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Analyzing the Gaussian character of the spectral quantum state of light via quantum noise
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Gaussian quantum states hold special importance in the continuous variable regime. In quantum information
science, the understanding and characterization of central resources such as entanglement may strongly rely on the
knowledge of the Gaussian or non-Gaussian character of the quantum state. However, the quantum measurement
associated with the spectral photocurrent of light modes consists of a mixture of quadrature observables. Within
the framework of two recent papers [Phys. Rev. A 88, 052113 (2013) and Phys. Rev. Lett. 111, 200402 (2013)],
we address here how the statistics of the spectral photocurrent relates to the character of the Wigner function
describing those modes. We show that a Gaussian state can be misidentified as non-Gaussian and vice versa, a
conclusion that forces the adoption of tacit a priori assumptions to perform quantum state reconstruction. We
experimentally analyze the light beams generated by the optical parametric oscillator operating above threshold to
show that the data strongly supports the generation of Gaussian states of the field, validating the use of necessary
and sufficient criteria to characterize entanglement in this system.
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I. INTRODUCTION

Entanglement and non-Gaussian quantum states are prized
resources in the field of quantum information with continuous
variables (CV). While Gaussian states per se already allow the
generation of highly entangled states and thus the realization of
important quantum information protocols [1,2], certain tasks
such as quantum computation and entanglement distillation
require non-Gaussian features, and thus the ability to correctly
recognize the availability of those resources in actual physical
systems [3,4].

Light is perhaps the most important physical system for
CV quantum information. Measurement of the quantum state
of light is realized by the statistical analysis of photocurrent
fluctuations, the quantum noise [5–11]. The physical objects
of interest are often field modes with well-defined frequency,
in which case the spectral noise power of photocurrent
fluctuations is used to provide information about the field
quantum state.

However, owing to a lack of phase coherence between the
quantum state and the spectral components of the photocurrent
signal, current measurement techniques only provide a pure
quantum measurement for a restricted class of quantum states
possessing a strong degree of symmetry [12–14]. In most ex-
periments, the quantum observable associated with the spectral
photocurrent provides a mixed measurement of the two side-
band modes and requires the adoption of a priori assumptions
to interpret the data in terms of moments of field quadrature
operators. These limitations constitute a problem for the
demonstration of quantum information protocols with truly
general and unknown quantum states of spectral light modes.

Yet, it is generally believed that Gaussian spectral pho-
tocurrent statistics can be taken as proof of the Gaussian
character of the quantum state. Conversely, the observation
of non-Gaussian photocurrent statistics is accepted as strong
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evidence of non-Gaussian features of the field quantum state.
Contrary to this belief, we show that the mixed character of
the photocurrent measurement operator fundamentally masks
the phase space statistics of field quadratures, implying that a
Gaussian state may appear non-Gaussian and vice versa. Such
dubiety about the general form of the field Wigner function
is especially harmful to experimental quantum information,
where non-Gaussian properties of field modes stand as a
necessary resource to perform more powerful tasks: misiden-
tifying those resources leads to incorrect or, at least, unreliable
implementations.

In this paper, we establish the correct interpretation of the
measured photocurrent statistics in terms of quantum state
features. To this aim, we perform a formal analysis of the
measurement operator moments associated with the spectral
photocurrent and relate them to moments of the quantum
state. We consider in Sec. II the photocurrent fluctuations as
an incoherent mixture of two independent quantum measure-
ments to review the basic theoretical model supporting the
developments that follow. In Sec. III, we show by exploiting
higher-order moments that a Gaussian photocurrent can be
produced either by Gaussian states with spectral two-mode
symmetry or, we argue, by very peculiar (and hence implausi-
ble in most experiments) non-Gaussian quantum states. In fact,
our reasoning links the Gaussian character and the symmetry
of the two-mode field as equivalent a priori knowledge always
needed in the usual experimental setup (but rarely mentioned)
to reconstruct the spectral quantum state. We additionally
point out that the observation of non-Gaussian spectral
photocurrent cannot be readily associated with a non-Gaussian
quantum state, requiring further investigation and possibly the
improvement of the quantum measurement technique of CV
spectral modes to a new level of experimental rigor.

We then employ our methods in Sec. IV to experimentally
investigate the quantum state produced by the optical paramet-
ric oscillator (OPO) operating above the oscillation threshold,
establishing with great confidence that the associated pho-
tocurrent is indeed Gaussian and indicates a Gaussian quantum
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state displaying modal symmetries in the spectral modes linked
by the parametric process. This conclusion substantiates the
use of the semiclassical treatment in the above-threshold OPO
to effectively halve the number of relevant modes and apply
necessary and sufficient criteria for multipartite entanglement
directly to the spectral matrix [15–17]. It is our feeling that
such an experimental demonstration fills a hole that went
unrecognized for some time.

Finally, to guarantee that the measurement operator of
the spectral photocurrent yields the statistics of pure field
quadrature observables, we offer our concluding remarks in
Sec. V, where the use of phase-coherent optical and electronic
local electronic oscillators is proposed to realize a doubly
phase-coherent detection. Only in this improved scenario
can the quantum noise achieve the status of a formal pure
measurement operator in the CV regime of spectral modes of
light.

