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Duality of quantum coherence and path distinguishability
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We derive a generalized wave-particle duality relation for arbitrary multipath quantum interference phenomena.
Beyond the conventional notion of the wave nature of a quantum system, i.e., the interference fringe visibility,
we introduce a quantifier as the normalized quantum coherence, recently defined in the framework of quantum
information theory. To witness the particle nature, we quantify the path distinguishability or the which-path
information based on unambiguous quantum state discrimination. Then, the Bohr complementarity principle
for multipath quantum interference can be stated as a duality relation between the quantum coherence and the
path distinguishability. For two-path interference, the quantum coherence is identical to the interference fringe
visibility, and the relation reduces to the well-known complementarity relation. The duality relation continues to
hold in the case where mixedness is introduced due to possible decoherence effects.
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I. INTRODUCTION

One of the famous yet intriguing features of quantum
mechanics is the wave-particle duality. This is often described
in terms of Bohr’s complementarity principle. It states that
the wave aspect and the particle aspect are complementary in
nature, in the sense that if an experiment clearly reveals the
wave nature, it will completely hide the particle aspect and vice
versa [1]. The complementarity principle has been a subject of
debate since the time of its inception when Einstein proposed
his famous recoiling slit experiment (see, e.g., Ref. [2]).

Since then, attempts have been made to give a quantitative
meaning to the complementarity principle, in the context of
interference experiments [3–5]. The idea is to investigate how
much of each aspect, wave or particle, can be seen at the same
time. In the two-path interference experiment, either in a two-
slit experiment or in a two-path Mach-Zehnder interferometer,
the principle of complementarity is quantitatively represented
by the Englert-Greenberger-Yasin (EGY) relation

V2 + D2 � 1, (1)

where V is the visibility of the interference pattern and D is a
measure of path distinguishability or which-path information.
For two-path interference, the quantum system (quanton)
may arrive at the detector along two different paths. If the
experimenter determines which path the quanton has traveled
through without ambiguity (i.e., D = 1), then no interference
fringes will be seen (i.e., V = 0). On the other hand, a nonzero
ambiguity in the which-path information (i.e., D �= 1) of the
experimenter may retain a nonvanishing fringe visibility (i.e.,
V �= 0). Thus, the knowledge of which-path information or
the path distinguishability limits the interference visibility
V in an interference experiment, according to the above
complementarity relation. This relation has been demonstrated
experimentally with atoms [6], nuclear magnetic resonance
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[7,8], faint lasers [9], and also with single photons [10].
Further, the complementarity relation has been extended to the
more general case of an asymmetric interferometer where only
a single output port is considered and this duality holds [11].
Recently, the duality relation has also been investigated in the
presence of nonlocality [12] and quantum entanglement [13].

Intuitively, the complementarity relation, between the wave
and the particle nature of the quantons, is expected to hold
in multipath or multislit experiments too. Several attempts
have been made to quantitatively formulate the complemen-
tarity principle in multipath experiments [14–17]. However,
a derivation of a loophole-free generalized complementarity
relation for multislit quantum interference experiment is
still demanding. The underlying problem is the absence of
exact analytical forms of interference fringe visibility and
path distinguishability, which are strictly complementary to
each other, for an n-path quantum interferometer. One may
seek to resolve this difficulty by relaxing the conventional
signatures of particle and wave natures of the quantons, such as
which-path information and fringe visibility. While the fringe
visibility is the most used signature of wave nature of the
quantum particles, it is certainly not the only one to capture
the essence. For example, recently, the wave-particle duality
in two-slit experiments has been shown to be equivalent to the
entropic uncertainty relation [18], and the wave and particle
natures are represented with entropic quantifiers.

