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Statistical hypothesis testing by weak-value amplification: Proposal and evaluation
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We study the detection capability of the weak-value amplification on the basis of the statistical hypothesis
testing. We propose a reasonable testing method in the physical and statistical senses to find that the weak
measurement with the large weak value has the advantage to increase the detection power and to reduce the
possibility of missing the presence of interaction. We enhance the physical understanding of the weak value
and mathematically establish the significance of the weak-value amplification. Our present work overcomes the
critical dilemma of the weak-value amplification that the larger the amplification is, the smaller the number of
data becomes, because the statistical hypothesis testing works even for a small number of data. This is contrasted
with the parameter estimation by the weak-value amplification in the literature which requires a large number of

data.
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I. INTRODUCTION

The “weak-value amplification” has been studied as a
promising technique for improving an accuracy of a precision
measurement [1,2]. The concept of the weak value comes from
the weak measurement which was proposed by Aharonov
and his co-workers in 1988 [3-5]. Originally, the weak
measurement was introduced as an example of the two-
state-vector formalism for intuitive understanding of the time
irreversibility of a measurement in a quantum system [6],
where the “weak” means the weak coupling between the two
quantum systems, the measured system, and the measuring
probe. Usually, we assume that the interaction Hamiltonian is
of the von Neumann type which gives a displacement of the
order of the coupling constant to the probe distribution [7]. An
important point of the weak measurement is the postselection
of the measured system state after the interaction. By this
operation, the weak value shows up as the shift of the
expectation value of the probe position or momentum. The
weak value can be outside the eigenvalue range of the system
observable by choosing the postselected state of the system
almost orthogonal to its initial state [8]. We call this effect the
weak-value amplification (WVA). If we choose an appropriate
postselected state, the shift of the expectation value of probe
position or momentum is enhanced larger than the one given by
the measurement without postselection which coincides with
the coupling constant. We parenthetically note that for a large
coupling constant, the measurement without postselection is
sometimes called the strong measurement. Therefore, we may
hope to extract the information about the coupling constant
even if the constant is smaller than a noise.

Reference [9] introduced the basic concept of the weak
value and its application. It is known that the amplified
shift has an upper bound if we take Gaussian for the initial
probe state [10]. Especially, when the measured system is
a two-state system, some researchers have shown the upper
bound analytically without any approximation [11-13]. The
initial measuring probe wave function which maximizes the
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amplification factor was studied in Refs. [14—16]. The WVA
was confirmed in several experimental studies. Setting two
polarizers in front and behind of a birefringent crystal, the
weak value was measured and found to become large by
arranging two polarizers almost orthogonal [17]. Hosten and
Kwiat observed the spin Hall effect of light with the WVA [18].
Dixon et al. monitored the laser deflection by the small tilting
Piezo mirror in the Sagnac interferometer and measured the
angle of the mirror in precision [19]. Viza et al. demonstrated
the velocity measurement of the longitudinal moving mirror
in the Michelson interferometer [20].

There are theoretical researches about technical utilities
of the WVA. Nishizawa et al. compared the signal and the
shot noise in an optical interferometer [21]. Jordan et al.
showed that the WVA has the error tolerance of the systematic
error [22]. Lee and Tsutsui discussed the causes of the errors
in the weak measurement with finite data and the merit of
the WVA [23]. However, the problem is that the larger the
amplification factor is, the smaller the success probability
of the postselection. The small number of detectable events
leads to the possible disadvantage of the interaction parameter
estimation using the WVA as argued in [24-28], while
some researchers have mentioned that the data loss by
postselection usually need not to be considered in practical
cases [11,29].

Lately, the interaction detection capability of the WVA
has been focused on [23,26]. In this problem, using the
WVA, we want to decide whether the interaction exists
or not in an indirect quantum measurement process. The
result of Ref. [18] suggests that the detection capability
of the WVA is experimentally utilitarian. To theoretically
study such a problem, the statistical hypothesis testing is
a well-known method [30,31]. The hypothesis testing does
not require a large number of data like the estimation,
and the accuracy of testing is normally independent of the
number of data. Therefore, we note that the hypothesis testing
works well for a small number of data given by the weak
measurement. In Ref. [26], however, the authors claim that
the WVA is suboptimal for the interaction detection. Their
conclusion is based on the discussion of the likelihood-ratio
test with some debate [29,32,33]. It seems to us, however,
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we have to pay more attention to the well-known fact that
the likelihood-ratio test is not appropriate to the detection
of the interaction. More precisely, because the interaction
detection problem is a two-side test, a uniformly most powerful
unbiased (UMPU) test is the standard procedure to solve this
problem.

In this paper, we propose a statistical hypothesis testing
based on the physical intuition, and analytically evaluate the
interaction detection capability of the WVA. To determine
whether the interaction exists or not, we give a decision
function such as the measurement outcome divided by the
initial fluctuation of the measuring probe distribution [|x|/o
below Eq. (15)]. Under this decision function and the particular
condition for the weak value, we find that the WVA can
supersede the ordinary measurement without postselection.
We can say a large weak value increases the detection power.
More precisely, the advantage of the WVA is the reducing
of the possibility of missing the presence of the interaction
with the false alarm rate fixed. Our result is suggestive
for the interpretation of the weak value. Some researchers
simply take the physical intuition of the WVA for granted
with the approximation in which the weak value amplifies
the shift of the probe wave function. In this work, we
show without any approximation that the weak value itself
determines the superiority or inferiority of each measure-
ment, the weak measurement and the ordinary measurement,
in the detection capability. We emphasize that our result
mathematically clarifies the significance of the WVA which
justifies the physical intuition. Throughout this paper, we
assume that the initial probe wave function is Gaussian and
the measured system is a two-state system as considered in
Refs. [11-13].

