closed system with spin degeneracy one
has [9]

σ (r,r′; ω) = 2�

i

∑
i �=j

fj−fi

Ej − Ei

1

�ω+Ej − Ei

Ji→j (r)Jj→i(r′),

(1)

where Ji→j (r) and Jj→i(r′) are the transition current densities
from state i to state j , and from j to i, respectively. As indi-
cated, these current densities are evaluated at the space points
r and r′. The states (i,j ) are stationary states with energies
(Ei,Ej ) and time-independent wave functions: [�i(r),�j (r)].
The expressions for the transition current densities are given
by

Ji→j (r) = − e�

2mi
[�j∗(r)∇�i(r) − �i(r)∇�j∗(r)] (2)

and

Jj→i(r) = [Ji→j (r)]∗, (3)

−e being the electron charge and m the electron mass. In
Eq. (2) fi (fj ) is the occupation factor for state i (j ). In thermal
equilibrium fi equals the Fermi-Dirac distribution function,
viz.,

fi = (exp {[Ei − μ(T )]/(kT )} + 1)−1, (4)

where μ(T ) is the chemical potential at the absolute temper-
ature T , and k is Boltzmann’s constant. The factor 2 in front
of the summation sign in Eq. (1) originates in the summation
over (assumed) degenerate spin states, and fi , therefore, with
the help of μ(T ), is normalized to half the number of electrons
in the given system.

A generalization of Eq. (1) to open systems is a difficult
task in most cases, if not impossible. However, using a simple
relaxation-time approximation for open systems, Eq. (1) holds
with the replacement ω → ω + i/τ , τ being the relevant
(overall) energy relaxation time [9,58].

B. Diamagnetic electron dynamics

In the mid- and far-infrared regions the microscopic
conductivity of metals and semiconductors usually is well
described retaining only the diamagnetic contribution to
σ (r,r′; ω), and in a BCS superconductor the conductivity is
purely diamagnetic for frequencies below the superconducting
gap frequency. The diamagnetic (dia) contribution to the con-
ductivity, σ (r,r′; ω), originates in the local gauge invariance
demand on quantum electrodynamics [9] and is thus always
present. It can be shown by a rather elaborate calculation
that [9,57]

σ dia(r,r′; ω) = 1

iω

∑
i �=j

fj − fi

Ej − Ei

Ji→j (r)Jj→i(r′). (5)

For ω → 0, σ dia(r,r′; ω) → ∞, a result in agreement with the
fact that the dc conductivity of a superconductor is infinite.
Although the individual (i,j ) contributions to σ dia(r,r′; ω)
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are spatially nonlocal, it turns out that the sum of these
contributions become local and isotropic. Thus [9,57],

σ dia(r,r′; ω) = �(r; ω)δ(r − r′)U, (6)

where, with the inclusion of a phenomenological relaxation
time,

�(r; ω) = ie2

m(ω + i/τ )
n0(r). (7)

The quantity n0(r) is the local field-unperturbed electron
density given by

n0(r) = 2
∑

i

fi |�i(r)|2. (8)

Written in the form of Eqs. (6) and (7), σ dia(r,r′; ω) resembles
the well-known phenomenological Drude formula for the
conductivity of a free-electron metal, and in a certain sense
σ dia(r,r′; ω) does represent a generalized quantum mechanical
version of the Drude model.

Apart from the fact that σ dia(r,r′; ω) may give one the dom-
inating contribution to the screen conductivity in a number of
cases, the local structure of σ dia(r,r′; ω) makes the calculation
of the causal effective aperture response tensor, �(r,r; ω),
somewhat easier. Furthermore, the local form underlines in
an illuminating manner the difference between σ cau

dia (r,r′; ω)
and σ dia(r,r′; ω), as we realize now. By combining Eqs. (A5)
and (6) one obtains

σ cau
dia (r,r′; ω) = �(r; ω)�(r,r′; ω). (9)

The nonlocality and anisotropy of the causal diamagnetic
conductivity hence are solely associated with the field-field
response tensor relating the local electric field at r, E(r; ω), to
the incident field, E0(r′; ω), in surrounding points, r′.

In the diamagnetic case the integral equation for the field-
field response tensor [Eq. (A6)] is simplified to

�(r,r′; ω) = Uδ(r − r′) + iμ0ω

∫ ∞

−∞
�(r′′; ω)G(r,r′′; ω)

·�(r′′,r′; ω)d3r ′′. (10)

In cases where the local-field correction is small one may rely
on an iterative solution of Eq. (10), that is,

�(r,r′; ω) =Uδ(r − r′) + iμ0ωG(r,r′; ω)�(r′; ω)

+ (iμ0ω)2
∫ ∞

−∞
�(r′′; ω)G(r,r′′; ω)

· G(r′′,r′; ω)�(r′; ω)d3r ′′ + · · · . (11)

In the iterative approach the local-field tensor is composed
as a sum of scattering terms of increasing order, as shown
schematically in Fig. 1. In general, the multiple scattering
correlating the incident and local fields in the space points
r′ and r, is mediated by both electronic and electromagnetic
couplings; cf. the form of the kernel K(r,r′; ω) in Eq. (A7),
and the schematic illustration in Fig. 2. In the first Born
approximation (1B), where only the first two terms on the right
side of Eq. (11) are kept, the causal diamagnetic conductivity

r

r′′′′

r′

G(r,r′′′′;ω)G(r′′′′,r′;ω)

G(r,r′;ω)
δ(r-r′)

FIG. 1. Zero-, first-, and second-order contributions to the local-
field tensor in the diamagnetic case.

is given by

σ cau
dia (r,r′; ω) = σ dia(r,r′; ω) + iμ0ω�(r; ω)

× G(r,r′; ω)�(r′; ω), (1B), (12)

and the spatial nonlocality in σ cau
dia (r,r′; ω) alone is related to

direct electromagnetic-field propagation between r′ and r.

C. Jellium quantum-well screen

As already indicated, the diffraction of light from high-
density electron-gas screens will be in focus in this pa-
per. We shall base our considerations on an effective one-
electron picture, and assume that the positive charge (ion)
“background” is fixed and uniform. An electron gas with
a uniformly smeared-out fixed ion background is called a
jellium and is a dream matter for theorists. Although the
single-particle approximation often is a crude one, it appears
difficult to go beyond this approach considering the fact that an
understanding of the electron dynamics in the vicinity of the
hole is decisive for a description of the diffraction process. The
expression for the conductivity tensor, σ (r,r′; ω), in Eq. (1)
hence is obtained within the framework of what historically
has been called the dynamical RPA (or the self-consistent field
method) [58,59].

A reduction of the jellium formalism from a many-body
to an effective one-body description in general requires an
introduction of a spatially nonlocal scalar potential, V (r,r′).
In the framework of the Hartree-Fock theory [58,59] this
potential nonlocality is associated with the exchange term in
the electron-electron interaction.

