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Semiclassical quantization for a bosonic atom-molecule conversion system
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We consider a simple quantum model of atom-molecule conversion where bosonic atoms can combine into
diatomic molecules and vice versa. The many-particle system can be expressed in terms of the generators of a
deformed su(2) algebra, and the mean-field dynamics takes place on a deformed version of the Bloch sphere, a
teardrop shaped surface with a cusp singularity. We analyze the mean-field and many-particle correspondence,
which shows typical features of quantum-classical correspondence. We demonstrate that semiclassical methods
can be employed to recover full many-particle features from the mean-field description in cold atom systems
with atom-molecule conversion, and we derive an analytic expression for the many-particle density of states in
the limit of large particle numbers.

DOI: 10.1103/PhysRevA.92.012121 PACS number(s): 03.65.Sq, 03.75.−b, 05.30.Jp

I. INTRODUCTION

The experimental progress in confining and manipulating
cold atoms and Bose-Einstein condensates (BECs) offers a
unique opportunity to investigate the quantum properties of
interacting many-particle systems. For most realistic setups,
however, a theoretical full many-particle description is beyond
the current state of the art. Most commonly the mean-field
approximation is applied, resulting in a description of the
many-particle system by an effective single-particle wave
function. The time evolution is in this description governed
by a nonlinear Schrödinger equation. This approximation is
closely related to the classical limit of single-particle quantum
systems, where the particle number plays the role of �

−1.
Recently there have been several studies demonstrating that
this analogy can be used to apply semiclassical techniques
to recover full many-particle features from the mean-field
description alone [1–6].

Over the last decade there has been considerable interest
in atom-molecule conversion in cold atoms and BECs [7–17].
Theoretically these systems are closely related to deformed
su(m) algebras [18]. Neglecting quantum fluctuations in the
many-particle dynamics leads to mean-field approximations
defined on phase spaces with nonstandard geometries, and
new interesting features in the many-particle and mean-field
correspondence. Here we address the question of whether
semiclassical methods might be adapted to describe the full
many-particle behavior of atom-molecule conversion systems
on the grounds of their mean-field approximation.

We focus on the simplest model of an atom-molecule
conversion system, similar to the one considered in [7],
consisting of noninteracting atoms and diatomic molecules
each of which can populate only one mode. Introducing the
atomic and molecular creation and annihilation operators â†, â
and b̂†, b̂, respectively, this system can be described by a
Hamiltonian of the form

Ĥ = εaâ
†â + εbb̂

†b̂ + v

2
√

N
(â†â†b + ââb̂†), (1)

where εa,b is the energy of the atomic or molecular mode,
and v describes the conversion strength between atoms and
molecules. The total number of atoms N̂ = â†â + 2b̂†b̂ is a
constant of motion. For a fixed value of the particle number N

the system lives on an [N
2 ]

<
+ 1-dimensional Hilbert space.

For simplicity, we confine the discussions to even particle
numbers in what follows.

We begin with a review of the many-particle and mean-field
descriptions, and their correspondence. Then we introduce
a semiclassical quantization condition and demonstrate that
the many-particle spectrum can be accurately recovered from
the mean-field dynamics, and derive an analytic expression
for the many-particle density of states in the semiclassical
limit of large particle numbers. We also present results for
the semiclassical many-particle eigenstates. We end with a
summary and outlook.

II. THE MANY-PARTICLE SYSTEM

Similar to the two-mode Bose-Hubbard model [19], we
can apply a Schwinger-type transformation to introduce the
operators

K̂x = â†â†b̂ + ââb̂†

2
√

N
,

K̂y = â†â†b̂ − ââb̂†

2i
√

N
, (2)

K̂z = â†â − 2b̂†b̂

4
.

The Hamiltonian can then be expressed as

Ĥ = εK̂z + vK̂x, (3)

where we have shifted the zero energy and introduced the
parameter ε = 2εa − εb.