Our paper is organized as follows. In Sec. II, we give brief
reviews of the weak measurement and the statistical hypothesis
testing which includes a UMPU test for the two-side test.
Section III gives the main result of this work. We propose
a proper decision function for the interaction detection and
evaluate the statistical errors so-called “type-1 error” and
“type-2 error.” We show the detection power superiority
superiority of the WVA and the required condition for the
weak value with analytical derivation. In Sec. IV, we consider
an additive white Gaussian noise model. In this situation, the
result of Sec. III holds when the unknown extra fluctuation
exists. We have summary and discussion in Sec. V. There, we
discuss the case that the data would be unobtainable by failure
of the postselection. Some complicated calculations and the
supplementary discussion of the unobtainable case are shown
in Appendixes. We use the unit 7 = 1 and the subscripts that
“ps” means the case of the measurement with the postselection,
i.e., the weak measurement and “nps” indicates the case of
the ordinary measurement, i.e., the measurement with no
postselection.

II. REVIEW OF WEAK MEASUREMENT AND
HYPOTHESIS TESTING

A. Weak measurement and probability distributions

We recapitulate the standard weak measurement pro-
cess [2,3,7,9] and derive the probability distribution after the
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measurement. The weak measurement is described as the
indirect quantum measurement formalism. To carry out the
weak measurement, initially we prepare a measured system
‘H and a measuring probe K. (Hereafter, we omit the indexes
‘H and K unless otherwise stated.) The initial state of the
measured system H is a preselected state i)y and the initial
state of the probe system KC is |/ ) = f Y (x)|x)cdx, which
is taken as the Gaussian profile

1
V2ro?

where the x represents the position of the probe. We denote
0i = |¥) (| for the probe state in a density matrix expres-
sion for later convenience. We assume the von Neumann
interaction so that the time evolution operator given by
U = exp(—igA™ @ p*), where A™ is an observable defined
in H and p* is a momentum operator satisfying [£*, p*] =i
defined in KC. The parameter g indicates an unknown coupling
strength. The interaction produces the state of the combined
system as

Y(x) = Ce 7, C2 = (1)

P = U (livwti) ® ) U )

Finally, we postselect the measured system state | ).
Here, we assume that the interaction strength g is suffi-
ciently small that the first approximation in g is available. The

A~

postselection translates the wave function by g Re(A),, i.e.,

A

V(x) = ¥(x — gRe(A)y), 3)
where the (A),, is called the weak value defined by
: (f14li)
A)y = —, 4
(4) 1) “)

We can easily see that the weak value has a generally complex
value, and becomes infinitely large when the postselected state
(f] is almost orthogonal to the initial state |i). Because of the
large (A),,, we find that the shift of the probe wave function
gets large as can be seen from Eq. (3). This implies that the
coupling constant g is effectively amplified. This effect is
called “weak-value amplification” (WVA) [18]. We emphasize
that the postselection is essential in the WVA.

For the later discussion, we carry out full order calculation
of the final probability distribution of the measuring probe
concentrating on the two-state system case for the measured
system. The final probe state becomes

o] (P "]
P Tl @ POPLEN]

Here, we note that the denominator coincides with the success
probability of the postselection of the |f). We obtain the
large amplification when the probability becomes small.
However, the small probability reduces the accuracy of the
estimation [24-26].

From the state (5), we can calculate the final distribu-
tion which can be tested in a real experiment. Following
the standard discussions [3,4,17,18], we study the probe
distribution in the position basis. It is straightforward to
have the position probability distribution of the final probe

(&)
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FIG. 1. (Color online) A sketch of the distribution functions
when o0 =1 and g =1.5. The blue (left) curve is the probe
distribution before the interaction. The red (upper right) and the
yellow (lower right) curves are the ones after the interaction with
postselection and without postselection, respectively. We choose the
initial state of the measured system as |i) = (|[+) + |—))/+/2, and
the postselected state which satisfies the weak value Re(A)w =0and
[{A)wl =5.

as

i |l (101l )
. = Tr[pk = _
ol =Tl dpbe el = = i e

1 1
ey R - gz
V2102 | 4 (A2 + (1 — [(A)y[2)e 2

(-g)?

(1+ [(A)y 2 + 2Re(A),)e™ =7
n ~ _(Hg)z
X3 +(1+ |(A)y |2 — 2Re(A)y)e = (» (6)
24g?
+2(1 — |{A) e 3

where we have used the assumption that the measured system
is a two-state system, i.e., A? = 1. Here, we define that [+)
and |—) are the eigenstates of A in the measured system, and
our discussion holds without loss of generality even if the
observable is set as A = |+)(+| — |—)(—|.

We also give the position distribution observed in the
measurement without postselection to be compared with the
distribution (6). The final probe state is given by taking
the partial trace of the combined state (2) as

Al = TrplU (i) (il ® 1) (w T ] 7)

This density matrix gives the position probability distribution
as

Sops(x18) = Tr[pislxdic (x 1] = x| T 19 ) i)
1 - _% g2 e
= _2n02{|<+|z>|e S (=l e 5 }
(®)

Figure 1 shows the position probability distribution tran-
sition from a Gaussian probe as the initial probe to the final
probes after the interaction. We can see that the postselection
causes the difference from fops to fps. The weak value (A)w
plays an important role in determining the distribution change.
Note that the condition Re(A), = 0 makes the two peaks at
the same height and that the increases of the imaginary part
Im(A),, depresses the dip deeper while increasing the distance
of the two peaks. This may not be very obvious, but is justified

by the closer algebraic examination of the expression (6). With
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an appropriate postselection, we can obtain peak shifts larger
than the ordinary peak-to-peak distance [8], which is given by
the coupling constant times the eigenvalues of the observable
as indicated in Fig. 1. Note that in the case of (A),, = £1,
the postselection reduces to the projective measurement of A.
A similar discussion goes through for |i) = |+) or |—) in the
case without postselection.

B. Hypothesis testing for detection problem

Generally, the statistical hypothesis testing is used
for a mathematical decision from the data of measure-
ment [30,31,34]. Our aim of this paper is the evaluation of
the interaction detection capability by the WVA in which the
size of data is not necessarily large. In the classical theory of
statistics, the hypothesis testing provides a better solution for
such evaluation than the estimation theory as explained in the
following.