In this paper we derive a generalized complementarity
relation from such an alternative perspective. In our approach,
we quantify the wave nature in terms of quantum coherence,
which has been proposed recently in the context of quantum
information theory [19]. On the other hand, the particle nature
connected to the which-path information or the path distin-
guishability is quantified by the upper bound of the success
probability in the unambiguous quantum state discrimination
(UQSD) [20–22]. Remarkably, the quantum coherence and
the path distinguishability are truly complementary in nature.
That means an increase in quantum coherence is always
associated with a decrease in path distinguishability and vice
versa. With the proposed quantifiers, we derive a generalized
complementarity relation for arbitrary n-slit scenario for both
pure and mixed quanton states. We show that the sum of

1050-2947/2015/92(1)/012118(6) 012118-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.012118


BERA, QURESHI, SIDDIQUI, AND PATI PHYSICAL REVIEW A 92, 012118 (2015)

(normalized) quantum coherence and path distinguishability in
the complementarity relation exactly equals to one for every
pure state and is upper bounded by the same in the case of
mixed states. Our duality relation then gives a justification to
the measure of quantum coherence as it truly brings out the
wave nature of the quanton at its heart.

The paper is organized as follows. In Sec. II, we intro-
duce the quantifiers of quantum coherence and unambiguous
quantum state discrimination, which quantitatively capture
the wave nature and particle nature of the quantum system,
respectively. The duality relation, for pure quanton and
detector state is derived in Sec. III. Then we generalize
the duality relation for mixed states of arbitrary dimension.
Finally, we conclude in Sec. IV.

II. QUANTUM COHERENCE AND UQSD

A. Quantum coherence

Coherence is a fundamental feature of quantum physics,
which signifies the possible superposition between the or-
thogonal quantum states. Again, it is largely believed that the
quantum superposition is the manifestation of wave nature of
quantum particles. Thus, the quantum coherence has a strong
correspondence with the wave nature of a quantum particle.
Though a rigorous study of coherence has been carried out
in quantum optics in terms of quasiprobabilities, a generalized
quantification of quantum coherence was absent until recently.
In Ref. [19], Baumgratz et al., proposed a reliable quantifier
of quantum coherence from quantum information theoretic
approach. The framework, to quantify coherence, is based
on the characterization of the set of incoherent quantum
states (I). For a given incoherent basis {|i〉}, the incoherent
states are defined as σ I = ∑

i pi |i〉〈i| ∈ I, where pis are
nonnegative probabilities with

∑
i pi = 1. The incoherent

operations are the completely positive trace preserving (CPTP)
maps �I , which transform σ I → �I (σ I ) ∈ I to an incoher-
ent state, which is, again, diagonal in the incoherent basis.
The maximally coherent state of dimension n is defined as
|�〉 = 1√

n

∑n
i=1 |i〉 and the coherence of such state is used as

reference to compare the coherence in the other states. For
a given incoherent basis, the reliable quantifier of quantum
coherence C(ρ), is a function of the state ρ, and should
satisfy [19]: (i) C(ρ) = 0 if and only if ρ ∈ I, (ii) C(ρ)
is nonincreasing under incoherent operations, i.e., C(ρ) �
C(�Iρ), (iii) C(ρ) is nonincreasing on an average under
selective incoherent measurement, i.e., C(ρ) �

∑
m qmC(ρm),

where ρm = 1
qm

KmρK
†
m, qm = Tr(KmρK

†
m), Kms are the

Kraus operators and KmIK
†
m ⊆ I, (iv) C(ρ) is nonincreasing

under convex mixing of density matrices, i.e., C(
∑

k qkρk) �∑
k qkC(ρk). The functions of density matrix that satisfy

these properties are relative entropy of coherence, l1 norm
of coherence [19], and skew information of coherence [23]. In
this work, we shall use l1 norm of coherence to quantify the
wave nature of the quantons, defined as

C(ρ) = minσ I∈I ‖ ρ − σ I ‖l1 , (2)

where ‖ A ‖l1=
∑

ij |Aij | and the minimization is carried out
over the set of all incoherent states σ I . It can easily be seen
that the minimization is achieved for the σ I = ∑

i〈i|ρ|i〉|i〉〈i|

and then the coherence quantitatively becomes the sum of the
absolute values of the off-diagonal elements of the density
matrix of a system, i.e.,