The physical meaning of the operators K̂j is similar to
the two-mode Bose-Hubbard case. That is, K̂z measures the
population imbalance between molecular and atomic mode,
and K̂x,y measure their phase relation. It is further convenient
to introduce the operators

K̂± = K̂x ± iK̂y, (4)

that create a molecule out of two atoms and vice versa. The
operators (2) and (4) are related to a nonlinear deformation of
an su(2) algebra [18,20,21]. That is, they fulfill commutation
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relations of the form

[K̂z,K̂±] = ±K̂±, (5)

just as for su(2), and

[K̂+,K̂−] = F (K̂z,N̂ ), (6)

where F (K̂z,N̂ ) is a polynomial in K̂z and N̂ . Specifically we
have

F (K̂z,N̂ ) = − N̂

N
− 1

4N
(N̂ + 4K̂z)(N̂ − 12K̂z). (7)

In terms of K̂x , K̂y , and K̂z the commutation relations read

[K̂z,K̂x] = iK̂y, (8)

[K̂y,K̂z] = iK̂x, (9)

[K̂x,K̂y] = i

2
F (K̂z,N̂ ). (10)

The total particle number N̂ commutes with K̂x , K̂y , and
K̂z. In the case of a Bose-Hubbard dimer the conserved
particle number reflects the conservation of the total angular
momentum. For deformed su(2) algebras this is replaced by
a less trivial conservation law. We can find the conserved
quantity using the approach in [18] as

Ĉ = K̂−K̂+ + 4

N
K̂3

z + N̂ + 6

N
K̂2

z + 8 − N̂2

4N
K̂z

= K̂2
x + K̂2

y + 4

N
K̂3

z + N̂

N
K̂2

z

+ 8 − N̂2 − 4N̂

4N
K̂z + 4N̂ + N̂2

8N
. (11)

Evaluating 〈Ĉ〉 in any eigenstate of K̂z yields the conservation
law

〈
K̂2

x

〉 + 〈
K̂2

y

〉 = −2〈K̂z〉
N

+ 〈N̂K̂z〉
N

+ 〈N̂2K̂z〉
4N

−
〈
N̂K̂2

z

〉
N

− 4
〈
K̂3

z

〉
N

+ N2

16
+ N

4
. (12)

We shall see later that this corresponds to a deformation of the
familiar Bloch sphere of two-level systems to a teardrop shape
on which the mean-field dynamics take place.

From the commutation relation (5) it follows that K̂+
and K̂− are the usual lowering and raising operators for
K̂z, from which one can deduce that the spectrum of K̂z

is equidistant [18]. For a given even particle number N the
eigenvalues of K̂z run in integer steps from −N

4 to N
4 .

While due to symmetry the operators K̂x and K̂y are
isospectral, their spectrum differs from that of K̂z and, in
particular, is not equidistant. The spectrum is depicted for the
example N = 50 in Fig. 1. It can be seen that the eigenvalues
are symmetric around zero, and approximately equidistant at
the boundaries of the spectrum, while they are closer together
around the center. The eigenvalues can be obtained analytically
using a Bethe ansatz approach [12].

Figure 2 depicts the eigenvalues of the many-particle
Hamiltonian (3) as a function of ε for v = 1, and two different

FIG. 1. (Color online) Eigenvalues of K̂x (and K̂y) for N = 50.

particle numbers. In comparison to the familiar Landau-Zener
behavior of a many-particle two-level system without atom-
molecule conversion, the simple symmetry with respect to ε

is lost, and we observe a cluster of narrow avoided crossings
for intermediate values of ε, stretching from the upper end
of the spectrum for negative values of ε to the lower one for
positive values. These are the reflection of the accumulation
of eigenvalues in the spectrum of K̂x in Fig. 1. For large
values of ε the many-particle spectrum is dominated by the
equidistant spectrum of K̂z. The narrow avoided crossings lead
to quasistationary states related to unstable stationary states in

FIG. 2. (Color online) Many-particle spectrum in dependence on
ε for v = 1 and N = 10 (top) and N = 50 (bottom) particles.
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the mean-field description. These are related to the molecular
mode, where all particles are paired up in diatomic molecules.