The estimation accuracy is usually evaluated by the Fisher
information. More precisely, the mean-squared error of the
estimator approaches the inverse of the Fisher information for
an infinite number of data. Then, the Fisher information gives a
good description for the accuracy of the estimation with a large
number of data [35-38]. In the weak measurement, the failed
postselection makes data loss, so that the estimation theory
is not a suitable method for analyzing the relative power of
the WVA when the number of experiments is limited. On the
other hand, the hypothesis testing can be evaluated by the error
probability regardless of the number of data. So, our discussion
of the WVA based on the hypothesis testing theory works even
when we have a small number of data.

The hypothesis testing is a statistical inference to decide
which hypothesis is appropriate from the measurement results
in the two contradictory hypotheses: the null and the alter-
native. For the detection problem, we take the hypotheses as
follows: (a) the null hypothesis Hy: absence of the interaction
(i.e., g = 0), (b) the alternative hypothesis H;: presence of the
interaction (i.e., g # 0). This hypothesis testing problem is a
two-side test in the sense that the estimated parameter deviates
in either direction (g > 0, g < 0) from the null hypothesis
(g = 0). We derive a decision function which takes the binary
value as d(x) =0 or 1. If it is 0, we reject the alternative
hypothesis, and if it is 1, we reject the null one. A range
of measurement results x such that d(x) = 0 is called the
acceptance region. When the measurement result falls within
this region, the alternative hypothesis is rejected. A set of
the outside of the acceptance region is called the rejection
region. When the measurement result is within this region, the
null hypothesis is rejected. Since the decision function d(x) is
independent of the coupling parameter g, sometimes we get
the wrong indications from the decision function.

Such wrong indications are classified to the two types, (i)
the type-1 error: even if the null hypothesis is true, we wrongly
reject it, (ii) the type-2 error: even if the null hypothesis is
false, we wrongly accept it as truth. In our case, the type-1
error represents “there is no interaction but we wrongly guess
the interaction exists, i.e., falsely alarmed.” The type-2 error
means “the interaction indeed exists, but we wrongly guess
the interaction does not exist, i.e., miss the presence of the
interaction.” The probability of the type-1 error is calculated as
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the integration of the probability distribution function over the
rejection region of the null hypothesis when the null hypothesis
is true. The probability of the type-2 error is calculated as the
integration of the probability distribution function over the
acceptance region of the null hypothesis when the alternative
hypothesis is true. The smaller probabilities of these errors
become, the better the testing is. Since it is difficult to make
the two types of error small simultaneously, we make the
probability of the type-2 error as small as possible while
suppressing the probability of the type-1 error under a certain
significance level as the general strategy [30]. In this paper, we
compare the weak measurement and the measurement without
postselection by evaluating the probabilities of the two types
of error for each measurement.

To carry out the test with the small probabilities of
the errors, an adequate decision function is necessary. The
uniformly most powerful (UMP) test is one of the good testings
in the general strategy [31]. The Neyman-Pearson lemma is a
famous example for explaining the UMP test [39]. This lemma
claims the likelihood-ratio test is UMP only when the both
hypotheses are simple, i.e., Hy : 6 = 6y and H; : 6 = 6,. The
likelihood-ratio test is available even when either or both of the
hypotheses is composite, for instance our hypotheses, by using
the maximum likelihood estimator (MLE), e.g., see Ferrie and
Combes [26]. However, from the statistical inference [30,35],
it is widely known that the MLE without the large number of
data is not helpful for extracting the information of a physical
system. In addition to this problem, the UMP test does not
exist in the two-side test. Therefore, the likelihood-ratio test is
secondary.

To find an adequate decision function in the two-side test,
we introduce the concept of the unbiased test d(x) defined by

B®) = /d(x)f(x|9)dx Za,V 0e0B, 9

where the « is a significance level and ® is a set of parameters
delineating the alternative hypothesis H;. The statistical power
B(0) represents the capability of the detection, i.e., the larger
power means the higher detectability of the interaction. We
can calculate the probabilities of each error as follows: one
of the type-1 error is Pr[&] := B(6y) and one of the type-2
error is Pr[&;] := 1 — B(6 € ®y). According to the following
lemma, we can obtain the UMPU test which is a good test for
composite hypotheses such as a two-side test [34].

Lemma. If the hypotheses are given by the two-side test:
Hy:0 =06y and H; : 0 # 6y, we assume that the decision
function d(x) satisfies

8eﬂ(9)=/d(x)8ef(x|9)dx, (10)
B() = «a, (11)
99 B(60) = 0. (12)

For an any fixed 0; such that 8; # 6, if the test d(x) is given
by

0 if F(x) <O,
dx)=13r if F(x)=0, (13)
1 if F(x) > 0,
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where
Fx):= f(x]61) — c1 f(x]6p) — cza(;f(x|9)|9:90 (14)

with certain parameters c¢; and c;, the d(x) is the UMPU test.
The d(x) becomes the randomized test d(x) = r, and r(0 <
r < 1) is the probability to accept the null hypothesis [40].

This lemma works for a small number of samples such as
the data given by the weak measurement. In the following
section, we propose a test which has a physical meaning, and
we check that the test is UMPU on the basis of the above
lemma.

III. HYPOTHESIS TESTING WITH WEAK-VALUE
AMPLIFICATION

A. Merit of WVA in interaction detection

In what follows, we derive the UMPU test for the detection
of the presence of the weak interaction g in the two cases.
As mentioned in Sec. II B, our proposed test is the best one
among all unbiased tests. Then, we compare the best test in the
WVA with that in the measurement without postselection by
explicit forms. We evaluate the testing capability, comparing
the probabilities for the type-1 and the type-2 errors for the two
cases: the weak measurement and the measurement without
postselection. We remark that, in this section, we treat the case
that the data are not empty even if there is data loss caused
by postselection, i.e., the transition probability |{f|i) |2 is not
zero. The unobtainable case will be discussed separately in
Sec. V.