C(ρ) =
∑

i �=j

|ρij | (3)

with ρij = 〈i|ρ|j 〉. Using this measure, we define normalized
quantum coherence as

C(ρ) = 1

n − 1

∑

i �=j

|ρij |, (4)

where n is the dimensionality of the Hilbert space. Hereafter
we call normalized coherence as coherence, for simplicity.
In what follows, we shall show that the coherence captures the
wave nature of a quanton in a multipath quantum interference
scenario.

B. Unambiguous quantum state discrimination

Quantum state discrimination has various important appli-
cations in quantum information theory [20–22]. In the quantum
state discrimination, the task is to find out which state an
experimenter has in her possession to the best of her ability
[20]. In quantum mechanics the existence of nonorthogonal
states adds further difficulties to the problem, in addition to
the statistical mixing of the quantum states. The commonly
used strategies to discriminate nonorthogonal states can be
divided in two broader classes, those are the ambiguous [20]
and the unambiguous [24] quantum state discrimination. In
ambiguous state discrimination, one always has an answer
but with a probability of being wrong and the task is to
minimize this probability. On the other hand, in unambiguous
state discrimination, one is guaranteed to never be wrong, but
sometimes may have a nonanswer, that is to say one does
not know. In this case the task is to minimize the probability
of a nonanswer. The unambiguous state discrimination is
particularly interesting for the cases where the states analyzed
are mixed [25]. However, in what follows, we shall stick to
UQSD for pure states as it suffices for our analysis.

UQSD was first formulated for unambiguously discriminat-
ing between two nonorthogonal states [24]. Consider a state
that could be either |d1〉 or |d2〉, with equal probability. The
probability with which one can tell for sure which of the two
states is the given one is bounded by [24]

P2 � 1 − |〈d1|d2〉|. (5)

One can also precisely specify the condition in which the
success probability is

P2 = 1 − |〈d1|d2〉|, (6)

which is the so-called Ivanovic-Dieks-Peres (IDP) limit.
The two states, |d1〉 and |d2〉, cannot be unambiguously
discriminated with a probability larger than the IDP limit, even
in principle. This shows that the IDP limit sets a fundamental
limit to distinguish two nonorthogonal states |d1〉 and |d2〉.

UQSD was later generalized to n nonorthogonal states
[26]. Consider a quantum state prepared in one of the n

states |d1〉, . . . ,|dn〉 in an n-dimensional Hilbert space with
corresponding probabilities p1, . . . ,pn. The states are in
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general nonorthogonal. To find out which of the n states the
given state is, one needs to perform one or more quantum
measurements. The upper bound for the success probability
of unambiguous discrimination among the n quantum states is
given by [26]

Pn � 1 − 1

n − 1

∑

i �=j

√
pipj |〈di |dj 〉|. (7)

Clearly, for orthogonal quantum states, there exists a quantum
measurement strategy for which the success probability of
UQSD reaches maximum to 1. For nonorthogonal states,
there may exist a measurement strategy for which the success
probability of UQSD is

Pn = 1 − 1

n − 1

∑

i �=j

√
pipj |〈di |dj 〉|. (8)

However, since the above does not represent the optimal
success probability, this upper bound may, in general, not be
achievable. In the next section, we shall use this upper bound of
the success probability for UQSD as a measure of which-path
information and that in turn can witness the particle nature of
the quanton.