The many-particle dynamics can be straightforwardly ob-
tained by integration of the Schrödinger equation on the (N

2 +
1)-dimensional Hilbert space. It is nevertheless instructive to
study the Heisenberg equations of motion for the dynamical
variables K̂x,y,z, given by

d

dt
K̂x = −εK̂y,

d

dt
K̂y = εK̂x + v

2
+ v

8N

(
N̂2 − 8K̂zN̂ − 48K̂2

z

)
, (13)

d

dt
K̂z = vK̂y.

Due to the nonlinearity of the commutator of K̂x and K̂y this
is not a closed set of equations if v �= 0, that is, the right-hand
side contains dynamical variables such as K̂2

z whose dynamics
is not determined by the dynamical equations (13). In the trivial
case v = 0, where the atomic and molecular mode decouple,
we have a closed set of equations, describing rigid rotations
around the z axis. In the general case, taking the expectation
value and neglecting quantum fluctuations, i.e., approximating
expectation values of products with products of expectation
values, yields the mean-field approximation we shall discuss
in the following section. It is interesting to note that the same
dynamical equations in terms of generators of a deformed su(2)
algebra also appear in the context of fermionic atom-molecule
conversion [10,22].

III. MEAN-FIELD APPROXIMATION

In this section we review the derivation of the mean-field
dynamics, and summarize its most important features [8–17].
Here we formulate the approximation in a way that is most
natural from the perspective of a semiclassical limit. The
mean-field approximation can be obtained in the limit of large
Hilbert-space dimension by replacing expectation values of
products with products of expectation values in the dynamics
of the operators K̂j in Eq. (13). Introducing the mean-field

variables sj = η〈K̂j 〉, with η = (N
2 + 1)

−1 → 0, the mean-
field dynamical equations become

ṡx = −εsy,

ṡy = εsx + v

4

(
1 − 4sz − 12s2

z

)
, (14)

ṡz = vsy.

These can be formulated as canonical Hamiltonian dynamics
with the classical Hamiltonian function

H = η〈Ĥ 〉 = εsz + vsx, (15)

and the Poisson brackets

{sx,sy} = 1
4

(
1 − 4sz − 12s2

z

)
,

{sy,sz} = −sx, (16)

{sz,sx} = −sy,

FIG. 3. (Color online) Mean-field dynamics on the deformed
Bloch sphere for v = 1 and ε = 0, 1, 2 (from top to bottom). The
right panel shows the dynamics of sz for selected initial conditions.

which directly follow from the many-particle commutators
with the identification

{sj ,sk} = lim
N→∞

iη〈[K̂j ,K̂k]〉. (17)

The dynamics (14) is confined to a two-dimensional surface
given by the constraint

s2
x + s2

y = 1
4 (1 − 2sz)(1 + 2sz)

2 =: r2(sz), (18)

with sz ∈ [− 1
2 , 1

2 ]. This constraint also follows from the many-
particle conserved quantity (12) in the mean-field limit. The
resulting surface is depicted in Fig. 3. It has a characteristic
inverted teardrop shape, with a tip at sz = − 1

2 . Note that
similar shapes are known as Kummer shapes in the classical
description of coupled oscillators of different frequencies
[23–25].

From the dynamical equations (14) it follows that all fixed
points are located at sy = 0, and have to fulfill

εsx = −v

4

(
1

2
+ sz

)
(2 − 12sz). (19)

Using the constraint (18) this yields a polynomial in the sz

component of the fixed points(
1

2
+ sz

)2[
v2

4
− ε2 − (3v2 − 2ε2)sz + 9v2s2

z

]
= 0. (20)

It can be verified that for each of the solutions sz ∈ [− 1
2 , 1

2 ] of
Eq. (20) there is one corresponding value for sx such that the
dynamics is stationary. That is, there is always a fixed point at
the tip of the teardrop, at sz = − 1

2 . Depending on the values of
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v and ε there can be one or two further fixed points. For values
of ε that are smaller than a critical value |εcrit| = √

2|v| there
are three fixed points. A stability analysis reveals that the fixed
point at the tip of the teardrop is a saddle point in this case,
while the other two fixed points are elliptic. At the critical
value |εcrit| = √

2|v| one of the other two fixed points collides
with the fixed point at the tip of the teardrop and then moves to
unphysical values sz < − 1