For a fair comparison of the WVA and the measurement
without postselection, we establish the UMPU test for each
measurement on the basis of the Lemma. The first step is
proposing a suitable decision function as a candidate of the
UMPU test. The decision function must be independent of
the unknown parameter g. We have assumed that the initial
probe distribution is Gaussian (1) with its variance 2. Roughly
speaking, if there is no interaction, almost all the measurement
results will be inside of the initial fluctuation |x| < o and the
probability of |x| > o is relatively small. On the other hand,
if the interaction exists, we ought to get some measurement
outcome which is deviated from the initial fluctuation, and
the probability of |x| > o would become significantly larger.
Precisely, we propose the following decision function:

0 if|x|/o <c,
dix)y=13r 1if|x|/o =c, (15)

1 if|x|/o > c,

where a critical point ¢ is a positive constant that we can
choose as we like. The rejection region is fixed to |x| > co.
We verify that this decision function (15) is the UMPU test
in Sec. III B. Additionally, the distribution function after
the measurement with Re(A), =0 or |(+]i)]* = |(—|i)]?
becomes an even function in the case of the weak measurement
or the measurement without postselection, respectively. Under
these particular situations, we can practically interpret that the
testing of the detection problem becomes a one-side test, i.e.,
Hy:g=0and H;: g > 0. There is a theorem which gives
the UMP test for such a one-side test, and we can show our
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decision function (15) gives a UMP test (see Sec. IIIC for
detail.).

Here, we compare the probabilities of the type-1 and
-2 errors obtained by Eqs. (6) and (8). First, we consider
the type-1 error when the coupling constant is g = 0 and
the measurement result is |x| > co. Since the distribution
functions fps(x]|g) and fops(x|g) coincide at g = 0,

fonxlg = 0) = fups(xlg = 0) = 752 /2707, (16)

the probabilities of the type-1 error of fps(x|g) and of fi,s(x|g)
are the same as

Pr{& ] = B(0) = 1 — erfc/v/2], (17)
where erf[x] := \/l; Ox e~ dt is the error function. The Pr[&]

can be any significance level by choosing c. Hence, this test
suits the standard strategy [35].

Next, we evaluate the probabilities of the type-2 error when
g # 0and |x| < co. In this case, the distribution functions (6)
and (8) are different. The probability of the type-2 error in the
weak measurement is

Pr[EZ,ps] =1- lgps(g)
1

21 + [{A)u 2 + (1 = [(A)y|2)e 7]

1+ |(A>w|2){erf[i;’2—%§] + erf[%]}
x K E
+2(1 - |(A)w|2)67272erf[%]

(18)

In the measurement without postselection, the probability of
the type-2 error is given by

Pr[gZ,nps] =1- IBnps(g)

_1 co—g co+g
= 3ot G [+ e T ])- 0

To determine which measurement gives more benefit, it
is enough to compare the probabilities (18) and (19). We
can derive the following equation by arranging the ratio
Pr[&5,ps1/Pr[ €2 nps], which is symmetric under the sign change
g < —g,as

Pr[EZ,ps]/Pr[EZ,nps] -1

2
(1= (AP ——F2—— — 1 )e 22
<erf[i{/’%]+erf[‘”;gz] )

= - - - = . (20)
L+ [{A)y? + (1= [(A)yD)e 27
We can see that the inequality
Pr[SZ,ps] < Pr[EZ,nps] (21)
< Bps(8) = Bups(8) (22)

holds for such a weak value that |(A),| > 1 as shown in
Appendix A. Therefore, the probability of the type-2 error with
the postselection can be less than the one without postselection
in a certain case.
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FIG. 2. (Color online) The contour plots (a), (b) for
Pr[gZ.ps]/Pr[gz,nps] and (C)’ (d) for ﬁps(g)/ﬂnps(g) in WhiChA the
horizontal axis indicates the absolute value of the weak value [(A),|.
The left- and right-side graphs have the vertical axis indicating the
coupling constant divided by the initial fluctuation g/o and the
critical point c, respectively. In (a) and (b), the darker blue indicates
the smaller value. In (c) and (d), the darker red indicates the larger
value.

We note that the derivative function of the probabilities of
the type-2 ratio Pr[&) ps]/Pr[&E nps] is

aPr[gZ,ps]/Pr[glnPS]
(A)w
—2(—, ,zerf[%] — 1)[2322
erf[;z{%]-kerf[ﬁ]

- 2 ——<0. (3
[(1—e ) AP+ 1+e ]

Then, we find that the ratio Pr[&; ps]/Pr[£2 nps] is @ monoton-

ically decreasing function with respect to |(A)w|2. Similarly,
we can show that the detection power ratio B,s(g)/Bnps(g) is a

monotonically increasing function with respect to [(A), |2.
Figure 2 shows the ratio Pr[& pl/Pr{& nps] and
Bps(&)/ Bups(g) for the three parameters | (A)u, |, g/o,and c. We
can see from these graphs that the inequalities (21) and (22)
hold when the weak value |(A),| is larger than 1. They also
indicate that the WVA well works when the coupling constant
divided by the initial fluctuation g/o and the critical point
¢ are relatively small. We believe that this is the heart of
the weak-value amplification which is mathematically well
grounded. On the other hand, if the g/o is large, the large
weak value is as helpful to detect as the ordinary measurement.
This property comes from the difference of the distribution
functions fps and fyps. The difference can be explained in
Fig. 3. When the g is small as shown in Fig. 3(a), there is a
big difference between f,s and fyps for the small |x|. Note that
there is no difference between f,s and fyps for a large g as we
can see from Figs. 3(b) and 3(c). The probability of the type-2
error is given by the integration over the interval [—co,co].
Since fps is smaller than fp in the central region of x for a
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FIG. 3. (Color online) Plots of the wave functions f,(x|g) (the red dashed curve) and f;(x|g) (the orange solid curve) against x in three
coupling constant cases: (a) g = 1, (b) g=2, and (c) g = 5. In the case (c), two plots are almost overlapped. In these graphs, the other

parameters are fixed as follows: Re(A),,

fixed small g, the ratio Pr[&; ps]/Pr[&s nps] becomes small, if
we properly choose the critical point c. In contrast, we can see
from Eqs. (18) and (19) that the ratio Bys(g)/Baps(g) becomes
large.

