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All-versus-nothing violation of local realism from the Hardy paradox under no-signaling
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Hardy’s is one of the simplest arguments concerning nonlocality. Recently, Chen et al. [Phys. Rev. A 88,
062116 (2013)] have proposed a more generalized Hardy-like argument and have shown that the probability of
success increases with the local system’s dimension. Here we study the same in a minimally constrained theory,
namely, the generalized no-signaling theory(GNST). We find that not only does the probability of success of this
argument increase with the local system dimension in GNST, but it also takes a very simple functional form.
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I. INTRODUCTION

In 1964, Bell proved that one can find measurement
correlations for a composite quantum system which cannot
be described by local-realistic theory (LRT) [1]. Although
the work of Bell was pioneering, the approach to the proof
was not very impressive due to its statistical nature. Bell’s
inequalities [2], in fact, are statistical predictions about some
sets of measurements which can be made on local subsystems
separated far from each other. The violation of such an
inequality implies that the statistical description cannot be
reproduced by local hidden variables.

Greenberger, Horne, and Zeilinger [3] (GHZ) found a way
to show more immediately, without inequalities, that the result
or prediction of quantum mechanics is inconsistent with the
assumption of Einstein, Podolsky, and Rosen, i.e., locality
and reality [4]. Unlike that of Bell, this proof involves only
one event and not the statistics of many events. In 1992,
Hardy [5] gave a relatively simpler all-or-none-type proof of
this no-go theorem for local hidden variables without using any
statistical inequalities via some logical contradiction, in the
spirit of GHZ [3,6]. Hardy’s nonlocality argument deals with
two qubits with two dichotomic measurement observables on
each qubit. The proof can be extended even for n qubits [7,8].
The argument is also valid for more than two measurements [9]
and more than two outcomes [10–13]. The above nonlocality
argument can be extended even for generalized no-signaling
theory (GNST) [14]. One can also find the opposite approach
in literature, where to show that correlations originating from
GNST are more nonlocal than quantum correlations, Fritz has
considered a “stronger” version of the Hardy paradox in a
two-input, two-output scenario [15].

Any physical theory should contain the fact that instanta-
neous propagation of information is impossible. This is the
no-signaling principle. Nonlocality obeying this principle at
the operational level is solely responsible for a good number
of fascinating phenomena such as secrecy extraction [16], cer-
tification of intrinsic randomness [17], and several nonclassical
communication tasks.
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It has been shown that the maximum success probability for
Hardy’s argument does not depend on the system’s dimension.
Recently, Chen et al. [18] have formulated a new type of
Hardy’s nonlocality argument for measurements that have
more than two outcomes. Interestingly, the authors have shown
numerically that the maximum probability of success for
this argument increases with the local system’s dimension.
Actually, this nonlocality argument is equivalent to a violation
of a tight Bell inequality [18]. As one might expect, this
argument reduces to Hardy’s original argument [5] for a
special case. So it might be interesting to study this new
Hardy-type argument for a minimally constrained theory,
namely, GNST. Recently, Mansfield [19] has shown that the
probability of witnessing Hardy nonlocality (PN) for two
two-level systems can be achieved with certainty under GNST,
whereas the paradoxical probability (PP) of two two-level
Hardy arguments is bounded by 0.5. PP concerns the quality of
a particular Hardy argument, but PN concerns the performance
of a correlation regarding the demonstration of nonlocality.
Hence, these two concepts are motivated from different
perspectives. In this context, PP and PN and their relation
under GNST are worth studying. This, in effect, can provide
us with an upper bound on the paradoxical probability of this
argument that is allowed by relativistic causality alone, in the
absence of any further constraints. This study is also important
because the optimal success probability of Hardy’s argument
is deeply connected to the security proof of several information
processing tasks [12,20,21].

We also investigate how this maximum probability of suc-
cess changes with the local system’s dimension and provide an
analytic functional form for such a feature. We extend our work
even for situations where the dimensions of spatially separated
parties are not equal. The rest of the article is arranged in
the following manner: Sec. II reviews the conventional and
new Hardy-type arguments and the results known so far;
in Sec. III we set the stage for calculating the maximum
success probability of the new Hardy-type paradox for higher-
dimensional systems in the no-signaling paradigm. In Sec. IV
we present our results, and finally, we conclude in Sec. V.