2 . The two fixed points interchange
their stability in this transcritical bifurcation. That is, for values
of ε larger than the critical value there are two elliptic fixed
points, one of which is located at the tip, the other elsewhere
on the teardrop. Examples of the dynamics for v = 1 and
different values of ε are shown in Fig. 3. In the top two figures
the fixed point at the tip of the teardrop is a saddle point,
which is approached asymptotically by trajectories starting
in a particular region on the teardrop, that shrinks as ε gets
closer to the critical value. In the lowest figure the value of
ε is supercritical, and we observe the typical oscillations for
trajectories in the neighborhood of the elliptic fixed point at
the tip of the teardrop.

We can introduce a set of canonical variables p and q via
the transformation

sx = r(p) cos(q), (21)

sy = r(p) sin(q), (22)

sz = p, (23)

with r(p) =
√

(1−2p)(1+2p)2

2 , with p ∈ [− 1
2 , 1

2 ] and q ∈ [0,2π ].
It is straightforward to verify that this indeed recovers the
Poisson brackets (16) with the standard definition

{A,B} := ∂A

∂p

∂B

∂q
− ∂A

∂q

∂B

∂p
. (24)

In terms of p and q the dynamics is then given by the canon-
ical equations q̇ = ∂H

∂p
and ṗ = − ∂H

∂q
with the Hamiltonian

function (15) expressed in terms of p and q:

H = εp + v

2

√
(1 − 2p)(1 + 2p)2 cos(q). (25)

The mean-field dynamics can of course be expressed in
terms of a nonlinear Schrödinger equation for an effective
single-particle wave function. In the case of atom-molecule
conversion there are two natural ways to define a mean-field
wave function. The first, most commonly used, arises via
the usual identification of the components of the mean-field
wave function with the probability amplitudes to be in one
of the states, in this case to be in the atomic or molecular
state. That is, we make the identification â(†) → 1√

η
ψ (∗)

a , and

b̂(†) → 1√
η
ψ

(∗)
b . The resulting mean-field wave function is

then normalized as |ψa|2 + 2|ψb|2 = 2, where |ψa|2/2 is the
probability to find the mean-field system in the atomic mode
and |ψb|2 is the probability to find it in the molecular mode.
The mean-field dynamics is then governed by the Hamiltonian
dynamics

i�ψ̇j = ∂H

∂ψ∗
j

, (26)

with the Hamiltonian function H expressed in terms of the ψj

as

H = ε

4
(|ψa|2 − 2|ψb|2) + v

2
√

2

(
ψ∗2

a ψb + ψ2
aψ∗

b

)
, (27)

that is,

i

(
ψ̇a

ψ̇b

)
=

(
ε
4

v√
2
ψ∗

a
v

2
√

2
ψa − ε

2

)(
ψa

ψb

)
. (28)

With the identification

sx = 1

2
√

2

(
ψ∗2

a ψb + ψ∗
b ψ2

a

)
,

sy = 1

2
√

2i

(
ψ∗2

a ψb − ψ∗
b ψ2

a

)
, (29)

sz = 1

4
(|ψa|2 − 2|ψb|2),

this yields the dynamical equations (14) as expected.
Alternatively, we can replace â2(†) → 1

η
χ (∗)

a , and b̂(†) →
1√
η
χ

(∗)
b . Then we have |χa| + 2|χb|2 = 2, and the nonlinear

Schrödinger equation follows from the many-particle dynam-
ics as

i

(
χ̇a

χ̇b

)
=

(
ε
2

√
2v|χa|

v

2
√

2
− ε

2

)(
χa

χb

)
. (30)

In this version the probability to find the system in the atomic
mode is given by |χa|/2, while the probability to find the
system in the molecular mode is |χb|2. The variables sj are
then defined as

sx = 1

2
√

2
(χ∗

a χb + χ∗
b χa),

sy = 1

2
√

2i
(χ∗

a χb − χ∗
b χa),

sz = 1

4
(|χa| − 2|χb|2). (31)

Their dynamics are again given by Eq. (14).