III. COMPLEMENTARITY OF COHERENCE
AND PATH DISTINGUISHABILITY

A. Duality relation for pure quanton and detector states

Let us now consider the case of an n-slit quantum
interference with pure quantons. In n-slit interference, if |ψi〉
is the possible state of the quanton if it takes the ith slit or ith
path, then the state of the quanton after crossing the slit can
be described solely in terms of |ψi〉, and it may be treated as
a basis state. Thus the state of the quanton can be represented
in terms of n basis states {|ψ1〉,|ψ2〉, . . . ,|ψn〉}, where each of
the states represents each slit or path.

|�〉 = c1|ψ1〉 + c2|ψ2〉 + · · · + cn|ψn〉, (9)

and ci is the amplitude of taking the ith path. In an interference
experiment, if one wants to know which of the n slits the
quanton passes through, or which of the n paths does the
quanton take, one needs to perform a quantum measurement.
In quantum measurements, according to von Neumann, the
first process is to let a detector interact with a quanton and get
entangled with it [27]. Then, the quantum measurements may
be performed on the detector state to infer about the properties
of the quanton. In general, the controlled unitary operations are
used to correlate the quanton and detector in an interference
experiment. For a quanton state |�〉 and controlled unitary
interaction U (|ψi〉|0d〉) 
→ |ψi〉|di〉, where |0d〉 is the initial
detector state, the combined quanton-detector state becomes

|�〉 = c1|ψ1〉 ⊗ |d1〉 + c2|ψ2〉 ⊗ |d2〉 + . . . ,cn|ψn〉 ⊗ |dn〉,
(10)

where |di〉 is the state of the which-path detector if the quanton
went through the ith path, and

∑n
i=1 |ci |2 = 1. For simplicity,

we consider the detector states {|di〉} to be normalized, but
not necessarily orthogonal. Now, if one tries to acquire
knowledge about which path the quanton took, it shall reduce
the coherence of the quanton. The left out coherence present

in the quanton will correspond to the coherence of the reduced
density matrix of the quanton, where the latter is given by

ρs =
n∑

i=1

n∑

j=1

cic
∗
j 〈dj |di〉 |ψi〉〈ψj | (11)

after tracing over the detector states. For a given interfero-
metric setup the set {|ψi〉} forms the incoherent basis. The
coherence can now be calculated for the particle using the
reduced density matrix given above, as

C = 1

n − 1

∑

i �=j

|〈ψi |ρs |ψj 〉|

= 1

n − 1

∑

i �=j

|ci ||cj ||〈dj |di〉|. (12)

It is interesting to note that if the detector states {|di〉} form a
mutually orthogonal basis, the reduced system states become
diagonal in the incoherent basis and hence, have vanishing
coherence. This implies that, in this situation, the wave nature
of the quanton cannot be seen. However, the situation will be
different if the detector states are not mutually orthogonal to
each other and in the reduced density matrix, the off-diagonal
elements will not necessarily be vanishing. Thus, the wave
aspect of the quanton will acquire nonzero value as the quan-
tum coherence is nonvanishing. However, the coherence of the
quanton will be certainly reduced more than that of the original
state before the measurement interaction was turned on.

Now, let us focus on the problem of path distinguishability
or which-path information, which is attributed to the particle
nature of the quantons. Since, through the controlled unitary
interaction, each of the paths is marked with a detector state
|di〉, the path distinguishability is equivalent to discriminating
the detector states. In other words, if the quanton passes
through the ith path, the resulting the detector states becomes
|di〉 with the probability |ci |2. Now distinguishing all these de-
tector states {|di〉} with the corresponding probabilities {|ci |2}
is equivalent to distinguishing the paths the quanton chooses in
the interferometric setup. If the detector states {|di〉} are mutu-
ally orthogonal, then the states can be distinguished with unit
probability. In this case we will know which path the system
has taken with certainty. However, the interesting case appears
when {|di〉} are not mutually orthogonal and in that case
we have partial knowledge about which-path information. In
general, the best strategy to distinguish between nonorthogonal
states is unambiguous quantum state discrimination (UQSD)
[24,28,29]. In UQSD, the success probability with which
nonorthogonal pure states can be unambiguously distinguished
depends on the measurement strategies employed. One would
like to know which strategy yields the maximum success
probability. The optimal success probability of unambiguously
distinguishing between n nonorthogonal states is not known.
However, the success probability in the UQSD between the
detector states {|di〉} with corresponding probabilities {|ci |2}
is bounded by [26]