Starting from the effective one-electron time-independent
Schrödinger equation with a static nonlocal potential, viz.,

− �
2

2m
∇2�(r) +

∫
V (r,r′)�(r′)d3r ′ = E�(r), (13)

where �(r) is a stationary-state wave function and E its
associated energy, we assume that the potential can be
separated as

V (r,r′) = V‖(r‖,r′
‖)δ(z − z′) + V⊥(z,z′)δ(r‖ − r′

‖), (14)

r

r′′′′

r′

G(r,r′′′′;ω)σ(r′′′′,r′;ω)

FIG. 2. Schematic illustration of the electronic and electromag-
netic couplings in the kernel K(r,r′; ω) entering the integral equation
for the local-field tensor �(r,r′; ω).
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where r‖(r′
‖) = (x(x ′),y(y ′)) and z(z′) are the Cartesian coor-

dinates parallel (‖) and perpendicular (⊥) to the plan of our
flat screen. Although the assumption certainly not is correct in
general, it appears to be a fair approximation when the screen
is so thin it behaves like a QW for the electron dynamics
perpendicular the plane of the screen. Under the assumption
in Eq. (14), the time-independent Schrödinger equation is
reduced to the form

− �
2

2m
∇2�(r) +

∫
V‖(r‖,r′

‖)�(r′
‖,z)d2r ′

‖

+
∫

V⊥(z,z′)�(r‖,z′)dz′ = E�(r), (15)

and the product ansatz

�(r‖,z) = ψ(r‖)φ(z), (16)

in turn, decouples the Schrödinger equation into parts associ-
ated with stationary-state problems along and perpendicular to
the screen. Hence,

− �
2

2m
∇2

‖ψ(r‖) +
∫

V‖(r‖,r′
‖)ψ(r′

‖)d2r ′
‖ = E‖ψ(r‖), (17)

− �
2

2m

d2

dz2
φ(z) +

∫
QW

V⊥(z,z′)φ(z′)dz′ = E⊥φ(z), (18)

with total energy

E = E‖ + E⊥, (19)

and ∇2
‖ = ∂2/∂x2 + ∂2/∂y2. In Eq. (18) it has been empha-

sized that the screen potential in the z direction is that of a
QW and that the electrons are bound in the well potential. In
a QW system it is often a good approximation to consider the
potential as local, i.e., V⊥(z,z′) = V⊥(z)δ(z − z′).

In the present work we assume that the screen is so thin
that there is only one bound QW state. In this case the electron
dynamics is confined to the plane of the screen, essentially,
and a 2D analysis starting from Eq. (17) is sufficient. In a
forthcoming article [60] we shall extend our theory to two-level
QW screens. In the context of the study in Ref. [46], resonance
excitation between the two levels makes it important to keep
the field-induced QW current density perpendicular to the
plane of the screen in the theoretical calculation. In Appendix B
we briefly discuss a 2D version of the Hartree-Fock theory for a
screen without a hole. The theory shows that the eigenfunctions
of the time-independent Schrödinger equation may be taken as
plane waves and that the eigenenergies are modified (lowered)
in comparison to those in the Hartree (free-electron) case.

III. DIAMAGNETIC CAUSAL SURFACE (ED-ED)
CONDUCTIVITY OF A SCREEN WITHOUT A HOLE

A. Local field tensor in self-field approximation

When a QW is sufficiently thin it is usually a good approx-
imation to neglect electromagnetic retardation effects across
the well. Remembering that the relevant Green’s function for
QW screens must be described in disk contraction [61–63], the
nonretarded (self-field) part of the dyadic G is in the mixed

representation [9] given by [63]

G(z − z′) = −
(

c

ω

)2

δ(z − z′)ẑẑ, (20)

where ẑ is a unit vector in the z direction. The result in Eq. (20)
and Ref. [63] deviate by a factor of −1 because of different
sign conventions for the Green’s function in Ref. [63] and here
(a factor of (−1) is missing on the self-field term in Eq. (65) of
Ref. [46]). As indicated, the self-field part of G(z − z′; ω) ≡
G(z − z′) is independent of the wave vector (q‖) along the QW
plane. By 2D Fourier integral transformation one then obtains
in the space-frequency domain

G(r − r′) =
∫ ∞

−∞
G(z − z′)eiq‖·(r‖−r′

‖) d2q‖
(2π )2

= −
(

c

ω

)2

δ(r − r′)ẑẑ, (21)

a well-known result in view of the fact that the so-called self-
field dyadic (L) [9] is L = ẑẑ in disk contraction [64]. Note that
the neglect of retardation across the QW leads to a suppression
of retardation effects along the plane of the well.

In the self-field approximation, the integral equation for the
local field tensor �∞(r,r′; ω) ≡ �∞(r,r′) [Eq. (10)] is reduced
to the algebraic form

�∞(r,r′) = Uδ(r − r′) + 1

iε0ω
�∞(r)ẑẑ · �∞(r,r′), (22)

where the subscript ∞ is added to remind the reader that we are
studying a QW screen without a hole. To determine �∞(r,r′),
we multiply Eq. (22) by the dyads U − ẑẑ and ẑẑ, respectively.
This gives

(U − ẑẑ) · �∞(r,r′) = (U − ẑẑ)δ(r − r′), (23)

ẑẑ · �∞(r,r′) = δ(r − r′)ẑẑ + �∞(r)

iε0ω
ẑẑ · �∞(r,r′). (24)

From Eq. (24) now we find

ẑẑ · �∞(r,r′) = δ(r − r′)ẑẑ
1 − (iε0ω)−1�∞(r)

. (25)

Note that the ẑẑ part of �∞ in the collisionless limit (ωτ →
∞) has a resonance at the local plasma frequency, ω∞

p (r) =
[n0

∞(r)e2/(mε0)]1/2. By adding Eqs. (23) and (25), we have
the solution for the local-field factor, namely,

�∞(r,r′) = δ(r − r′)
[

U − ẑẑ + ẑẑ
1 − (iε0ω)−1�∞(r)

]
. (26)

We know from our previous work [46] that the so-called causal
surface conductivity tensor in the limit where the QW screen
behaves like an ED radiator and absorber sheet (ED-ED sheet)
is given by

S∞(r‖,r′
‖) =

∫
QW

σ cau
∞ (r‖,r′

‖,z,z
′)dz′dz. (27)

By combining Eqs. (9), (26), and (27), we obtain the fol-
lowing integral expression for the diamagnetic causal surface
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conductivity of a screen without a hole:

S∞(r‖,r′
‖; ω) = δ(r‖ − r′

‖)

[
(U − ẑẑ)

∫
QW

�∞(r; ω)dz

+ ẑẑ
∫

QW

�∞(r; ω)dz

1 − (iε0ω)−1�∞(r; ω)

]
. (28)

In deriving Eq. (28) the integral over z′ was carried out utilizing
that δ(r − r′) = δ(r‖ − r′

‖)δ(z − z′).
Before continuing the general line of development let us

return to Eq. (26). In the 1B, where [1 − (iε0ω)−1�∞]−1 ≈
1 + (iε0ω)−1�∞, the local-field tensor becomes

�1B
∞ (r,r′) = δ(r − r′)[U + ẑẑ(iε0ω)−1�∞(r)], (29)

in agreement with the expression in Eq. (11), with G given
by Eq. (21). In the self-field limit we do not need to rely on
an iterative solution (approximation) for the local-field tensor;
we have an “exact” solution [Eq. (26)].