To summarize this section, if [(A),| > 1, the WVA has the
advantage for the reduction of the type-2 error while keeping
the type-1 error fixed, regardless of the coupling constant g,
the initial fluctuation o, and the critical point c. Namely, the
weak measurement more reduces the possibility of missing the
presence of the interaction with the false alarm rate fixed than
the measurement without postselection, if the weak value is
outside of the normal range of the eigenvalues. We emphasize
that our result gives a different physical intuition of the WVA
that the weak value can be figure of merit for the detection
power.

B. A proof that our test is UMPU

We prove that our decision function (15) is the UMPU test
for the probability distributions given by each measurement in
accordance with the Lemma giving the tests (13) and (14). We
can easily see that the functions (6) and (8) satisfy Eq. (10).
We have shown Eq. (17) which indicates that Eq. (11) can be
satisfied by appropriately choosing the critical point ¢ in each
measurement. We can also show that Eq. (12) is satisfied as

8g,Bps(g)|g=0
= ag(l — Pr[£2,ps])|g:0
—1

[+ 1(A)l? + (1 = [{A), e 27 ]

_ (co+g)?

202 )

— e

1+ (AP (e

2no A e .

X +51 = [(A)y e 7 erf[ 5]

2

F &~ [(A) W PP ErpsJe 7 oo

=0 (24)

and

8glgnps(g)lgzo = ag(l - Pr[£2,nps])|g:0

1 _(eo=g)?
2

/_27_[0_2 (e % —€ ¥ )’g:O

_ (co +g)2

Il
©

(25)

=0, [{A)y] = 5, [(+)> = [(~1i))* = 1/2,and 0 = 1.

Here, we consider the case of the weak measurement.
Equation (14) with f,s(x|g) becomes

Fps ) Re(A)y
m = gps(x) — Cl,ps — C2,ps 3 X, (26)
where
gps(x) L= R ¢ R &2
2[1+ AWl + (1 — [(A)uP)e 7]
(1+ |(A)u? + 2Re(A), e
X 3 +(1 + [(A)y|? — 2Re(A))e o ¢ (27)
+2(1 = [(A)u]?

Then, we can find ¢; ps and ¢, ps Which give x = %co for the
solutions of Fys(x)/ fps(x]0) = O as follows:

gpq(co) + gpi( co)

Clps = )

g2

67202
1+ (A2 + (1 = [(A)[2)e 27
o e
y 2(1 + |<AA)W| 2)cosh[g] ’ 08)
+(1 = [{A)u])
gps(CO') - gps(_co')
~£5 ginh [
_ 20¢” 27 sinh %] .

2Re(A)wc
[T+ (A 12 + (1 = [(A)yP)e 7]

for Re(A), # 0. Because the gps(x) is a convex function,
we can interpret the UMPU test given by the Lemma as
the proposed decision function (15). Therefore, the test (15)
with fps(x]g) is UMPU. Even if Re(A), = 0, the discussion
remains valid.

A similar discussion holds in the case of the measurement
without postselection. In this case, the distribution function is
Jops(x1g) and Eq. (14) becomes

CZ,ps =0

Frps(xX)

|[(+]i)]* — |(—|i)|2x
fnps(x|0)

o?

= gnps(x) — Cl,nps — C2,nps

s

(30)
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where

Gops () 1= €27 (|(+i) Per” + [(—li)2e™7).  (31)

Then, we can obtain ¢ nps and ¢ nps Which give x = £co as
the solutions of Fps(x)/ fups(x]0) = 0 as follows:

Clops = gnps(CU) +2gnps(_6‘0) . 222 cosh |: : ] (32)
_ Gnps(co) = Gups(—co) oo . [c8
s = aiermr ome = e Lo |
(33)

Here, we have taken |(+|i)|2 #* |(—|i)|2 to obtain the ¢y nps.
Even if |(+|i)|2 = |(—|i)|2, the discussion goes through. The
Gnps(x) is also a convex function. Therefore, we have found
that the decision function (15) is the UMPU test in the both
measurement cases.

C. Obtaining UMP test for detection problem
under certain conditions

We show that our decision function (15) gives a UMP
test in the case Re(A),, = 0 for the weak measurement and
the case |(—{—|i)|2 = |(—|i)|2 for the measurement without
postselection. In these cases, the distribution functions (6)
and (8) become even, and the sign of g becomes indistinct.
Then, we can practically assume the sign of g is positive
without losing generality. According to the following theorem,
we can obtain the UMP test for composite hypotheses such as
Hy:0 <6pand H, : 6 > 6.

Theorem. If the likelihood-ratio becomes a monotonically
increasing function of the statistics 7'(x) which is composed
of the sample data x, the following test becomes the UMP for
hypotheses Hy : 0 < 6y and H; : 6 > 6, [30,41]:

0 ifTkx) <c,
dx)y=1r ifTx)=c, (34)
1 ifTkx) > c.

Because the Theorem is applicable to a one-side test such
as Hy: g =0and H; : g > 0, we can show that the test (15)
becomes UMP for the each measurement under the certain
conditions which make the distribution functions after the
measurement even.

We can calculate the likelihood ratios from Egs. (6) and (8)
in each case as

fostxlg) _ 1=(m{A),)*+[1 + (Am(A),)*] cosh 4]
Jos(xlg =0) 1—(Im(A)w)2 [1+(Im(A) )2] gz ’
(35)

fops(xlg) xg
fa(elg =0) ¢ O i (36)

respectively. To obtain them, we have used Re(A),, = 0 and
l(+]i)]* = |(—1i)|*. Since cosh is an even function,

cosh [835] = cosh |:£ |i|:| 37)
o oo
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For the ratios (35) and (36) to be a UMP test, we demand
Egs. (35) and (36) are functions of statistics 7 (x) which
are independent of the unknown parameter g. Then, we can
set the statistics 7(x) = |x|/o not to contain the unknown
parameter g so that the likelihood ratios (35) and (36)
become monotonically increasing functions. Thus, we find
the statistics 7' (x) = |x|/o and the Theorem that our test (15)
is UMP in the case Re(A),, = 0 for the weak measurement
and the case |{+]i) |2 = |(—|i) |2 for the measurement without
postselection.