IV. MEAN-FIELD AND MANY-PARTICLE
CORRESPONDENCE

Let us first compare the spectral features of the mean-field
and many-particle descriptions. For this purpose we define the
mean-field energies as the values of the Hamiltonian function
in the mean-field fixed points, that correspond to stationary
solutions of the nonlinear Schrödinger equation. The resulting
mean-field energies are plotted as a function of ε for v = 1
in comparison with the many-particle energies for N = 30
particles in Fig. 4. It can be clearly seen how the pattern of
narrow avoided crossings in the many-particle spectrum is
closely following one of the mean-field energies. This energy
corresponds to the unstable fixed point at the tip of the teardrop
that is associated to the all-molecular mode. At the critical
values of ε = ±√

2 this becomes a stable elliptic fixed point,
that is associated to the minimum and maximum eigenvalues
of the many-particle system, respectively. The maximum
and minimum mean-field energies bound the many-particle
spectrum, if the latter is renormalized by the semiclassical
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FIG. 4. (Color online) Many-particle [blue (dark gray)] and
mean-field [magenta (light gray)] energies in dependence on ε for
v = 1 and N = 30 particles.

parameter η, as is expected in a typical quantum-classical
correspondence. This is very promising for a semiclassical
quantization that we shall attempt in the next section.

Let us now briefly turn to the correspondence between
mean-field and many-particle dynamics. In Fig. 5 we show
several examples of mean-field trajectories (black lines) for
different parameter values and initial conditions, in com-
parison to the corresponding many-particle dynamics. For
comparison the initial many-particle state has been chosen
as the ground state of a Hamiltonian of the type

K̂ = aK̂x + bK̂z + cK̂y, (32)

whose expectation values of K̂x,y,z lie as close as possible to
the teardrop surface of the mean-field system. In Fig. 6 we
show the expectation values of K̂x and K̂z for this family of
states for c = 0 and varying values of a and b, for different

t0 10 20 30

η<
K

x>

-0.5

0

0.5

t0 10 20 30

η<
K

z>

0.5

0

0.5

FIG. 5. (Color online) Mean-field (black) and many-particle dy-
namics for v = 1 and ε = 1 (top) and ε = 0 (bottom), and different
particle numbers. The blue (dark gray), green (gray), and yellow (light
gray) curves correspond to N = 20, 100, and 500, respectively. The
initial states are chosen as the ground states of ±K̂x in the top figure
and −K̂z in the bottom figure, and the initial conditions are marked
by a star. The right figure on the top shows the dynamics of the x

component for ε = 1, and the figure on the bottom right shows the
dynamics of the z component for ε = 0.

FIG. 6. (Color online) Expectation values of K̂x and K̂z for the
ground states of the Hamiltonian (32) where c = 0, b varies from
−0.5 to 0.5 and a = ± 1

2

√
(1 − 2b)(1 + 2b)2, for different particle

numbers N = 2 (blue dash-dotted line), N = 4 (red dashed line),
N = 10 (magenta dotted line), and N = 100 (black solid line).

particle numbers. It can be seen how the mean-field teardrop
is approached with increasing particle number. See [14] for a
comparison between these states and a new type of coherent
states proposed there.

In the upper panel of Fig. 5 it can be seen how the many-
particle dynamics closely follows the mean-field dynamics
even for relatively small particle numbers in the vicinity of
elliptic fixed points. Where the influence of the hyperbolic
fixed point at the bottom of the teardrop is stronger, the devi-
ations become larger and we observe the typical breakdown
phenomenon of the many-particle dynamics. For longer times
(not depicted), revival phenomena occur where the revival time
rapidly increases with the particle number as expected [19].
The slow convergence of the many-particle dynamics towards
the mean-field dynamics is particularly pronounced for those
initial states whose mean-field dynamics asymptotically ap-
proaches the saddle point related to the all-molecular mode,
as seen at the bottom in Fig. 5. The breakdown happens
very rapidly here, and even for longer times no revivals are
observed. This behavior has been investigated in some detail
in [7], and is typical for quantum-classical correspondence in
the neighborhood of hyperbolic fixed points.