B. Quantum-well single-electron density

A comparison of Eqs. (7) and (28) tells us that we only need
to determine the one-electron density n0

∞(r) in order to be able
to calculate the diamagnetic surface conductivity tensor in
the self-field approximation (at a given frequency). When the
potential is separable [Eq. (14)], the energy eigenstates have
product form with i = (m,n), i.e.,

�i(r) ≡ �m,n(r‖,z) = ψm(r‖)φn(z), (30)

where m and n are the quantum numbers characterizing the
various eigenstates. With i = (m,n), it appears from Eq. (8)
that the electron density is given by

n0
∞(r) = 2

∑
m,n

fm,n|ψm(r‖)|2|φn(z)|2. (31)

In the Hartree-Fock theory the wave function ψm(r‖) may, as
shown in Appendix B, be taken as plane-wave states, and in the
continuum limit (m → k‖) where (with Dirac normalization)

ψm(r‖) → 1

2π
eik‖·r‖ , (32)

the electron density takes the form

n0
∞(z) = 2

∑
n

|φn(z)|2
∫ ∞

−∞
fn(E(k‖))

d2k‖
(2π )2

= 2
∑

n

|φn(z)|2
∫ ∞

0
fn(E(k‖))

k‖dk‖
2π

. (33)

The last member of Eq. (33) follows from the fact that the
Fermi factor fn(E(k‖)) only depends on the magnitude of the
wave vector k‖ [via the eigenenergy E(k‖) associated with the
state exp(ik‖ · r‖)]. In the 2D Hartree-Fock approach E(k‖)
is given by Eq. (B9). In the low-temperature limit [T → 0
K, μ(T → 0) ≡ EF ] the states below the Fermi energy (EF )
are occupied, and those above are empty. If the eigenenergy
belonging to φn(z) is denoted εn, one has

fn(E(k‖); T → 0) = (μ(T → 0) − εn − E(k‖)), (34)

where  is the Heaviside unit step function. The equation

μ(T → 0) − εn − E(kn
‖ ) = 0 (35)

determines for a given n the upper limit kn
‖ for the magnitude

of the wave vector k‖ of the occupied states at T = 0. In the
low-temperature limit the electron density hence is given by

n0
∞(z; T → 0) = 1

π

∑
n

|φn(z)|2
∫ kn

‖

0
k‖dk‖

= 1

2π

∑
n

(kn
‖ )2|φn(z)|2. (36)

In the Hartree approximation, where (kn
‖ )2 = 2m(EF − εn)/�

2

one obtains the well-known result

n0
∞(z; T → 0) = m

π�2

∑
n

(EF − εn)|φn(z)|2, εn < EF .

(37)

It is known [9,48] that the paramagnetic part of the con-
ductivity tensor, viz., σ (r,r′; ω) − σ dia(r,r′; ω) can give rise to
strong light-induced microscopic density flows perpendicular
to the QW plane when resonance excitations occur between a
pair of n levels. However, in a single-level QW such resonances
are absent. The isotropic form of the diamagnetic conductivity
tensor implies that a weak field-induced current density flow
always will be present in the z direction, even in a single-level
QW screen.

By inserting Eqs. (7) and (33) into Eq. (28) the reader
may write down the final result for the diamagnetic causal
surface conductivity tensor of a QW screen without a hole,
S∞(r‖,r′

‖; ω). Because �∞(r; ω) = �∞(z; ω), the terms in the
square bracket in Eq. (28) are independent of r‖. Since∫

QW
|φn(z)|2dz = 1, ∀ n, (38)

it furthermore appears that the first term in Eq. (28) is
independent of the form of the QW potential [given the relevant
φn(z)’s].

In the 1B Eq. (28) is reduced to

S1B
∞ (r‖,r′

‖; ω)

= δ(r‖ − r′
‖)

{
(U − ẑẑ)

∫
QW

�∞(z; ω)dz

+ ẑẑ
∫

QW

�∞(z; ω)[1 + (iε0ω)−1�∞(z; ω)]dz

}
, (39)

and then

S1B
∞ (r‖,r′

‖; ω)

= δ(r‖ − r′
‖)

{
U

ie2

m(ω + i/τ )

∫
QW

n0
∞(z)dz

− ẑẑ(iε0ω)−1

[
e2

m(ω + i/τ )

]2 ∫
QW

[
n0

∞(z)
]2

dz

}
. (40)

In Eq. (40) the quantity

N 0
∞ =

∫
QW

n0
∞(z)dz, (41)
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is the number of electrons per unit area of the screen, also
called the surface electron density. In view of Eq. (38) we
have the obvious result

N 0
∞ = 2

∑
n

∫ ∞

0
fn(E(k‖))

k‖dk‖
2π

. (42)

In the Hartree approximation the surface electron density takes
the simple form

N 0
∞(T → 0) = m

π�2

∑
n

(EF − εn)(EF − εn) (43)

in the low-temperature limit.

IV. DIAMAGNETIC CAUSAL SURFACE (ED-ED)
CONDUCTIVITY OF A SCREEN WITH A HOLE:

2D EXTINCTION-THEOREM APPROACH

It appears from the calculation leading to the result for the
diamagnetic causal surface conductivity given in Eq. (28) that
a form-identical expression holds for a screen with a hole.
Thus, one “just” needs to make the replacement �∞(r; ω) →
�(r; ω). The central problem in a calculation of S(r‖,r′

‖; ω)
hence is a determination of the electron density n0(r) [Eq. (8)],
assuming that the phenomenological relaxation time (τ ) is the
same as before. To obtain n0(r), we must calculate the relevant
energy eigenstates [�i(r)] for a screen with a hole [and the
associated Fermi-Dirac factors (fi)]; see Eq. (8). Below, we
base this calculation on potential scattering theory formulated
in terms of a set of microscopic extinction theorems for the
one-electron states.

A. Two-dimensional propagator approach for a hole
with a selvedge

In Sec. III, we studied the diamagnetic causal surface
conductivity, S∞(r‖,r′

‖; ω), in the limit where the QW screen is
so thin that it behaves electrodynamically as an ED-ED sheet.
In the same limit the potential scattering from the hole region
becomes a 2D problem. In Fig. 3 we show a top view of the
hole and its surrounding selvedge, together with a qualitative
schematic illustration of the potential profile. The selvedge is
the surface region surrounding the hole in which the electron
density changes from its bulk value (here for jellium) to zero
in the (vacuum) hole.

In the bulk region we assume that the electron dynamics
is well described by the Hartree (possibly Hartree-Fock)
description for a screen without a hole. Such an assumption
certainly will be good in the case of mesoscopic holes in a
macroscopic screen. The incident electronic wave functions
being scattered from the hole + selvedge area we take as
plane waves, (2π )−1 exp(iki

‖ · r‖), with free-electron energies
(Hartree approximation) or energies modified by exchange in
the calculation of the Fermi-Dirac factors. Without loss of
essential generality for the present problem, we may set the
bulk potential to zero; cf. Fig. 3(b).