IV. TESTING IN THE CASE WITH AN ADDITIVE
WHITE GAUSSIAN NOISE

In this section, we remark on the noise tolerance of
the hypothesis test proposed in the previous section. The
probability distribution of the experimental result x is ideally
given by the distribution functions (6) or (8). However, there
is always noise. We assume that the noise y is added to
x by passing through the device circuit with the Gaussian
probability e/’ /~/2ms? with an arbitrary fluctuation s.
This noise model is widely known as an additive white
Gaussian noise. This is seen in the thermal noise generated
in an electrical conductor or the shot noise in an electronic
circuit. This Gaussian jitter noise in the estimation accuracy of
the WVA was discussed in Ref. [28]. We have the distribution
of z = x 4+ y from the moment-generating functions of x and
y distributions, and we show its derivation in Appendix B.

From the distribution of z we have the probabilities of the
two types of errors. The probability of the type-1 error with the
postselection and the one without postselection are the same
as

Pr[gl,ps] = Pr[gl,nps] =1- (38)

co
erf| ———|.
]
The probability of the type-2 error with the postselection is
Pr[€2,ps]
=1- ﬂps(g)
1
2[1+ (Al + (1 = (A e 7]

(1+ () ) erf] \/;(U ==l refl s)

+2(1 = [(A)yPe 22 (eﬁ[ﬁ])

’

(39
and the one without postselection is
Pr[52,nps] =1- ﬂnps(g)
1 co—g co+g
=—l|etf| —— | +erf| ——| |.
2( [ﬂ(ozﬂz)] {ﬂ(a%sz)})
(40)

These probabilities are almost the same as Egs. (18)
and (19), respectively except the denominator of the argument
of the error functions. Comparing these probabilities and the
detection powers as in Sec. III A, we can extend the conclusion
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that the inequalities (21) and (22) hold |(A),| > 1 with an
additive white Gaussian noise. Therefore, we conclude that
our testing is robust against the unknown fluctuation.

V. SUMMARY AND DISCUSSION

In this paper, we have studied the capability of the WVA to
detect whether the interaction is present or not in an indirect
quantum measurement scheme with the statistical hypothesis
testing. We conclude that the merit of the WVA is the increase
of the detection power, which agrees with the previous intuition
suggested by Aharanov, Albert, and Vaidman in Ref. [3].
Precisely, the WVA reduces the possibility to miss the presence
of the interaction with a fixed false alarm rate than the ordinary
measurement, when the absolute value of the weak value is
greater than the eigenvalues. We have also shown that our
hypothesis testing has the robustness against the additive white
Gaussian noise. Our discussion holds under the assumption
that the measured system is the two-state system and that the
initial wave function of the measuring probe is Gaussian.

We have proposed the UMPU test for the interaction
detection problem, which should be treated as the two-side
test. Our decision function is provided from the intuition that
there will be an interaction if the measurement result is outside
the initial fluctuation of the probe distribution. We remark that
the proposed test is regarded as a UMP test in the specific
case such that the detection problem essentially behaves as a
one-side test.

The statistical reliability in the hypothesis testing is given
by the probabilities of errors, not by the number of data
as explained in Sec. IIB. Thus, our result holds even for
a small number of measurement results. We note that our
result does not conflict with that of the estimation theory in
Refs. [24-26] which needs a large number of data for accurate
determination of the parameter. Generally speaking, we can
say about the parameter in more detail by the estimation than
by the hypothesis testing. If data are large, both measurements,
the measurement without postselection (including the strong
measurement) and the weak measurement, work well for
the parameter estimation and the hypothesis testing with an
appropriate decision function. For small data, however, the
method of the parameter estimation is not generally reliable
for both measurements, while the weak measurement does a
better job than the measurement without postselection for the
hypothesis testing as we have shown in Sec. Il A.

At this stage, we need to discuss the case that we cannot
obtain any measurement data due to complete failure of
the postselection. To cope with such a case, we consider
a makeshift decision function as an attempt to discuss in
Appendix C. There, we have found that the optimal condition
for reducing the type-2 error with the type-1 error under a
certain significance level is that the preselected state is the
eigenstate of the measured observable and the postselection
is not necessary. However, this discussion has defects on the
treatment of the failure of the postselection. There is no rea-
sonable ground that we regard the failure of the postselection
as the absence of interaction because the postselection can fail
whether the interaction is present or absent. When there is a
case that we cannot obtain any data, the problem of the null
result arises. Even though we know how to treat the null result
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in the projective measurement [42,43], that of the null result
in the weak measurement has not been developed yet. This
remains an open problem.

Generally speaking, a UMP test and a UMPU test do
not always provide an optimal solution and it is difficult to
optimize the statistical hypothesis testing [44].
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APPENDIX A: PROOF OF THE INEQUALITY (21)

Here, we prove that the inequality (21) as Pr[& ps] <
Pr[&; nps] when |(A)w| > 1 by looking at the right-hand side
of Eq. (20). More precisely, we show

2erf[ﬁ] |

‘0 — co >
erf[ = | + erf[ “ZE]

It is enough to show (A1) only for the case g > 0 because the
symmetry of the left-hand side of the inequality (A1) under the
e—1=8/V2D)

(AL)

exchange g <+ —g. For the case 0 < g < co,
e~"" holds when ¢ > c/\/i. Then, we have

co+g

co+g

fr2  —(t——F~=)? /02 _ 2
/ze V202 dt>/ze’dt

‘ 7

V2

c co+g

& . e dt > \/2726_[2611
c co—g co+g c

& erf|:—i| — erf|:—i| > erf|: i| — erf|:—].
V2 V202 V202 V2

(A2)

Thus, (A1) is shown for 0 < g < co. Next, we consider the

case g > co. Because the inequity e=~</v2" > ¢~ holds for
t>c/ \/5, we obtain

V2e . Vae
(%ot [* e

c c

V2

7
% 2 Vae 2
<:>f e Vdt > f e dt
0 <

7

c c
serf| — | > erf[\/zc] - erf[—]. (A3)
5 7
Also, we have e—=V2) < o= for > +/2¢, and
co+g co+g
VI =2 gy /‘\/272 e dt
V2e 2c
_co—g cotg
& f R T R [
0 V¢
co— g co+g
= —erf|: i| > erf[ j| — erf[v/2c]. (Ad)
202 V202
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Adding (A3) to (A4), we get

ol ][] o[ 54] 5]
(A5)

We have shown (A2) for 0 < g < co and (A4) for g > co.
Putting them together, we hav§ (A1) for g > 0, and therefore
Pr[EZ,ps] < Pr[gZ,nps] when [(A),| > 1.