II. BIPARTITE HARDY PARADOX

Consider a physical system consisting of two subsystems
shared between two distant parties, Alice and Bob. The two
observers (Alice and Bob) have access to one subsystem each.
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Assume that Alice (Bob) can measure one of two observables,
X0 and X1 (Y0 and Y1), on her (his) local subsystem. The
outcomes a (b) of each such von Neumann measurement can
be 1,2, . . . ,dA

X (dB
Y ). Here dA

X (dB
Y ) is the dimension of Hilbert

space associated with Alice’s (Bob’s) subsystem. The joint
probability P (X = a,Y = b) denotes the probability of getting
outcome (a,b) for measurement (X,Y ).

A. Hardy paradox

The pioneering noninequality paradox regarding incompat-
ibility of any theory with local realism, introduced by Hardy [5]
in 1992, is for two two-level systems. A generalized version
of this argument for two multilevel systems starts with the
following set of joint probability conditions:

P
(
X0 = 1,Y0 = dB

Y0

) = qH > 0,

P
(
X1 = a,Y0 = dB

Y0

) = 0, ∀ a ∈ {
2,3, . . . ,dA

X1

}
,

(1)
P (X0 = 1,Y1 = b) = 0, ∀ b ∈ {

1,2, . . . ,dB
Y1

− 1
}
,

P
(
X1 = 1,Y1 = dB

Y1

) = 0.

The logical structure of the argument is as follows: for some
ontic variables λ ∈ �, the (X0,Y0) observables can take the
value (1,dB

Y0
), which is the first condition of (1). Let us denote

the subspace span by those λ’s as �′(⊂ �). Now the second
condition tells us that for all λ’s in �′ observable X1 can take
only the value 1, as the other possibility of the X1 observable
is excluded. Similarly, the third condition tells us that for
the Y1 observable dB

Y1
is the only possibility for all λ ∈ �′.

Therefore, the joint possibility for X1 = 1 and Y1 = dB
Y1

should
be nonzero for λ ∈ �′. But this contradicts the last condition
of (1). Therefore, the four statements of (1) are incompatible
with local realism. However, quantum correlations which can
reproduce all four conditions of (1) exist [11,22].

At this point one can point out two important quantities:
the first is qH , which is the probability of success of a
stand-alone argument (1), i.e., paradoxical probability. On the
other hand, given a correlation, one can make use of two
or more such arguments to demonstrate nonlocality, which
gives rise to PN. Since more than one elementary argument
is used, the complementary events (i.e., events which are not
considered in the original stand-alone argument) along with the
principal events may contribute to PN. One can heuristically
write PP + PPC = PN, where PPC is the probability of
success contributed by the complementary events. Correlations
arising from quantum systems satisfy PP = PN [19]. But
the gap between PP and PN becomes visible when one
considers postquantum correlations. One such example is the
Popescu-Rohrlic (PR) box. For the PR box PP corresponding
to (1) is 1

2 , whereas PN = 1. Thus, consideration of general
postquantum correlations reveal this curious feature of the
nonlocality-without-inequality type of argument.

B. General nonsignaling theory satisfying the Hardy-type
argument

In the framework of a general probabilistic theory, consider
a system of two separated parties, which together satisfy
all the conditions of the Hardy-type argument as given
in (1).

1. Positivity conditions

For P (X = a,Y = b) to be a valid probability measure it
should satisfy the positivity conditions

P (X = a,Y = b) � 0 ∀X,Y,a,b. (2)

2. Normalization conditions

The probability distribution relating the outcomes for a
given measurement setting should satisfy the normalization
condition.

dA
X∑

a=1

dB
Y∑

b=1

P (X = a,Y = b) = 1, (3)

∀X ∈ {X0,X1} and Y ∈ {Y0,Y1}.

3. Nonsignaling conditions

For any no-signaling n-partite distribution
P (a,b,c, . . . |X,Y,Z, . . . ), each subset of parties {a,b, . . . }
depends on only its corresponding inputs; that is, if we change
the input of one party, the marginal probability distribution
for the other spatially separated parties is not affected.