Hence, the starting point for our stationary potential
scattering analysis is the time-independent 2D Schrödinger

S0SE

SB
(hole) (bulk)

(selvedge)

Bulk Selvedge Hole
(0)(E)(B)

V

V=0
(Bulk 
potential)

V=V0
(Hole 
potential)

(a)

(b)

FIG. 3. (a) Vacuum hole in a 2D QW screen. The hole area
denoted by S0 is surrounded by the selvedge area SE . Outside the
selvedge the bulk area SB of the screen extends to infinity. (b)
Schematic illustration of the potential profile from the bulk through
the selvedge and into the hole.

equation [
− �

2

2m
∇2

‖ + V (r‖)

]
ψi(r‖) = Ei

‖ψ
i(r‖), (44)

here written for the ith scattering state, with eigenenergy Ei
‖ >

0, and V (r‖) � 0 (cf. Fig. 3). With the purpose of establishing
a propagator formalism for the scattering process, we rewrite
Eq. (44) as

[∇2
‖ + (ki

‖)2]ψi(r‖) = κ2(r‖)ψi(r‖), (45)

where

ki
‖ =

(
2mEi

‖
�2

)1/2

(46)

and

κ(r‖) =
[

2mV (r‖)

�2

]1/2

. (47)

Related to Eq. (45) we introduce a differential equation,

[∇2
‖ + (ki

‖)2]Gi(R‖) = −δ(R‖), (48)

for the Green’s function Gi(R‖). Above, δ(R‖) is the 2D δ

function, and R‖ = r‖ − r′
‖. For the scattering problem at hand,

the relevant solution to Eq. (48) is the outgoing (from the hole
region) and retarded 2D scalar propagator

Gi(R‖) = i

4
H

(1)
0 (ki

‖|R‖|), (49)

where H
(1)
0 is the Hankel function of zeroth order and first

kind. In analogy to the procedure used to reach the integral
theorem of Helmholtz and Kirchoff in optical diffraction, we
use Eqs. (45) and (48) to establish the relation

∇‖ · [Gi(R‖)∇‖ψi(r‖) − ψi(r‖)∇‖Gi(R‖)]

= Gi(R‖)∇2
‖ψ

i(r‖) − ψi(r‖)∇2
‖Gi(R‖)
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S

C1

n1

n0

C0

FIG. 4. Plane area S with outward-directed normal vectors n̂0 and
n̂1 along the curves C0 and C1 that bound the area S.

= Gi(R‖)[∇2
‖ + (ki

‖)2]ψi(r) − ψi(r)[∇2
‖ + (ki

‖)2]Gi(R‖)

= Gi(R‖)κ2(r‖)ψi(r‖) + ψi(r‖)δ(R‖). (50)

By integrating Eq. (50) over a plane area S, not necessarily
simply connected (see Fig. 4), we get∫

S

∇′
‖ · [Gi(R‖)∇′

‖ψ
i(r′

‖) − ψi(r′
‖)∇′

‖Gi(R‖)]d2r ′
‖

=
∫

S

ψi(r′
‖)δ(R‖)d2r ′

‖ +
∫

S

Gi(R‖)κ2(r′
‖)ψi(r′

‖)d2r ′
‖.

(51)

By means of the 2D divergence theorem, namely,
∫
S
∇‖ ·

f(r‖)d2r‖ = ∮
C

n̂(r‖) · f(r‖)dr‖ we obtain the following impor-
tant identity for a nonsimply connected area of the type shown
in Fig. 4,∫

S

ψi(r′
‖)δ(r‖ − r′

‖)d2r ′
‖

= −
∫

S

Gi(r‖ − r′
‖)κ2(r′

‖)ψi(r′
‖)d2r ′

‖ − �i
0(r‖) − �i

1(r‖),

(52)

with

�i
β(r‖) ≡

∮
Cβ

[ψi(r′
‖)n̂β(r′

‖) · ∇′
‖Gi(r‖ − r′

‖)

− Gi(r‖ − r′
‖)n̂β(r′

‖) · ∇′
‖ψ

i(r′
‖)]dr ′

‖, (53)

where β is either 0 or 1 and n̂β(r‖) is the local outward-directed
unit (normal) vector to the closed curve Cβ bounding the area
S from the inside (β = 0) or outside (β = 1).

B. Extinction theorems

Extinction theorems [51–55,65–68], here microscopic and
for one-electron energy eigenstates of the 2D hole geometry
are derived starting from Eq. (52) using the notational details
introduced in Fig. 5. We start by setting up the following
three equations by integrating over the hole S = S0 and setting
r‖ = r0, r‖ = rE , and r‖ = rB , respectively,

ψi(r0) = −
∫

S0

Gi(r0 − r′
0)κ2(r′

0)ψi(r′
0)d2r ′

0 − �i
0(r0), (54a)

0 = −
∫

S0

Gi(rE−r′
0)κ2(r′

0)ψi(r′
0)d2r ′

0 − �i
0(rE), (54b)

0 = −
∫

S0

Gi(rB −r′
0)κ2(r′

0)ψi(r′
0)d2r ′

0−�i
0(rB), (54c)

S0SB

n0

SE

rE

r0
rB nE

CE

C0

C 8

n 8

-n0

-nE

FIG. 5. The 2D hole geometry. The hole area S0 is bounded by the
curve C0, which has an outward-directed normal vector denoted by
n̂0. The selvedge area SE surrounds the hole area S0 and is bounded
by the curve C0 at the inner edge and CE at the outer edge. The
outward-directed normal vector to CE is denoted n̂E . The bulk area
SB surrounds the selvedge area SE and is bounded by the curves
CE and C∞ at the inner and outer [remote (∞)] edges, respectively.
The outward-directed normal vector to C∞ is denoted by n̂∞. r0, rE ,
and rB denote r‖ points inside the hole, the selvedge, and the bulk,
respectively.

where

�i
0(r‖) ≡

∮
C0

[ψi(r′
‖)n̂0(r′

‖) · ∇′
‖Gi(r‖ − r′

‖)

− Gi(r‖ − r′
‖)n̂0(r′

‖) · ∇′
‖ψ

i(r′
‖)]dr ′

‖, (55)

and κ2(r′
0) = κ2

0 = 2mV0/�
2, which we note is independent

of r′
0.