V. SEMICLASSICAL QUANTIZATION

In the following we shall investigate how semiclassical
techniques might be modified to obtain an approximation for
the many-particle eigenvalues from the mean-field dynamics.
For this purpose it is convenient to use the approach by
Braun [26] that has been developed for general three-term
recurrence relations, since the matrix representation of our
many-particle Hamiltonian (3) in the eigenbasis of K̂z is tridi-
agonal, and thus the eigenvalue equation defines a three-term
recurrence relation. The same procedure has been successfully
applied to the spectrum of the two-mode Bose-Hubbard model
in [1,2,5]. Since the spectrum of K̂z is related to that of two
coupled harmonic oscillators, we expect that the semiclassical
quantization should yield exact results for the spectrum
of K̂z for arbitrary particle numbers. For this purpose the
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quantization procedure of Braun has to be slightly modified.
We shall give a brief overview over this modified version in
what follows.

The main idea is to derive a WKB type approximation
for the wave function in dependence on p; the matching
conditions between the allowed and forbidden regions then
yield a Bohr-Sommerfeld type quantization condition for the
eigenvalues. The latter quantization condition can in fact be
motivated heuristically, by arguing that every many-particle
state takes up on average a phase-space volume of h, where
the ground state and the highest exited state only take up
the minimum uncertainty volume of h

2 . However, the role
of the semiclassical parameter h in the present context is
taken over by the inverse matrix size of the problem, that
is, η = (N

2 + 1)
−1

. The quantization condition then reads

S(ηEn) = 2πη
(
n + 1

2

)
, (33)

where S(E) is the mean-field phase-space area enclosed by
the orbit of energy E. To calculate these phase-space areas
it is convenient to introduce potential curves for p. These
potential curves U+ and U− are defined as the maximum and
minimum functions of the Hamiltonian with respect to the
angle dimension [26]. That is, we have

U±(p) = εp ± v

2

√
(1 − 2p)(1 + 2p)2, (34)

which join at p = ± 1
2 , at the values ± ε

2 . Two examples of the
potential curves together with the corresponding phase-space
portraits are shown in Fig. 7. The potential curves bound the
possible values of the energy of the mean-field system for a
given value of p. On the other hand, for a given value of the
energy, the motion is restricted to values of p where U−(p) �
E � U+(p), i.e., the classically allowed region. This region is
bound by the classical turning points p±, where E = U±(p±),

FIG. 7. (Color online) Mean-field phase-space portraits (top) and
potential curves (bottom) for v = 1 and ε = 0 (left) and ε = 2 (right).
The false colors in the phase-space plots represent the energy values.
An orbit belonging to one selected energy each (marked by a black
line in the bottom pictures) is highlighted in each of the phase-space
plots by a thick black line.

which are found as the two roots of the polynomial

2v2p3 + (v2 + ε2)p2 −
(

v2

2
+ 2εE

)
p − v2

4
+ E2, (35)

that fall into the interval [− 1
2 , 1

2 ]. For any allowed value of
the energies the polynomial has three real roots, two of which
are located in the interval [− 1

2 , 1
2 ]. The third root, p0, lies

outside the physically relevant interval, to the left, that is,
p0 � − 1

2 � p−. The fixed points of the dynamics correspond
to the extrema of the potential curves and the tip at which both
potential curves meet at p = − 1

2 . For the extremal values of
the energy the two turning points coalesce.

The phase-space area enclosed by an orbit with energy E

can be written as the integral

S(E) =
∮

q(p,E)dp, (36)

where q(p) follows from the conservation of the energy as

q(p) = arccos

(
2(E − εp)√

(1 − 2p)(1 + 2p)2

)
, (37)

and care has to be taken that the area enclosed by the curve is
calculated, rather than the area outside the curve. Depending on
which turning point lies on which potential curve, the enclosed
area in Eq. (36) can be evaluated as

S(E) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2π (p+ − p−) − 2S̃(E), p± on U−
2π

(
1
2 − p−

) − 2S̃(E), p− on U−, p+ on U+
2π

(
1
2 + p+

) − 2S̃(E), p− on U+, p+ on U−
−2π + 2S̃(E), p± on U+

,

(38)

with

S̃(E) =
∫ p+

p−
q(p)dp. (39)