APPENDIX B: DERIVATION OF THE z DISTRIBUTION
FUNCTION IN SEC. 1V

A moment-generating function determines the distribution
function of a random variable, and we can derive the
distribution of z from its moment-generating function. Since
the random variables x and y are independent, the moment-
generating function of z = x 4 y satisfies

E[¢*°] = E[¢**]E[¢"], (B1)

where the E means the expectation value. It is known that
the moment-generating function of the Gaussian distribution

N©) = e/ 12152 is
E[e®] = / Ny = 7€ (B2)

Then, the moment-generating function of the x distribution
with postselection is

Ey, [] = /esxfps(x|g)dx

2[1 + (A2 + 1 - |<A>w|2)e—z‘fz}
(14 [{A)u? + 2Re(A) et
s | (1 +1(A) > = 2Re(A),)e %5 | (B3)
21 = (AP i
and
E; [¢¥] = Ej, [¢*]E[¢"]

2,2
0T+ £2
e 2 §

2[1 + (A2 + (1 - |<A>w|2)e—z‘izz}
(14 [(A),|* + 2Re(A),, et

x | +(1+[{A),|* — 2Re(A),)e™ | (B4)
+2(1 — [(A)y[P)e 27

Because of the linearity of the expectation value, the distribu-
tion of z is given by

fps(z|g)
1

1
2@ D (A (1 - (Al
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a-g?

(14 [(A)y|? + 2Re(A),)e 25

~ ~ _ & g)z
X (14 [(A)? — 2Re(A)y)e 2en |- (BS)
2 2

+2(1 = |{A)y|P)e w2 e WD

Similarly, we have the moment-generating function of the x
distribution without postselection

E; [e7]= e§€2{|<+|i>|2egf +(—li) e}, (B6)

and the distribution of z,

_ _e=g? __+e?
(i) e 3 (i) e 2
V2 (0? + 52)

We have obtained (B5) and (B7), from which we can calculate
the probabilities of the type-1 error (38) and those of the type-2
error (39) and (40) in Sec. IV.

The distribution functions (B5) and (B7) can be derived by
convolution, which is known to give a Gaussian channel. We
can calculate the distribution function with postselection

fnps(Z|g) = (B7)

/ Sos(X1)N(z — x)dx (B8)

by using, for example,

_—g? =)

/ e 22 e 22
dx
V2mo? A/ 2ms?
l _ (az+s2)xz—2(nzz+52g)x+szg2+:7212
= - e 20252 X
VQ2ro?)(2ms?)
(A2g+622)2 _;2g2+02:2
e 2025202 +s2) 20252 02D (. o2z

2
20252 (X 02+52 ) d_x

= ooy J ¢

27'[0'252 _ o322 2g14¢?)
— e 20%520%+s2)
Q2ro?)2ms?)(o? + s2)
1 _ g
= —— ¢ 2ix)), (B9)

V27 (o? + 52)

We immediately see that Eq. (B8) equals to Eq. (B5) and that
a Gaussian channel and an additive white Gaussian noise are
identical.

APPENDIX C: EVALUATION OF THE TEST INCLUDING
THE LOSS BY POSTSELECTION USING THE LAGRANGE
MULTIPLIER METHOD

In Sec. III, we have considered the hypothesis testing
if it was able to acquire the data at least once. Here, we
consider the risk that the data cannot be obtained by failure
of the postselection and discuss it by including it in the cost
function [45]. To obtain the optimized process, we minimize
this function by the Lagrange multiplier method.

In order to treat the data loss by failure of the postselection
taking the test (15) into account, we propose a revised test by
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the following decision function:

1 if (f and |x| > cfo) or (f and |x| > cf0),
dix):= 10
r  otherwise.

if (fand |x| < cyo) or (f and |x| < ¢jo),

(ChH

We denote f and £ as success and failure of the postselection,
respectively. In this test, we use the postselection result and
the measurement result of the probe as statistics. The critical

J

Pr[&;] = Pr[d = 0lg # 0]

PHYSICAL REVIEW A 92, 012112 (2015)

points ¢y and c 7 differ depending on the result of postselection,
success or failure.

Here, we calculate the probabilities of the two types of
error. The probability of the type-1 error is

Pr[&] = Pr[d = 1|g = 0]
= Prf.|x| > cyolg =01+ Pr[f.|x| > cfo|g = 0]

=1—(erf[;f§} (fli) |2+erf[f]|<f|z>|2) (C2)

and the probability of the type-2 error is

= Pr[f.|x| < c;olg # 01+ Prlf.|x| < cjolg # 0]

1 R
= Z(I(fli)lz + |<f|A|i>|2)<erf[

FLUTET
2P+ K f1A

2

| A
+5USADIE =114

If ¢y = c (= c), the probability of the type-1 error becomes

P& ] =1 — erf[i (C4)

7

and the probability of the type-2 error becomes

g co+g
Pr[&] = (eﬁ[ﬁ] + erf|: Ners i|> (CS5)

Both are independent of the postselection result. Then,
we can substantially simplify the treatment of the case
without postselection when ¢y =c; by the decision
function (C1).

Let us consider how we express the errors of the weak mea-
surement in the decision function (C1). When the postselection
fails in the weak measurement experiment, we cannot obtain a
measurement result. So, in such a case, we cannot distinguish
whether there is the interaction or not. But, for convenience, we
simply presume that there would not be the interaction. Since
we are interested in the detection of the interaction, the result
of no interaction is meaningless. We can conveniently handle
this situation by setting c; = 0o in our decision function.
If c; were oo, the alternative hypothesis would be always
rejected by the test (C1) when the postselection fails. Hence,
the decision function (C1) would cover the case with or
without postselection including the data loss by failure of the
postselection.