If we integrate over the selvedge, i.e., S = SE we find

0 = −
∫

SE

Gi(r0 − r′
E)κ2(r′

E)ψi(r′
E)d2r ′

E

+�i
0(r0) − �i

E(r0), (56a)

ψi(rE) = −
∫

SE

Gi(rE − r′
E)κ2(r′

E)ψi(r′
E)d2r ′

E

+�i
0(rE) − �i

E(rE), (56b)

0 = −
∫

SE

Gi(rB − r′
E)κ2(r′

E)ψi(r′
E)d2r ′

E

+�i
0(rB) − �i

E(rB), (56c)

for r‖ = r0, r‖ = rE , and r‖ = rB , respectively, and where

�i
E(r‖) ≡

∮
CE

[ψi(r′
‖)n̂E(r′

‖) · ∇′
‖Gi(r‖ − r′

‖)

− Gi(r‖ − r′
‖)n̂E(r′

‖) · ∇′
‖ψ

i(r′
‖)]dr ′

‖. (57)

For S = SB we find for r‖ = r0, r‖ = rE , and r‖ = rB ,

0 = �i
E(r0) − �i

∞(r0), (58a)

0 = �i
E(rE) − �i

∞(rE), (58b)

ψi(rB) = �i
E(rB) − �i

∞(rB), (58c)
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SE

CEΣEψinc

rB

ψ
i

i

i

FIG. 6. Schematic illustration of the contributions to ψi(rB ).

respectively, since κ2(rB) = 0 (the potential is flat and zero in
the bulk area). Furthermore,

�i
∞(r‖) ≡

∮
C∞

[ψi(r′
‖)n̂∞(r′

‖) · ∇′
‖Gi(r‖ − r′

‖)

− Gi(r‖ − r′
‖)n̂∞(r′

‖) · ∇′
‖ψ

i(r′
‖)]dr ′

‖. (59)

The incident wave function ψi
inc(r‖) may be identified as

ψi
inc(r‖) = −�i

∞(r‖), ∀ r‖, (60)

in analogy to what is known from the optical Ewald-Oseen
extinction theorem [51–54]. Readers uncertain with this iden-
tification may consult Ref. [9], e.g. A posteriori justification
of Eq. (60) appears from the integral equation obtained below
[Eq. (70)].

Using Eqs. (58c) and (60) we find

ψi(rB) = ψi
inc(rB) + �i

E(rB). (61)

Thus, the wave function in the bulk region may be represented
by the sum of the incident wave function and a “scattering”
contribution from a line integral �i

E around the curve bounding
the selvedge CE (see Fig. 6). Now by combining Eq. (60) with
Eqs. (58a) and (58b), we obtain two extinction theorems,

ψi
inc(rE) + �i

E(rE) = 0, (62)

ψi
inc(r0) + �i

E(r0) = 0, (63)

showing that the incident wave function is extinguished in
both the selvedge and the hole region by the “scattering”
contribution represented by the line integral �i

E (see Fig. 7).
Combining Eqs. (56c) and (61) we find an expression for the
wave function in the bulk, namely,

ψi(rB) = ψi
inc(rB) −

∫
SE

Gi(rB − r′
E)

× κ2(r′
E)ψi(r′

E)d2r ′
E + �i

0(rB). (64)

SE

CEΣE

ψinc

r0

SE CEΣE

ψinc rE

(a) (b)

i

i

i

i

FIG. 7. Schematic illustration of the extinction theorems in
Eqs. (62) and (63), (a) and (b), respectively.

Combining Eqs. (56b) and (62) we obtain an expression for
the wave function in the selvedge, viz.,

ψi(rE) = ψi
inc(rE) −

∫
SE

Gi(rE − r′
E)

× κ2(r′
E)ψi(r′

E)d2r ′
E + �i

0(rE). (65)

It is seen that the wave function in both the bulk and the
selvedge can be divided into three contributions: the incident
wave function, a “scattering” contribution from the selvedge,
and a “scattering” contribution from the S0 region, here written
in the form of �i

0, an extinction description of the wave
function field originating from S0.

Combining Eqs. (56a) and (63) we obtain a third extinction
theorem,

0 = ψi
inc(r0) −

∫
SE

Gi(r0 − r′
E)κ2(r′

E)ψi(r′
E)d2r ′

E + �i
0(r0).

(66)

The first two terms on the right-hand side of Eq. (66) represent
the total “incoming field” in S0 from the outside: the incident
wave function plus the field radiated from the selvedge. This
“incoming field” is extinguished in S0 by �i

0(r0).
Now in order to eliminate �i

0 in Eqs. (64), (65), and (66),
we combine these with Eqs. (54a)–(54c), obtaining

ψi(rB) = ψi
inc(rB) −

∫
S0+SE

Gi(rB − r′
‖)κ2(r′

‖)ψi(r′
‖)d2r ′

‖,

(67)

ψi(rE) = ψi
inc(rE) −

∫
S0+SE

Gi(rE − r′
‖)κ2(r′

‖)ψi(r′
‖)d2r ′

‖,

(68)

ψi(r0) = ψi
inc(r0) −

∫
S0+SE

Gi(r0 − r′
‖)κ2(r′

‖)ψi(r′
‖)d2r ′

‖.

(69)

In the equations above, it is important to note that the surface
integral now extends over the hole and the selvedge regions.
In compact form we may write

ψi(r‖) = ψi
inc(r‖) −

∫
S0+SE

Gi(r‖ − r′
‖)κ2(r′

‖)ψi(r′
‖)d2r ′

‖,

(70)

where r‖ ∈ r0, rE , or rB . We note that Eq. (70) has the
expected integral equation form of conventional scattering
theory [49,50].

By applying the 2D kinetic energy operator

Ĥkin(∇‖) = − �
2

2m
∇2

‖ (71)

to Eq. (70) in the case where r‖ is a position vector in the bulk,
and the incident wave function is the plane wave ψi

inc(r‖) =
(2π )−1 exp(iki

‖ · r‖), one obtains

Ĥkinψ
i(r‖) = �

2

2m
(ki

‖)2ψi
inc(r‖) + �

2

2m

∫
S0+SE

∇2
‖Gi(r‖ − r′

‖)

× κ2(r′
‖)ψi(r′

‖)d2r ′2
‖ , r‖ ∈ rB. (72)

With the help of the differential equation for the Green’s
function [Eq. (48)], which for points outside the domain of
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integration, S0 + SE , has the form [∇2
‖ + (ki

‖)2]Gi(r‖ − r′
‖) =

0, Eq. (72) is reduced to

Ĥkinψ
i(r‖) = �

2

2m
(ki

‖)2

[
ψi

inc(r‖)

−
∫

S0+SE

Gi(r‖ − r′
‖)κ2(r′

‖)ψi(r′
‖)d2r ′

‖

]

= �
2

2m
(ki

‖)2ψi(r‖), r‖ ∈ rB. (73)

It appears from Eq. (73) that the total wave function ψi(r‖)
associated to the scattering of ψi

inc(r‖) from the selvedge
(hole region) is an eigenstate for the kinetic energy operator,
Ĥkin(∇‖). Due to the fact that the selvedge in the present
description is assumed not to have any internal degrees of
freedom, the scattering from the hole region is elastic. Thus,
the kinetic energy of the electron is conserved in the potential
scattering process. From a statistical point of view the Fermi-
Dirac factors entering the analysis of the dynamics related to
screens with and without a hole therefore are identical.