II. SPECTRAL PHOTOCURRENT QUANTUM
MEASUREMENT AND THE TWO-MODE FIELD

QUANTUM STATE

Spectral photocurrent operator. The quantum state of
spectral (sideband) modes is measured by the photocurrent
observable [18], described by the measurement operator Î (t)
and obtained by the beating of the optical local oscillator (LO)
and the field modes of interest [19]. Any Fourier component
of this signal can be extracted by mixing it with a sinusoidal
electronic reference—the electronic local oscillator (eLO)—at
frequency �, yielding the spectral photocurrent operator Î�

defined as

Î�(t) = 1√
2

∫ t+T

t

ei�t ′ Î (t ′)dt ′. (1)

The operator Î�(t) represents the (complex) amplitude of
the photocurrent beat-note signal measured at time t . The
integration limits are determined by the spectral resolution
�� = 2π/T of the electronic down-mixing process and
define the spectral width of measured upper ω0 + � and lower
ω0 − � sideband modes. The spectral photocurrent operator
Î�(t) gathers in one quantity the two observables associated
with the photocurrent cosine Îcos and sine Îsin components,
given by

Î� = 1√
2

(Îcos + iÎsin ). (2)

We may interpret Îcos(t) and Îsin(t) as two independent
single quantum measurements taken at time t [14]. Figure 1
illustrates the measurement apparatus. These observables
access the quadrature operators of optical sideband modes
at frequencies ω0 ± �, where ω0 is the LO optical frequency,
and bandwidth ��. These longitudinal modes involve the
annihilation operators â±� = (p̂±� + iq̂±�)/2, where p̂±�

and q̂±� are respectively the field amplitude and phase
quadrature observables satisfying the canonical commutation
relation [p̂�,q̂�′ ] = 2iδ(� − �′). Interpreting the probability
distribution obtained from measurements of the photocurrent
observables Îcos and Îsin in terms of the two-mode field Wigner
function is more conveniently described after a change of
modal basis to the symmetric (S) and antisymmetric (A)

FIG. 1. (Color online) Scheme to measure electronic quadrature
components of each photocurrent signal. The photocurrent is mixed
with two electronic references in quadrature.

combinations of sideband modes, defined as

âs = 1√
2

(
âω0+� + âω0−�

)
, âa = 1√

2

(
âω0+� − âω0−�

)
.

(3)

The exact connection between the quadrature observables of
these modes, defined by the expressions âs = (p̂s + iq̂s)/2
and âa = (p̂a + iq̂a)/2, and the photocurrent observables Îcos

and Îsin depends on the measurement technique in use. In
homodyne detection (HD), the cosine observable is a pure
quantum measurement of the form Îcos = Lcos (p̂s,q̂s), where
Lcos represents a linear combination; the sine observable has
the same general form, but depends only on quadratures of
the A mode. In resonator detection (RD), both observables
combine S and A modes in independent ways, so that Îcos and
Îsin carry information on both modes. The explicit expression
for the observables in HD are

Îcos = cos φ p̂s + sin φ q̂s, (4)

Îsin = − sin φ p̂a + sin φ q̂a, (5)

where φ is the LO phase. In RD, the measurement operators
follow the more general form

Îcos = xsp̂s + ysq̂s + xap̂a + yaq̂a, (6)

Îsin = −ysp̂s + xsq̂s + yap̂a + xaq̂a, (7)

where the operator coefficients are functions of the resonator
detuning employed in the quantum measurement [14].

Phase mixing and the quantum state. Measurement of the
photocurrent components Îcos and Îsin requires a well-defined
phase relation between LO and eLO, a condition in general
not satisfied in experiments. In fact, that limitation does not
affect each individual quantum measurement of the spectral
photocurrent, typically carried out on a time scale (given
by the integration time of a few μs) much shorter than the
characteristic time of LO phase diffusion (a few ms for a laser
with kHz spectral bandwidth); they realize the pure quadrature
observable

Îθ = cos θ Îcos + sin θ Îsin . (8)

However, the collection of quantum statistics requires many
such single measurements and hence a time interval that greatly
surpasses the relative coherence time between LO and eLO.
As a result, photocurrent moments involve averaging different
quadrature directions in phase space, entailing mixed quantum
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statistics (θ averages of moments of Îθ on the quantum state).
Let us construct the operator δÎθ = Îθ − 〈Îθ 〉 with zero average
on the quantum state, and consider its θ -average variance,
denoted as �2Îθ . Using Eq. (8),

�2Îθ ≡ 1

2π

∫
dθ ′〈(δÎθ+θ ′ )2〉

= 1

2
�2Îcos + 1

2�2Îsin , ∀θ, (9)

a quantity actually independent of the choice of θ (i.e., no
LO-eLO relative phase information remains, as expected).
Furthermore, components in quadrature (δÎθ and δÎθ+π/2) are
uncorrelated,