For a bipartite generalized probability distribution the no-
signaling conditions take the following form:

dB
Y0∑

b=1

P (X = a,Y0 = b) =
dB

Y1∑
b′=1

P (X = a,Y1 = b′)

∀X ∈ {X0,X1}, a ∈ {
1,dA

X

}
(4)

dA
X0∑

a=1

P (X0 = a,Y = b) =
dA

X1∑
a′=1

P (X1 = a′,Y = b)

∀Y ∈ {Y0,Y1}, b ∈ {
1,dB

Y

}
. (5)

What is the maximum probability of success, P (X0 =
1,Y0 = dB

Y0
), of the Hardy-type argument (1) under GNST

for an arbitrary dA
X × dB

Y system, subject to the constraints
given in Eqs. (2)–(5)? We have shown that the maximum
probability of success P (X0 = 1,Y0 = dB

Y0
) for a two-input,

(dA
X,dB

Y )-output Hardy’s test (1) is 1
2 under GNST for all

dA
X,dB

Y (Sec. IV A). Interestingly, the maximum probability of
success in the bipartite Hardy-type argument under GNST is
dimension independent as in the quantum case. For a two-qubit
system the maximum achievable value of Hardy’s success is
qH = 5

√
5−11
2 ≈ 0.09 [23,24]. Reference [11] proves that, for

two-qutrit systems, the maximum achievable value of Hardy’s
success probability is the same as that of the two-qubit system
and conjectures that it will remain the same for arbitrary
dimension n. Recently, Ref. [12] provided a proof of this
conjecture. This result tells us that higher-dimensional systems
give no advantage in the experimental implementation of
such a test, showing the contradiction of quantum mechanics
with the local realism. Keeping this in mind, the authors of
Ref. [18] introduced a Hardy-type argument which applies to
measurements with an arbitrarily large number of outcomes.
They have also shown that the success probability of this
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modified Hardy’s paradox increases with the increase in the
local system’s dimension.

C. Relaxed Hardy paradox

The conditions for the new relaxed Hardy-type argu-
ment [18] are

P (X0 < Y0) = qRH > 0,

P (X1 < Y0) = 0,

P (Y1 < X1) = 0, (6)

P (X0 < Y1) = 0,

where P (Xi < Yj ) = ∑
a<b P (Xi = a,Yj = b). Therefore, if

events X1 < Y0, Y1 < X1, and X0 < Y1 never happen, then,
in any local theory, event X0 < Y0 must never happen either.
However, this is not the case with quantum correlations. The
sets of conditions (1) and (6) cannot be satisfied by any
LRT [5,18]. One can generalize the above conditions (6) by
replacing the last zero condition with a nonzero condition
P (X0 < Y1) = p < qRH . For dA

X = dB
Y = 2, the above two

sets of conditions, (1) and (6), give us the conventional
two-level Hardy paradox [5]:

P (X0 = 1,Y0 = 2) = qRH = qH > 0,

P (X1 = 1,Y0 = 2) = 0,

P (Y1 = 2,X1 = 1) = 0, (7)

P (X0 = 1,Y1 = 2) = 0.

In [18] the authors have shown that in quantum theory the
success probability of the relaxed Hardy test (6) surpasses
that of the conventional Hardy’s test. It has also been shown
that the probability of nonlocal events increases with the local
system dimension, and for high enough dimensions qRH is
almost four times higher than qH . They have also claimed that
the nonlocality argument proposed by them is the most natural
and powerful generalization of Hardy’s argument concerning
higher-dimensional local systems. To test such a proposal one
might wonder how useful this generalized Hardy argument is
in a theory which contains the minimum number of features
or restrictions. In the following sections we have studied this
relaxed Hardy argument in GNST, where the only restriction
on theory is that it does not violate relativistic causality.

III. RELAXED HARDY PARADOX IN NO-SIGNALING
THEORIES

Here we study Hardy’s paradox for higher-dimensional
systems within the framework of generalized probabilistic
theories. The only condition that we impose on the generalized
probability distribution is the no-signaling condition, which all
known physical theories respect.

The set of boxes which satisfy Eqs. (2)–(5) can be divided
into two types: local and nonlocal. A local box can be simulated
using only shared randomness, whereas to simulate a nonlocal
box with shared randomness, the observers must communicate.
Due to the linearity of the constraints [Eqs. (2)–(5)], the set
of all nonsignaling boxes with a finite number of inputs and
outputs forms a polytope P with finite vertices. The convex
property of such a polytope follows from the argument that

a probabilistic mixture of any two boxes satisfying the linear
constraints will also be a member of the polytope P . Here we
consider the case of two inputs and d outputs.

A. No-signaling polytope P(2,d)

We have two parties, Alice and Bob, who choose from two
inputs X and Y ∈ {0,1} and receive outputs a and b with a
joint probability P (X = a,Y = b). We denote the number of
distinct outputs associated with inputs X and Y by dA

X and dB
Y .