Provided that the potential profile through the selvedge is
known, that is κ2(rE) a given quantity (function), (remember
that the potential is flat in the hole) Eq. (70) constitutes an
integral equation for the unknown wave function in the effec-
tive aperture area (selvedge + hole). Once an (approximate)
solution for ψi(r‖), r‖ ∈ rE , and r0, has been obtained (in
general, by numerical calculations), the wave function in the
bulk, ψi(rB), may be determined by direct integration. In the
jellium approximation where the ionic background potential is
flat, the selvedge profile is that generated by the excess electron
density distribution. Hence, in general, Eq. (70) has to be
supplemented by the 2D Poisson equation (longitudinal-field
equation), which, written in terms of the potential V (r‖),
is

∇2
‖V (r‖) = −e2

ε0
[n(r‖) − Nion], (74)

where Nion is the density of the ions (constant in the
jellium screen, and zero in the hole). The potential V (r‖)
relates to κ2(r‖) via. Eq. (47). In the RPA description the
electron density n(r‖) is given by the 2D version of Eq. (8),
i.e.,

n(r‖) = 2
∑

i

fi |ψi(r‖)|2 (2D). (75)

Thus, Eq. (70) together with Eqs. (47) and (74) constitute a set
of difficult self-consistent integral equations, whose general
solution for the various ψi(r‖) ’s rely on advanced numerical
techniques. It is instructive to apply the extinction-theorem
formalism to the simplified case in which the barrier to the
hole is assumed to be infinitely high.

C. Infinitely high potential barrier to vacuum

From a qualitative point of view an infinite-barrier model
need not to be bad because one still has a selvedge region,
although with a potential profile different from the one
belonging to finite-barrier models. For the infinite-barrier
(IB) model, V0 → ∞ ⇒ κ0 → ∞, and ψi(r0) → 0, ∀ i.
As a consequence, Eqs. (54a)–(54c), related to the electron

S0

n0

SE

r′
′

r′
Σ0

(+)(r  ) = 0 
Σ0

(−)(r  ) = 0 

+-

r
E 0

i,

i,

FIG. 8. Magnification of the boundary between the hole and the
selvedge. + is in the hole region and − is in the selvedge region.

dynamics in the hole, vanish. At an infinitely high barrier
one cannot uphold the physical requirement that the normal
derivative of the wave function is continuous. The wave
function itself, however, stays continuous. Referring to Fig. 8,
the following (boundary) relations now must be used in the
extinction-theorem analysis:

ψi
(+)(r

′
0 → r′

‖) = ψi
(−)(r

′
E → r′

‖) = 0, (76)

n̂0(r′
‖) · ∇′

‖ψ
i
(+)(r

′
0 → r′

‖) = 0, (77)

n̂0(r′
‖) · ∇′

‖ψ
i
(−)(r

′
E → r′

‖) �= 0, (78)

for a point r′
‖ on the boundary. In the IB model, Eq. (66) is

replaced with

0 = ψi
inc(r0)−

∫
SE

Gi(r0 − r′
E)κ2(r′

E)ψi(r′
E)d2r ′

E+�
i,(−)
0 (r0),

(79)

where

�
i,(−)
0 (r‖) = −

∮
C0

Gi(r‖ − r′
‖)n̂0(r′

‖) · ∇′
‖ψ

i
(−)(r

′
‖)dr ′

‖. (80)

The superscript (−) on the left-hand side of Eq. (80) is meant
to remind us that the line integral along the C0 contour must
be evaluated on the selvedge side; cf. Fig. 8. From Eqs. (64)
and (65) we obtain

ψi(rB) = ψi
inc(rB) −

∫
SE

Gi(rB − r′
E)κ2(r′

E)ψi(r′
E)d2r ′

E

+ �
i,(−)
0 (rB), (81)

ψi(rE) = ψi
inc(rE) −

∫
SE

Gi(rE − r′
E)κ2(r′

E)ψi(r′
E)d2r ′

E

+ �
i,(−)
0 (rE). (82)

Equation (82) now is the central equation that needs to be
solved in order to determine ψi(rE). Subsequently, ψi(rB) is
obtained by direct integration of Eq. (81).

Equations (80) and (81) reveal that in the extreme limit
where the selvedge of the hole is disregarded, the scattering
contribution to the total wave function relates solely to the
line integral along the hole contour. In Kottler’s formulas [17]
for the approximate Kirchhoff-like solution of electromagnetic
diffraction by an ideal screen there also appear line integrals
along the edge of the aperture (see also Ref. [15]). The
integrands of Kottler involve the electromagnetic field, and
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whether there exists a link between Kottler’s line integrals and
our involving the gradient of the electron wave function is not
known.

D. Causal surface conductivity

Let us return to the integral equation for ψi(r‖) [Eq. (70)].
Assuming that the incident wave function is planar, the
continuum form of the equation is

ψ(r‖; k‖) = 1

2π
exp(ik‖ · r‖) + ψscatt(r‖; k‖), (83)

where

ψscatt(r‖; k‖) =−
∫

S0+SE

G(k‖|r‖−r′
‖|)κ2(r′

‖)ψ(r′
‖; k‖)d2r ′

‖,

(84)

is the scattered part of the total wave function belonging to
a given incident wave function with vectorial quantum index
k‖. The states ψ(r‖; k‖) and ψscatt(r‖; k‖) are not plane-wave
states, of course. The k‖ appearing in the argument of these
states is meant to remind the reader that they belong to the
wave vector k‖ of the incident state.

The electron density for a screen with a hole thus is given by

n0(r‖,z) = 2
∑

n

|�n(z)|2
∫ ∞

−∞
fn(E(k‖))|ψ(r‖; k‖)|2d2k‖.

(85)

As indicated, the z part of the wave functions will be different
for screens with [�n(z)] and without [φn(z)] a hole. However,
when the screen is so thin that the electron dynamics essential
is 2D, and the hole is of mesoscopic size, below we may take

�n(z) � φn(z). (86)

In a forthcoming paper [60] on hole diffraction, in which the
role of the resonance scattering between QW states is treated,
we shall discuss the difference between φn(z) and �n(z).

In the regime of dominating diamagnetic electron-field
coupling the ED-ED causal surface conductivity tensor is
given by

S(r‖,r′
‖; ω) = δ(r‖ − r′

‖)

[
(U − ẑẑ)

∫
QW

�(r‖,z; ω)dz

+ ẑẑ
∫

QW

�(r‖,z; ω)dz

1 − (iε0ω)−1�(r‖,z; ω)

]
. (87)

As for the screen without a hole [Eq. (28)], we have again
calculated the local-field tensor in the self-field approximation.

V. ED-ED APERTURE RESPONSE TENSOR

A. Aperture response tensor: Small-hole limit

The difference tensor

�(r‖,r′
‖; ω) = S(r‖,r′

‖; ω) − S∞(r‖,r′
‖; ω), (88)

which we call the ED-ED causal effective aperture response
tensor is, as noted before, a fundamental quantity in the
microscopic theory of light diffraction from small holes in
QW screens [46]. The tensor is different from zero only in
the effective aperture region (A); see Ref. [46]. In the present

diamagnetic case the surface electron density [N 0(r‖)] rapidly
heals to its bulk value (N 0

∞) as one goes away from the hole.
Qualitatively,

N 0(r‖) − N 0
∞ ≈ 0, (89)

when the scattered part of the wave function has become
sufficiently small. The range of the scattered wave function
is determined by the G(k‖|r‖ − r′

‖|) ’s (Hankel functions) for
the various |k‖| values and the relevant |r′

‖| in S0 + SE .
In the ED-ED limit (here with respect to the coordi-

nates in the plane of the screen), the integrated tensorial
quantity

�(ω) =
∫
A

�(r‖,r′
‖; ω)d2r ′

‖d
2r‖ (90)

is the one of primary physical interest. The quantity (i/ω)�(ω)
is the ED polarizability tensor of the hole [46]. It appears from
Eqs. (28) and (87) that �(ω) has the tensorial form