In the case v = 0 this can be evaluated analytically, and we
obtain the exact eigenvalues for arbitrary particle numbers,
as expected. For nonzero values of v the quantization condi-
tion (33) can be straightforwardly solved numerically to obtain
the semiclassical many-particle spectrum from the mean-field
dynamics. In Fig. 8 we show the resulting semiclassical
eigenvalues in dependence on ε for v = 1 and two different
particle numbers, in comparison to the numerically exact
many-particle energies. We observe that even for N = 4
particles, corresponding to a relatively large value of η = 1

3 ,
the agreement is very good. As expected the quality of the
approximation improves with larger particle number. It also
improves with larger ε, as in the limit v/ε → 0 the quantization
yields exact results.

The quantization condition can be used to derive an
analytic expression for the many-particle density of states
in the semiclassical limit of large particle numbers [27,28].
Differentiating the quantization condition (33) with respect to
the energy yields

dS(En)

dE
= 2π

dn

dE
. (40)
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FIG. 8. (Color online) Many-particle (solid blue lines) and semi-
classical (dashed magenta lines) eigenvalues in dependence on ε

for v = 1 and two different particle numbers. The upper panel
corresponds to N = 4 particles; the lower panel corresponds to
N = 20.

That is, the many-particle density of states is given by the
derivative of the mean-field phase-space area with respect to
the energy. This, on the other hand, is given by the period of
the mean-field orbit of the given energy [29]. That is, we have
for the many-particle density of states

dn

dE
= T (E)

2π
, (41)

where T (E) denotes the period of the orbit with energy E.
This can be directly calculated from

T (E) = 2
∫ p+

p−

dp

ṗ
= 2

∫ p+

p−

(
∂H

∂q

)−1

dp

= 2
∫ p+

p−

dp√
(U+ − E)(E − U−)

. (42)

From the explicit form of the potential curves we find the
period in terms of an elliptic integral as

T (E) = 2
√

2

v
√

p+ − p0

∫ π
2

0

dθ√
1 − p+−p−

p+−p0
sin2 θ

= 2
√

2

v
√

p+ − p0
K

(
p+ − p−
p+ − p0

)
,

(43)

FIG. 9. (Color online) Density of states dn

dE
for the many-particle

system in comparison with the mean-field periods for v = 1 and
different values of ε. The many-particle density of states is approxi-
mated by the normalized histogram of the energies, for N = 10 000
particles. The mean-field result is depicted by the solid magenta line.
The values of ε are ε = 0, 1, 2, 5 from top left to bottom right.

where p0 is the third root of the polynomial (35), and K

denotes the complete elliptic integral of the first kind. The
period diverges at the classical turning point, which can be seen
as follows. At the value E = − ε

2 , corresponding to the orbit
passing through the tip of the teardrop, the polynomial (35)
can be explicitly factorized as

P
(
E = − ε

2

) = (
p + 1

2

)2
(2v2p − v2 + ε2). (44)

That is, in the subcritical case |ε| <
√

2|v|, where the fixed
point at the tip corresponds to a saddle point, we have p0 =
p− = − 1

2 , and p+ = 1
2 − ε2

2v2 , that is, we have T (E) ∝ K(1),
which diverges. For supercritical values, on the other hand,
where the fixed point corresponds to the minimum of the
energy, we have p− = p+ = − 1

2 , and p0 = 1
2 − ε2

2v2 < − 1
2 .

Thus, the period has the finite value of
√

2π√
ε2
2 −v2

in this case.

Figure 9 depicts the normalized histogram of many-particle
eigenvalues for a large particle number of N = 10 000 in
comparison to the mean-field periods (divided by 2π ), which
are given by the analytical expression (43). Note that the mean-
field energies are rescaled with respect to the many-particle
energies by η. An excellent agreement between the analytical
expression and the many-particle density of states is observed.
In particular the accumulation of states around the classical
saddle point for values of ε below the critical value is nicely
recovered in the many-particle histogram. Since the period of
the orbit through the saddle point is infinite, the accumulation
of many-particle eigenstates at this point leads to an actual
divergence in the limit N → ∞, which can be connected to a
quantum phase transition [8].