Meanwhile, if there is the situation such that we want to
detect “vanishment” of an interaction which usually exists,
the treatment of c 7 as stated above is inconsequent. Here, we
note that if the cy and ¢ take the other value as presented
above, we cannot give an obvious interpretation what the

& CF
|i>|2)e222erf[—f

A )
oo e )

+ l(|<f|i>|2 - |<f|A|i>|2)ez"fZerf[%}

\/5} (C3)

(

experimental situation means. Thus, it is often difficult to find
out the physical meaning of the optimization of the ¢y and c.
While such problems are remaining, we try out this Lagrange
multiplier method.

From here, we calculate the critical points and the initial
and final states of the measured system which optimize the
test (C1) by the Lagrange multiplier method. To optimize the
probability of the type-2 error while keeping the probability of
the type-1 error at the significance level o which is an arbitrary
constant, we set the Lagrangian as

L(p1,p2.cr.cf,N)
= Pr[&] + A(Pr[&] — a)
(p1+ pg)(erf[ L g] [
pz)(erf[

- Pz>(erf[z] - [Tf])

“{{’fff:;i&;—’z};f[%)]_a],

where A is the Lagrange multiplier and the constraint condition
comes from the standard strategy of the hypothesis testing as
described in Sec. II B. To simplify the notations, we denote
p1 = |(fli)]* and p, := |(f|Ali)|*. Note that A2 =1 and
0 < p1,p2 < 1. Varying the Lagrangian £ with respect to A,
the constraint condition reappears as

o [m(l—erf[F]) -
T x| +a- p)(1 - erf[Tf]) '

_Mye-p-
4

m

+2(p1

N

(Co)
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Then, varying the Lagrangian £ with respect to p; and p,, we
get

erf[C\’;;Tg] + erf[cf”+g]
: +

oL 1 cjo—g cjotg
28_171_4_1 —erf[fzaz]—erf[&ﬁ]Z
+2(erf[i2] —erf[c—g])e’ifz

+A(—erf[ﬁ} n erf[ﬁD (C8)
2 p

and
erf[cf‘;\/%zg] + erf[‘?%"’]
oL 1 cro— cjo
0= =5 elE - lE] |

Form these equations, we have
oL oL

op1  dp2

(o)) )

So, we require either or both of A = ¢%/2" and cr=cj.
Then, varying £ with respect to ¢ and ¢ 7 gives

(C10)

L
3Cf
( )( 7(C‘f0*5’)2 7(('f17+g)2)
L /2| (pi+p)le > +e
e o g | (CID
+2(p1 — pr = 2Aprex?)e” 7
and
oL
0=—
dcy

ejog? cro+s)?

12| C=pi=p)(e Tt w)
_Z ; 5 r}az-HEZ

+2(=p1+ pa = 2(1 = pplext)e” a2
(C12)

Here, we consider the case ¢y = c; = ¢, where Egs. (C8)
and (C9) are fulfilled. The constraint constant (C7) becomes

0= (1 _erf[%}) .

Because the o is a constant, the ¢ is fixed. Next, from
Egs. (C11) and (C12) we get

2 _ &% cg cg\2
oot [E[ple e ety
Vx| e e e

+ pae 27 (gza — e 2 )2

(C13)

(C14)

and
2 2{e_2%(e% —I—e_%g) —2)»}

[ 2 I cg cg\2
1 ; —pl{e_zTZ(e% —{—e*%) —4)»} , (C15)

— pze_iiz (62(7 — e*%)z

PHYSICAL REVIEW A 92, 012112 (2015)

respectively. The sum of Egs. (C14) and (C15) gives

1 /2 2, _ &, o 8
=_ /e 7 2 (e ~%) —
0= 5 ne 2 {e 2 (e +e ) ZX}. (C16)
Thus, we obtain
A= %e w7 (" +e77) (C17)

Substituting ¢y = ¢y =c and Eq. (C17) into Egs. (CI1)
and (C12), we have

\/7(1)1 pz) ex —e 20)2. (C18)

Then, we can find thatcy = ¢ = ¢ = O or p; = p; is needed.
If ¢ = 0, we obtain @ = 1 and A = ¢¢/2" from Eqs. (C13)
and (C17). Because the significance level « is not always 1,
the ¢ = 0 is not consistent. Then, cy = c¢7 # 0 and p; = py is
a solution.

Next from Eq. (C10), we discuss the case A = ¢=87/20",
Because we have already studied the case that ¢y = cy
is satisfied simultaneously, hereafter we assume cy # ¢ 7

Substituting A = e/ into Egs. (C11) and (C12), we have

1 /2 o8 crey _GUHE
= —. /= + 2% — e 20 202
Wi+ pe s e e
1 2 crs e s 7(2f(12+)2
=—./—2 - — ew —e 2 )e
4,/ n( p1— p2)( )

From Egs. (C19) and (C20), we can find that we need either
condition as follows: the condition such that c; = O and p; =
p2 = 1, or the condition such thatc = 0 and p; = p, = 0.1In
both cases, the constraint condition (C7) becomes 0 = 1 — «.
As stated in above, the « is not necessarily 1. So, the condition
A = ¢~¢"/2%" ig not proper.

Therefore, we conclude the solution is ¢y = c7 # 0 and
p1 = p2. From p; = p,, we derive

0= {fID)1* = [(fIAIDI?

(C19)

and

. (C20)

= GIULYFI = ALENSFIANE, - £1f) = Alf) (C21)
or
0 = [(fIi)1* = I(fIAli)?
= (f13i) (| — Al A f), . £li) = Ali). (C22)

Then, p; = p, means that the preselected state |i) or the
postselected state | f) equals to an eigenstate of A. As we
have noted, the case ¢y = cf corresponds to the measurement
without postselection. Thus, the result of the postselection
has nothing to do with the test. The state of the postselection
| f) is not essential. Consequently, the optimal condition for
the test (C1) is that the preselected state is an eigenstate of
the measured observable A and that we do not postselect. We
caution the readers that this appendix gives nothing but a crude
trial. We also note that the Lagrange multiplier method gives
the stationary point to the utmost, and they might not be the
minimum.
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