�(ω) = (U − ẑẑ)�‖(ω) + ẑẑ�⊥(ω). (91)

The ED polarizability hence is anisotropic, but uniaxial. The
preceding analysis shows us how �‖(ω) and �⊥(ω) may
be obtained integrating, respectively, � − �∞ and �/[1 −
(iε0ω)−1�] − �∞/[1 − (iε0ω)−1�∞] over the 2D aperture
region (A) and the QW coordinate. In Ref. [46] it was argued
on general grounds that for a 2D system (screen plus hole)
exhibiting rotational and reflection symmetry �(ω) has the
tensorial form given in Eq. (91). Our jellium screen (without
a hole) satisfies the above-mentioned symmetry criteria, but
the tensorial form in Eq. (91) is obtained without symmetry
demands on the geometrical form of the hole. The form of
Eq. (91) reflects the common form of the local-field tensors
� and �∞ [cf. Eq. (26), and the introductory remarks to
Sec. IV]. In turn, the uniaxial form may by traced back to
the isotropy of the spatially local diamagnetic conductivity
tensor [Eq. (6)] and the self-field (local) approximation for the
Green’s function [Eq. (21)].

B. Zeroth-order Born approximation

It readily appears from Eqs. (28), (40), (41), and (87) that
the aperture response tensor �(r‖,r′

‖; ω) in the zeroth-order
Born approximation (0B) is given by

�0B(r‖,r′
‖; ω) = U

ie2δ(r‖ − r′
‖)

m(ω + i/τ )

[
N 0(r‖) − N 0

∞
]
, (92)

and thus it is isotropic in lowest order. The result in Eq. (92)
underlines the fact that the aperture response tensor is
nonvanishing only in the effective optical aperture area (A).
The isotropic polarizability tensor related to Eq. (92) is given
by (i/ω)�0B(ω), where

�0B(ω) = U
ie2

m(ω + i/τ )

∫ [
N 0(r‖) − N 0

∞
]
d2r‖. (93)

Now

N 0(r‖) − N 0
∞ = 2

∑
n

∫ ∞

−∞
fn(E(k‖))[|ψ(r‖; k‖)|2

− |ψinc(r‖; k‖)|2]d2k‖
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= 2
∑

n

∫ ∞

−∞
fn(E(k‖))

{|ψscatt(r‖; k‖)|2

+ [
ψinc(r‖; k‖)ψ∗

scatt(r‖; k‖) + c.c.
]}

d2k‖,
(94)

a result which explicitly demonstrates that the range of
�0B(r‖,r′

‖; ω) is given by the Hankel function H
(1)
0 (k‖|r‖ − r′

‖)
[for all relevant k‖’s and r′

‖’s]. In Eq. (94) ψinc(r‖; k‖) =
(2π )−1 exp(ik‖ · r‖), as previously.

APPENDIX A: MICROSCOPIC DIFFRACTION THEORY

1. Classical theory and its limitations

In the framework of classical electrodynamics, theoretical
studies of diffraction of an electromagnetic field from one
or more holes (apertures) in a solid screen are based on
a combination of the macroscopic Maxwell equations and
an appropriate set of macroscopic constitutive relations usu-
ally linear. To understand the main principles of classical
diffraction, it is sufficient to study a plane screen with a
single hole. However, it must not be forgotten that important
electromagnetic interference effects appear in diffraction from
screens with two (several or many) holes. In particular, screens
with regular arrays of holes may give rise to interesting
coherent diffraction phenomena [18,69]. For holes sufficiently
close to each other, coherent diffraction effects stemming
from “hole interactions” mediated by long-range plasmon,
polariton, or plasmariton modes or by short-range near-field
couplings may appear. The above-mentioned partly electronic
couplings cannot, in general, be treated on the basis of classical
diffraction theory.

In macroscopic electrodynamics only spatial averages
(〈· · · 〉) of microscopic quantities are involved. Roughly speak-
ing, the linear extensions of the volume element averaged
over must (i) be small compared with distances over which
relevant electromagnetic quantities are supposed to vary and
(ii) contain many atoms and molecules. In the macroscopic
Maxwell equations thus appear, for instance, spatial averages
of the microscopic (also called local) electric (E) and magnetic
(B) fields, and the microscopic current density (J), i.e.,

Emacro = 〈E〉, Bmacro = 〈B〉, (A1)

and

Jmacro = ∂

∂t
〈P〉 + ∇ × 〈M〉, (A2)

where P and M are generalized microscopic polarization and
magnetization fields. In Jmacro both “free” (Jfree

macro) and “bound”
(∂Dmacro/∂t) contributions are incorporated [9].

It is known that the macroscopic approach may be of limited
value for studies of interfaces between different macroscopic
media and for investigations of the electrodynamics of meso-
scopic systems in general [57]. Since the standard (textbook)
boundary (jump) conditions for the various field quantities
across an interface are derived from the macroscopic Maxwell
equations, the macroscopic constitutive relations, and ideal-
ized interface (sheet) charge and current densities [8,70,71],
it is obvious that the standard boundary conditions become

of less value for theoretical studies of mesoscopic media and
interfaces.

In the macroscopic Bethe-Bouwkamp diffraction the-
ory [13,14] (and many related works), the screen is assumed
to be infinitely thin and completely opaque (with infinite con-
ductivity). Although such two approximations may work well
for metallic screens and incident microwave fields (or fields of
even longer wavelength), the aforementioned approximations
will fail in general. Thus, when the screen becomes sufficiently
thin it behaves physically as a QW with a frequency-dispersive
microscopic conductivity, and, for certainty, the screen will
not be opaque. For a thin screen it may happen that its internal
dynamics appears only via a double integral of the so-called
causal microscopic conductivity over the well. In such cases,
where the QW behaves electrodynamically as an ED absorber
and radiator, the prevailing microscopic screen current density
effectively exhibits δ-function confinement in the direction
perpendicular to the plane of the screen, and in certain sense,
the screen thus is considered as infinitely thin.

It is clear that the field-matter interaction in the vicinity
of the hole must play a crucial role for a quantitatively
correct description of the diffraction process. In the screen-hole
surface region also called the selvedge (region), the light-
unperturbed electron density varies rapidly in space, from zero
in the hole region to the bulk average value in the screen.
Although the selvedge length usually only is a few atomic
distances, the interface electrodynamics deviates from bulk
electrodynamics in a much thicker layer. If the hole is of
mesocopic size and the screen is a QW sheet, it is expected
that, e.g., microscopic curvature effects along the screen-hole
contour will play an important role for understanding the
spatial diffraction pattern and its frequency dependence.