Any event in this scenario is described as a point in the polytope
P(2,d), i.e., the polytope consisting of all no-signaling boxes
with two inputs and an arbitrary large number of outputs.
A vertex of P(2,d) must satisfy (2), (3), (4), and (5) and
dim[P(2,d)] of the positivity inequalities (2) replaced with
equalities where

dim[P(2,d)] =
1∑

X,Y=0

dA
XdB

Y −
1∑

X=0

dA
X −

1∑
Y=0

dB
Y . (8)

The extremal points of P(2,d) are of two kinds: partial-output
vertices [at least one of the conditions P (X = a) = 0 and
P (Y = b) = 0 holds] and full-output vertices [all P (X = a) �=
0 and P (Y = b) �= 0] [25]. Partial-output vertices correspond
to the vertices of some other polytope P̃ with fewer local
dimensions (i.e., d

′A
X < dA

X or d
′B
Y < dB

Y ). On the other hand,
the vertices of a polytope P̃ can be extended to vertices of P by
assigning a zero probability P (X = a) = 0 and P (Y = b) = 0
to extra outcomes. From this mapping it is quite evident that for
full-output vertices all outcomes contribute to the no-signaling
box. So we need to construct only the full-output vertices for
a polytope characterized by dA

X and dB
Y . The extremal points

of the dimension-asymmetric cases, where dA
X �= dB

Y , will be
the full-output extremal points of d-outcome polytopes for
d ∈ {2, . . . ,min(dA

X,dB
Y )}.

1. Local vertices

Local vertices of polytope P(2,d) correspond to the
extremal boxes which realize deterministic strategies using
only shared randomness. Allowing for reversible relabeling of
the observers’ outputs by the local vertices takes the following
form [25]:

P
αβγ δ

L =
{

1 if a = αX ⊕ β, b = γ Y ⊕ δ,

0 otherwise,

where the indices α,β,γ,δ ∈ {0, . . . , min(dA
X,dB

Y ) − 1} corre-
spond to the reversible relabeling and ⊕ denotes sum modulo
d, where d = min(dA

X,dB
Y ).

2. Nonlocal vertices

The nonlocal vertices of polytope P(2,d) correspond to
the strategies which cannot be realized without the observers
communicating. Under local reversible relabeling all such
nonlocal vertices take the form [25]

P
αβγ

NL =
⎧⎨
⎩

1
d

if (b 
 a) = XY ⊕ αX ⊕ βY ⊕ γ,

a,b ∈ {1, . . . ,d},
0 otherwise,
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where the indices α,β,γ ∈ {0, . . . , min(dA
X,dB

Y ) − 1} corre-
spond to the local reversible relabeling and ⊕ and 
 denote
sum modulo d and subtraction modulo d, respectively, where
d = min(dA

X,dB
Y ).

IV. RESULTS FOR HIGHER-DIMENSIONAL SYSTEMS

A. Results for the bipartite (2,d) scenario

At this point we are ready to present the main results of this
work. Let qH be the probability of success of a bipartite two-
input, (dA

X,dB
Y )-output conventional Hardy paradox (1) for any

nonlocal vertex of P(2,d). The structure of the conventional
Hardy argument (1) suggests that we assign zero probability to
all outcomes other than (1,dA

X ) on Alice’s side and (1,dB
Y ) on

Bob’s side, which essentially corresponds to a partial-output
vertex of P(2,d). This situation can be mapped to a full-output
vertex of P(2,2). Thus, the value for qH achieved by any
nonlocal full-output vertex of P(2,2) is

qfull
H = 1

2 , (9)

and it becomes independent of local dimension. Now moving
to the relaxed Hardy argument, let qRH be the probability
of success of a bipartite two-input, (dA

X,dB
Y )-output relaxed

Hardy paradox (6) for any nonlocal vertex of P(2,d). It can
easily be shown that for a full-output vertex of P(2,d), the
maximum number of nonzero elements contributing to the
success probability of the relaxed Hardy test is (d − 1), where
d = min(dA

X,dB
Y ), since these are the only possible events

satisfying the following two conditions with the input being
(X1,Y1):

(b − a)modd = 1; a,b ∈ {1, . . . ,d}, (10)

a < b. (11)

While Eq. (10) refers to the condition for nonzero value of
events for a nonlocal full-output vertex, Eq. (11) denotes the
condition for nonzero probability of success of the relaxed
Hardy’s test (6). Thus, it can easily be shown that the maximum
value of qRH that can be achieved by a full-output vertex of
P(2,d) takes the following form:

qfull
RH = d − 1

d
. (12)

Note that this success probability of the relaxed Hardy’s
test (12) increases with the local dimensions. In the asymptotic
limit, i.e., for d = min(dA

X,dB
Y ) → ∞, qfull

RH tends to 1, which
is optimal. Here a natural question is whether these values
(qfull

H , qfull
RH ) are optimal for any finite-dimensional correlation

in GNST. In the following section we address this question.