We can also obtain an approximation for the components
of the eigenvectors in the standard basis of K̂z, via a simple
WKB ansatz. In the classically allowed region (between the
two turning points) we make the ansatz

ψ(p) =
√

wcl(p)
(
A+e

i
η
S(p) + A−e− i

η
S(p))

, (45)
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where wcl denotes the classical probability distribution

|wcl(p)| = 1

2T

(
∂H

∂q

)−1

= 1

2T

√
v2

4 (1 − 2p)(1 + 2p)2 − (E − εp)2
, (46)

and the action S(p) is given by

S(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π (p − p−) − S̃(p), p± on U−
π

(
1
2 − p

) − S̃(p), p− on U−, p+ on U+
π

(
1
2 + p

) − S̃(p), p− on U+, p+ on U−
−π + S̃(p), p± on U+

, (47)

with

S̃(p) =
∫ p

p−
q(p)dp. (48)

In the forbidden region the WKB ansatz reduces to the single
exponential decaying solution

|ψcl(p)|2 = 1

2

∣∣∣∣ωcl(p) exp

(
−2i

η
S(p)

)∣∣∣∣, (49)

with

S(p) =
{

∓ ∫ p−
p

q(p)dp, p < p−, p− on U±
∓ ∫ p

p+
q(p)dp, p > p+, p+ on U±

. (50)

The matching conditions at the boundary then impose the
quantization condition (33) and the absolute value of the WKB
wave function in the classically allowed region becomes

|ψcl(p)|2 = 2|wcl(p)| cos2
(
η−1S(p) − π

4

)
. (51)

While this expression appears to depend on the continuous
variable p, for finite values of η p can only take on discrete
values, due to the periodicity of its conjugate variable q, to
which it can be related via a discrete Fourier transform. We
thus have the semiclassical approximation

|
n〉 =
∑

m=− N
4 :1: N

4

ψcl(ηm)|m〉, (52)

where |m〉 denotes the eigenvectors of K̂z, that is, the
states with 2m + N

2 atoms and N
4 − m molecules. Figure 10

depicts examples of the exact many-particle eigenvectors in
comparison to the semiclassical approximation (normalized
to fit the central maximum). As expected, the semiclassical
approximation breaks down in the vicinity of the turning
points, but approximates the many-particle wave functions
well for other values.

VI. SUMMARY AND OUTLOOK

While the role of many-particle effects in cold
atom systems is crucial, in large realistic systems the
mean-field approximation is often all that is accessible. Thus,
the possibility to recover many-particle features from the
mean-field description is an important addition to the
theoretical toolbox for cold atoms. Here we have demonstrated
that semiclassical methods can be modified to deduce

FIG. 10. (Color online) Exact nth many-particle eigenvectors
(green circles) with the WKB wave function (red) for N = 40, ε =
0.5, and v = 1 for n = 1 (top), n = 3 (middle), and n = 10 (bottom).
The red crosses indicate the semiclassical wave function (52). The
solid red line, indicating the continuous semiclassical wave function
according to Eq. (51), is added to guide the eye.

many-particle properties for atom-molecule conversion
systems from the mean-field dynamics alone. We have
considered the eigenvalues and eigenvectors here; an extension
to dynamical properties via semiclassical propagators is an
important topic for future investigations. A nontrivial issue is
the generalization to more realistic models with many modes
for both atoms and molecules. Progress has been made in
this direction for cold atomic systems without atom-molecule
conversion in [4,6]. The combination with the results obtained
here suggests that this goal is not out of reach. An obstacle
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for the application of some semiclassical techniques is
the absence of a well-defined set of condensed states that
coincide with coherent states of the deformed su(m) algebra for
atom-molecule conversion systems. There have been proposals
for coherent states in [14,30], however they do not fulfill all
the properties that one relies on in the case of cold atoms in
m mode systems when employing su(m) coherent states [31].
The connection between coherent states and projective
manifolds [32] for su(m) systems might lead a way forward.
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