2. General formalism

The microscopic diffraction theory established by the
present authors recently is based on a combination of the
microscopic Maxwell-Lorentz equations and a (linear) non-
local constitutive equation relating the microscopic screen
current density to the local electric field [46]. For a small
hole it is convenient to compare the scattering from identical
screens with and without a hole, assuming the incident field
to be the same in the two cases. Below, a subscript ∞ is
added to quantities referring to the screen without hole. A
central result of Ref. [46] shows that the difference between
the total (incident plus reflected) electric fields for screens with
[E(r; ω)] and without [E∞(r; ω)] a hole is given by

E(r; ω) − E∞(r; ω) = iμ0ω

∫ ∞

−∞
G(r,r′′; ω) · �(r′′,r′; ω)

· E0(r′; ω)d3r ′′d3r ′, (A3)

in the space (r)-frequency (ω) domain. The tensorial quantity
G(r,r′′; ω) is the standard Green’s function relating to vacuum,

�(r,r′; ω) = σ cau(r,r′; ω) − σ cau
∞ (r,r′; ω) (A4)

is the so-called causal (cau) effective aperture (hole) response
tensor, and E0(r′; ω) is the electric field incident on the hole.
The causal conductivity tensor σ cau(r,r′; ω) is obtained from
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an integral,

σ cau(r,r′; ω) =
∫ ∞

−∞
σ (r,r′′; ω) · �(r′′,r′; ω)d3r ′′, (A5)

involving the well-known [9] microscopic conductivity tensor,
σ (r,r′; ω), and the local field tensor, �(r,r′; ω). The last tensor
satisfies the inhomogeneous integral equation

�(r,r′; ω) = Uδ(r − r′)

+
∫ ∞

−∞
K(r,r′′; ω) · �(r′′,r′; ω)d3r ′′, (A6)

with kernel

K(r,r′; ω) = iμ0ω

∫ ∞

−∞
G(r,r′′; ω) · σ (r′′,r′; ω)d3r ′′. (A7)

In Eq. (A6), U is the 3 × 3 unit tensor, and δ(r − r′) is the
Dirac δ function.

It appears from Eqs. (A3)–(A7) that the electric-field differ-
ence E(r; ω) − E∞(r; ω), in principle, can be determined from
a knowledge of the incident electric field, E0(r′; ω), and the
microscopic conductivity tensors σ (r,r′; ω) and σ∞(r,r′; ω).
The conductivity tensors, at a given electromagnetic angular
frequency (ω), can be obtained from the field-unperturbed
electronic properties of the screens with and without a hole.
Quantum mechanically, these properties are determined from
solutions to the time-independent Schrödinger equation and
quantum statistics related to the probability that the various
stationary states are occupied; see Sec. II A.

In the view of the results of Ref. [46] partly summarized
above, we can make the following conclusion: The quantum-
mechanical theory of diffraction only requires a preknowledge
of the incident field plus the electronic properties of the
screen(s). Perhaps, such a conclusion is not so surprising in
itself, but the theoretical approach of Ref. [46] shows how
the above-mentioned conclusion may be reached by a quite
general explicit calculation.

APPENDIX B: TWO-DIMENSIONAL HARTREE-FOCK
JELLIUM

Within the framework of a 2D version of the Hartree-Fock
approximation, the time-independent Schrödinger equation for
the ith wave function ψi(r‖) (with related eigenenergy Ei

‖)
takes the form[−�

2

2m
∇2

‖ + VJ + VH(r‖)

]
ψi(r‖)

−
∑
j (�=i)

V
ij

X (r‖)ψj (r‖) = Ei
‖ψ

i(r‖), (B1)

where VJ is the r‖-independent jellium (J) potential,

VH(r‖) = e2

4πε0

∫
1

|r‖ − r′
‖|

∑
j (�=i)

|ψj (r′
‖)|2d2r ′

‖, (B2)

is the local Hartree potential [59], and

V
ij

X (r‖) = e2

4πε0

∫
1

|r‖ − r′
‖|

[ψj (r′
‖)]∗ψi(r′

‖)d2r ′
‖, (B3)

i

i j

i

i j

Hartree
(buble)

Exchange
(oyster)

FIG. 9. Feynman diagrams related to the Hartree (top figure) and
exchange (bottom figure) potential.

the ij th part of the nonlocal exchange (X) potential. In
Eqs. (B1) and (B2) the summations run over all other
one-electron eigenstates (j ) than the ith. The factor |r‖ −
r′
‖|−1 indicates that the electron-electron Coulomb interaction

is nonretarded [Coulomb gauge description of longitudinal
(rotational-free) field interaction]. For readers interested in the
second-quantized field description of the many-body Hartree
and Hartree-Fock interactions the related Feynman diagrams
are shown in Fig. 9. It appears from Eqs. (17), (B1), and (B2)
that the nonlocal 2D-exchange potential, VX(r‖,r′

‖), (omitting
a factor of −1) is given by

VX(r‖,r′
‖) = e2

4πε0

1

|r‖ − r′
‖|

∑
j (�=i)

ψj (r‖)[ψj (r′
‖)]∗. (B4)

For a screen without a hole, the eigenfunctions may be taken
as 2D plane waves [(2π )−1 exp(iki

‖ · r‖)], a fact which is
well known in the 3D case [58,59]. The energy eigenvalues
are modified in comparison to the free-electron-like Hartree
energies. To obtain the exchange corrections to the Hartree
energies, let us insert the 2D plane-wave ansatz above into the
exchange term in Eq. (B1). This gives, using Eq. (B3),∑

j (�=i)

V
ij

X (r‖)ψj (r‖)

= e2

4πε0

1

(2π )3

∫ ∞

−∞

1

|r‖ − r′
‖|

ei(ki
‖−kj

‖ )·r′
‖eikj

‖ ·r‖d2r ′
‖

=
∑
j (�=i)

F (ki
‖ − kj

‖)
1

2π
exp(iki

‖ · r‖), (B5)

where

F (ki
‖ − kj

‖)

= e2

4πε0

1

(2π )2

∫ ∞

−∞

1

|r‖ − r′
‖|

ei(kj

‖−ki
‖)·(r‖−r′

‖)d2r ′
‖. (B6)

To calculate the integral in Eq. (B6), we use the substitution
r′
‖ = r‖ − R‖, and thereafter we carry out the integration in
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polar coordinates (R‖,φ). Hence,

F (|ki
‖ − kj

‖|)

= e2

4πε0

1

(2π )2

∫ ∞

0

∫ 2π

0

1

R‖
ei|kj

‖−ki
‖|R‖ cos φdφR‖dR‖

= e2

4πε0

1

2π

∫ ∞

0
J0(|kj

‖ − ki
‖|R‖)dR‖

= e2

8π2ε0

1

|ki
‖ − kj

‖|
. (B7)

In Eq. (B7), J0 is the zeroth-order Bessel function. As indicated
in the argument of F , this function only depends on the
magnitude of the wave-vector difference ki

‖ − kj

‖ .
In the 2D Hartree-Fock approach the eigenenergy of the ith

plane-wave state thus is given by

Ei
‖ = �

2|ki
‖|2

2m
−

∑
j (�=i)

F (|ki
‖ − kj

‖|). (B8)

With the explicit expression for F inserted, one reaches the
result

Ei
‖ = �

2|ki
‖|2

2m
− e2

8π2ε0

∑
j (�=i)

1

|ki
‖ − kj

‖|
. (B9)
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