B. qopt in GNST

Let us define the no-signaling limit of the probability of
success of Hardy’s test as q

opt
H and the relaxed Hardy’s test as

q
opt
RH and let the correlations that achieve these optimal values

be P
opt
H and P

opt
RH , respectively. Due to the convexity of the

no-signaling polytope P(2,2) and P(2,d), it readily follows
that P

opt
H and P

opt
RH can be written as a probabilistic mixture of

20 40 60 80 100
d

0.2

0.4

0.6

0.8

1.0

qRH
opt

FIG. 1. (Color online) The line in blue (dark gray) shows the
increase of q

opt
RH with increasing system dimension for quantum

systems [18]. The red (light gray) line shows the optimal paradoxical
probability q

opt
RH for generalized no-signaling correlations. The purple

(medium gray) line shows the decrease of the contribution of
complementary events to PN with increasing local dimension for
generalized no-signaling correlations.

local and nonlocal full-output vertices of P(2,2) and P(2,d),
respectively. Thus, we can conclude that in any GNST

q
opt
H = 1

2
, (13)

q
opt
RH = min

{
dA

X,dB
Y

} − 1

min
{
dA

X,dB
Y

} . (14)

Here we see that for an arbitrarily large system dimension
the success probability of the relaxed Hardy’s test (6) tends
to its possible maximum [from Eqs. (3) and (6)] value, i.e., 1
in the no-signaling paradigm. This is an interesting feature in
line with the quantum case where the maximum probability
of success increases with local dimension [18]. Unlike the
quantum case considered in [18], here we consider even the
dimension-asymmetric scenario (dA

X �= dB
Y ). Figure 1 shows

the success probability of the relaxed Hardy’s test against the
dimension of the subsystems in a generalized no-signaling
theory and in quantum theory [18].

For the Hardy paradox with many outcomes we have
seen that the paradoxical probability reaches very close to 1
under a generalized no-signaling theory. This result has great
significance, which indicates the fact that relativistic causality
alone does not stop one from demonstrating a contradiction
with local realism using an argument like (6) with almost
100% success, in contrast to the partial success in the quantum
case [5,18].

One can interpret this phenomenon by making two consec-
utive observations.

Observation 1. For the generalized Hardy-type argu-
ment (6), the optimal PPC corresponding to the optimal PP
decreases with increasing minimum dimension d in GNST.

Observation 2. PP ≈ PN for extremal nonlocal correlations
with high minimal dimension d in GNST.

Whereas the first observation indicates that the optimal
contribution of the paradoxical probability connected to
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complementary events to the total probability of witnessing the
Hardy nonlocality decreases with increasing local minimum
dimension [purple (medium gray) line in Fig. 1], the second
observation tells us that in the asymptotic limit the paradoxical
probability corresponding to argument (6) is equal to PN,
which is 1.

V. CONCLUSION

In comparison to Bell’s statistical argument Hardy’s para-
dox more easily demonstrates the fact that quantum mechanics
contains correlations which cannot be simulated with shared
randomness alone. Chen et al. [18] provided the natural
generalized version of Hardy’s nonlocality argument for
higher-dimensional systems. They showed that for d = 2 it
is exactly Hardy’s original nonlocality argument, whereas in
the quantum domain for d > 2, the paradoxical probability
of the relaxed Hardy’s argument increases with d. Here
we have generalized Chen et al.’s conclusion in the no-
signaling paradigm. We observe that in any theory that respects

relativistic causality, the maximum paradoxical probability of
the nonlocality argument increases with the local dimensions
of the two subsystems in the bipartite scenario. Finally, we
conclude our work by providing a proof which emphasizes a
simple functional dependence of the paradoxical probability of
the generalized Hardy’s nonlocality argument on local dimen-
sions. This fact indicates that with increasing local minimum
dimension, the paradoxical probability corresponding to the
relaxed Hardy-type argument approaches the probability of
witnessing Hardy nonlocality in GNST. This interpretation of
our result also suggests that the nonlocality argument proposed
in [18] is the most natural higher-dimensional generalization
of Hardy’s argument [5] in a two-input scenario.
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