Pn � 1 − 1

n − 1

∑

i �=j

|ci ||cj ||〈di |dj 〉|. (13)
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Note that the probabilities |ci |2 are decided by the initial
superposition in the quanton state. The upper bound given
by (13) may not be achievable in practice in many situations.
However, it can still serve as a measure of the degree to which
the n states are distinguishable, namely the n states cannot be
distinguished with a probability larger than that given by the
upper bound of (13). Here we define the path distinguishability
DQ as the upper bound of the success probability with which
the n paths of the particle can be distinguished without any
error. The subscript Q is added to differentiate it from the D
used in Ref. [5] and elsewhere in the literature. This is just
the upper bound of the success probability with which the
states {|di〉} can be unambiguously discriminated, which is the
saturation limit of (13). Thus, the path distinguishability, for
n-path interference, can be defined as

DQ := 1 − 1

n − 1

∑

i �=j

|ci ||cj ||〈di |dj 〉|. (14)

The path distinguishability can take values between 0 and
1. For all mutually orthogonal detector states {|di〉}, one has
DQ = 1.

Now with the quantum coherence left in the reduced
quanton state in Eq. (12) and the path distinguishability,
defined in Eq. (14), we get a general n-slit duality relation,
for arbitrary pure quantons, as

C + DQ = 1. (15)

Using the C and DQ as the quantifiers of the wave and
the particle nature of the quanton, respectively, Eq. (15)
puts a bound on how much of wave nature and particle
nature a system can display at the same time. This can be
treated as a quantitative statement of Bohr’s principle for
n-path interference using the measures of quantum coherence
and path distinguishability. Note, the C and DQ are truly
complementary in nature where an increase in one results in a
decrease in the other.

1. Two-slit interference

In a two-path interference with equally probable paths we
have |c1| = |c2| = 1√

2
, and hence the path distinguishability

becomes DQ = 1 − |〈d1|d2〉|, which, interestingly, is just the
IDP limit. The coherence in (12) reduces to

C = |〈d1|d2〉|. (16)

However, for a double-slit experiment, the interference visi-
bility, defined as V ≡ Imax−Imin

Imax+Imin
, where Imax and Imin represent

the maximum and minimum intensity in neighboring fringes,
respectively, is just V = |〈d1|d2〉| [2]. Therefore, the fringe
visibility is just equal to the coherence C. The duality relation
(15) now becomes

V + DQ = 1. (17)

In a practical scenario there may be other factors that reduce
the visibility of fringes in interference experiments. So in the
general case, the above relation will be an inequality saturating
to equality. This inequality has been derived before [30], and
is completely equivalent to the EGY duality relation (1) with
the recognition that DQ = 1 − √

1 − D2 [30]. Therefore, for

the two-slit case the new duality relation (15) reduces to the
EGY relation (1).

2. Three-slit interference

For the three-slit interference, the path-distinguishability
becomes DQ = 1 − (|c1||c2||〈d1|d2〉| + |c2||c3||〈d2|d3〉| +
|c1||c3||〈d1|d3〉|), and the coherence reduces to

C = |c1||c2||〈d1|d2〉|+|c2||c3||〈d2|d3〉|+|c1||c3||〈d1|d3〉|.
(18)

This coherence can be shown to be related to the ideal
interference visibility by the relation [30]

C = 2V
3 − V . (19)

The duality relation reduces to

DQ + 2V
3 − V = 1, (20)

which is exactly the same as the duality relation derived for the
three-slit interference [30]. One should of course realize that
in a nonideal situation the fringe visibility will be reduced and
the above relation will be an inequality. Thus, for the three-slit
case, the new duality relation reduces to an earlier relation
derived independently.

B. Generalization of duality relation for mixed states

We now extend the preceding analysis to the situations
where a certain amount of mixedness is introduced in the
density matrix of the quanton state, say ρ = ∑

ij ρij |ψi〉〈ψj |.
This may happen if the quantum system is exposed to envi-
ronment. Interference experiments have been carried out with
large molecules, where the interaction with the environment,
although minimized, is not fully avoided [31,32]. In a scenario
where the initial detector state is chosen to be pure, the
combined density matrix of the quanton and the path detector
after the controlled unitary (the measurement interaction) may
be written as

ρsd =
n∑

i=1

n∑

j=1

ρij |ψi〉〈ψj | ⊗ |di〉〈dj |, (21)

where the quanton state becomes entangled with the detector.
Note that the combined state is also mixed since the initial
quanton state is mixed. As in the pure state scenario, the wave
nature in the postinteraction quanton state can be quantified
with the quantum coherence present in the reduced quanton
state. By tracing out over the path-detector states in (21), one
gets the reduced density matrix for the quanton

ρs =
n∑

i=1

n∑

j=1

ρij |ψi〉〈ψj |〈dj |di〉. (22)

The coherence can now be calculated as

C = 1

n − 1

∑

i �=j

|〈ψi |ρs |ψj 〉|

= 1

n − 1

∑

i �=j

|ρij ||〈dj |di〉|. (23)
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Note that, before the interaction between quanton and detector,
the coherence is C = 1

n−1

∑
i �=j |ρij |, which is reduced after the

interaction due to the factors |〈dj |di〉| � 1.
Again the particle nature of the quantons can be expressed,

quantitatively, by the path-distinguishability or which-path in-
formation. That requires nothing but how well an experimenter
can distinguish between the detector states {|di〉} with the
corresponding probabilities {ρii}, where the probabilities are
determined by the initial quanton state. One may carry out
UQSD on the state |di〉 as before. Since a state |di〉 appears
with a probability ρii , the path distinguishability for n-path
interference, which is the upper bound of success probability
in UQSD, in the mixed case, can be written as

DQ = 1 − 1

n − 1

∑

i �=j

√
ρiiρjj |〈di |dj 〉|. (24)

For a given quanton state, the path distinguishability and
the quantum coherence of the quanton depend on the choice
of initial state of the which-path detector and the measurement
interaction. Now from (23) and (24), we get

C + DQ + 1

n − 1

∑

i �=j

(
√

ρiiρjj − |ρij |)|〈dj |di〉| = 1. (25)

Since every principal 2 × 2 submatrix of (21) is positive
semidefinite [33], we have

√
ρiiρjj − |ρij | � 0 (26)

for arbitrary i and j . This in turn implies that
1

n−1

∑
i �=j (

√
ρiiρjj − |ρij |)|〈dj |di〉| � 0. The equality holds

only for the initial pure quantum systems. Thus, (25) leads to
the following duality relation between the quantum coherence
and the path distinguishability, which are the quantifiers of
the wave nature and particle nature of a quanton respectively,
given by

C + DQ � 1. (27)

The above is the generalized version of (15) and applicable
for any mixed quanton state. One can easily see that in an
experiment where the mutual overlap between the detector
states are simultaneously increased or decreased these two
quantities become truly complementary in nature. Therefore,
an increase in the path distinguishability inevitably reduces
the quantum coherence in the quanton state, and vice versa.

Our analysis can further be extended in the case where
one has the initial detector in a mixed state, as well. For the
controlled-unitary operation as the measurement interaction
U = ∑

i |ψi〉〈ψi | ⊗ Ui and initial detector state ρd , the com-
bined quanton-detector state after the interaction becomes

ρsd =
∑

ij

ρij |ψi〉〈ψj | ⊗ UiρdU
†
i . (28)

If the measurement interaction leads to mutually orthogonal
detector states, then Tr(UiρdU

†
i UjρdU

†
j ) = 0 for ∀ i �= j . In

such situation, one may easily see that Tr(UiρdU
†
j ) = 0, for

∀ i �= j , holds. The reduced quanton state after the interaction

can be written as

ρ ′
s =

n∑

i,j

ρij Tr(UiρdU
†
j ) |ψi〉〈ψj |. (29)

Clearly, for a good measurement interaction for which
Tr(UiρdU

†
j ) = 0 for ∀ i �= j , the quanton state reduces to an

incoherent state and thus the wave nature becomes absent.
On the other hand if the Tr(UiρdU

†
j ) �= 0, there remains

nonvanishing quantum coherence in the reduced quanton state,
as

C ′ = 1

n − 1

∑

i �=j

|ρij Tr(UiρdU
†
j )|. (30)

For an initial detector state, let ρd = ∑
k rk|dk〉〈dk| be the

spectral decomposition. Then, we have |ρij Tr(UiρdU
†
j )| =

|ρij

∑
k rk〈dki |dkj 〉| �

∑
k rk|〈dki |dkj 〉||ρij |, where we denote

Ui |dk〉 = |dki〉. Thus we are lead to

C ′ � 1

n − 1

∑

k

rk

∑

i �=j

|ρij ||〈dki |dkj 〉|. (31)

Now for a given initial detector state |dk〉, the success
probability of UQSD for the ensemble {ρii, |dki〉} is bounded
by Dk

Q = 1 − 1
n−1

∑
i �=j

√
ρiiρjj |〈dki |dkj 〉|, which represents

the path distinguishability. Then, for the initial detector
state ρd = ∑

k rk|dk〉〈dk|, the path distinguishability can be
computed by averaging over the individual Dk

Qs, i.e.,

D′
Q =

∑

k

rkDk
Q

= 1 − 1

n − 1

∑

k

rk

∑

i �=j

√
ρiiρjj |〈dki |dkj 〉|. (32)

Now, using Eqs. (26), (31), and (32), we arrive at the most
general duality relation

C ′ + D′
Q � 1. (33)

Thus, Eqs. (15), (27), and (33) constitute the central results in
our paper. It is important to note that, for initial mixed quanton
and mixed detector states, a generalized complementarity
relation holds, where the particle and wave natures are
quantified via path distinguishability based on UQSD and the
quantum coherence, respectively.

IV. CONCLUSIONS

In this paper, we have introduced a generalized duality
relation for arbitrary dimensional multislit quantum inter-
ference experiments. To delineate the wave nature of the
quanton, which passes through the interferometer, we define
normalized quantum coherence based on the recently intro-
duced quantifier of quantum coherence in the framework of
quantum information theory [19]. Since, both the interference
and quantum coherence rely on quantum superposition of
the quantum states, we claim that the proposed measure
of (normalized) quantum coherence can be a quantifier of
the wave nature of the quanton, instead of a traditional
quantifier based on the interference fringe visibility. The
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particle nature of a quanton is associated with the which-
path information acquired through the detection process, i.e.,
which-path detection. In this work, we quantify the which-path
information or path distinguishability by identifying it with the
upper bound of success probability in unambiguous quantum
state discrimination [20–22,26] of the detector states, after
the path detectors are placed and the measurement interaction
is turned on. Based on the normalized quantum coherence
and the path distinguishability as the quantifiers the wave and
particle natures of a quanton, respectively, we derive a duality
relation, which is a quantitative statement of Bohr’s principle
of complementarity. For two-path and three-path interference
we have related quantum coherence to the fringe visibility
and recovered the corresponding known duality relations.
Furthermore, we show that, in cases where decoherence may

introduce some mixedness in the density matrix of the quanton
as well as in the detector, the duality relation continues to hold.
We hope that our results will have fundamental implications
in understanding the quantum complementarity, in particular,
the wave nature of a quantum system in terms of quantum
coherence.
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