〈δÎθ δÎθ+π/2〉 ≡ 1

2π

∫
dθ ′〈δÎθ+θ ′δÎθ+π/2+θ ′ 〉

= 〈δÎcos δÎsin − δÎsin δÎcos 〉 = 0, ∀θ, (10)

since [δÎθ ,δÎθ+π/2] = 0. In this so-called phase mixing regime,
in which most experiments dealing with the spectral quantum
noise of light are realized, Eqs. (9) and (10) show that any
electronic component of the spectral photocurrent displays
the same quantum statistics and is uncorrelated with its
simultaneously measured (in quadrature) component: in other
words, the measured spectral photocurrent is stationary [14].
But since stationarity holds simply as a consequence of phase
mixing, it does not convey any information on the quantum
state; in fact, all such information lies in the variance �2Îθ ,
the quantity proportional to the spectral noise power S(�) of
semiclassical models,

S(�) = 〈δÎ�δÎ−�〉 = 1
2�2Îcos + 1

2�2Îsin . (11)

That is probably the reason why in most experiments the
spectral photocurrent is measured directly on a spectrum
analyzer without further concern about the pure measurement
operators Îcos and Îsin , given that their statistical properties
seem inaccessible [20]. Nevertheless, the current approach
to the measurement of spectral moments as solely based
on the mixed moment of Eq. (11) cannot be considered a
pure quantum measurement for most quantum states [12,14].
Furthermore, it fails to provide all the information required to
reconstruct the two-mode spectral quantum state.

Two-mode Gaussian quantum state. Let us consider Gaus-
sian quantum states (i.e., the simplest class of interesting
quantum states) to illustrate this point. These states are defined
to furnish Gaussian probability distributions for any observable
in phase space: in other words, their associated Wigner
functions are themselves Gaussian distributions. The complete
reconstruction of any quantum state in this set would require
the measurement of 10 independent second-order moments,
gathered in the two-mode covariance matrix as

V =

⎛
⎜⎜⎜⎝

�2p̂s C(p̂s q̂s) C(p̂s p̂a) C(p̂s q̂a)

C(p̂s q̂s) �2q̂s C(p̂aq̂s) C(q̂s q̂a)

C(p̂s p̂a) C(p̂aq̂s) �2p̂a C(p̂aq̂a)

C(p̂s q̂a) C(q̂s q̂a) C(p̂aq̂a) �2q̂a

⎞
⎟⎟⎟⎠, (12)

where quadrature operator variances are denoted as in,
e.g., �2p̂s = 〈(p̂s − 〈p̂s〉)2〉, and symmetrized correlations

as in, e.g., C(p̂s q̂s) = 〈(p̂s − 〈p̂s〉)(q̂s − 〈q̂s〉) + (q̂s −
〈q̂s〉)(p̂s − 〈p̂s〉)〉/2. It is clear that measurements of S(�)
defined in Eq. (11) can provide only a fraction those ten
moments, although the exact amount of information is
dependent on the particular measurement technique in use.
HD can only retrieve three combinations of moments, while
RD accesses 1 additional combination [14]. However, if
one could see beyond the phase mixing process to establish
the phase-locked photocurrent components Îcos and Îsin as
stationary, six combinations of moments could be quantified
as null and the covariance matrix would simplify to

V =

⎛
⎜⎝

α γ δ 0
γ β 0 δ

δ 0 β −γ

0 δ −γ α

⎞
⎟⎠. (13)

In this case, HD would be able to access the local single-mode
sector of the quantum state (either S or A), and RD would
provide complete two-mode quantum state reconstruction (by
additionally accessing the δ moment related to the energy
asymmetry of spectral modes ±�) [13].

Hence establishing the stationarity of the phase-locked
photocurrent components Îcos and Îsin (or tacitly assuming it)
stands as a central part of spectral quantum state measurement,
either in the single-mode picture (HD) or in the complete
two-mode picture (RD). We show next how it is possible to
ascertain with great confidence the stationary property even
in the presence of phase mixing, by analyzing higher-order
moments of the spectral photocurrent. The reasoning we
present provides the necessary conceptual basis to correctly
interpret the photocurrent quantum noise in terms of moments
of the symmetric covariance matrix of Eq. (13), clarifying
the tacit assumptions employed in nearly all experiments with
spectral modes of light in the CV regime.

III. INTERPRETATION OF THE PHOTOCURRENT
STATISTICS IN TERMS OF PROPERTIES OF THE

QUANTUM STATE

We investigate next what can be said about the two-
mode quantum state by having access only to the mixed
operator moment of Eq. (9). Particularly, we ask what can
be learned about the general shape of the Wigner function as
the photocurrent is faithfully established in experiment to be
Gaussian or non-Gaussian. Let us consider how higher order
moments of the photocurrent relate to higher order quadrature
operator moments in the phase mixing regime.

We denote the (phase mixed) 2nth-order photocurrent
moment as σ {2n}, n = 1,2,3, . . . , defined as

σ {2n} = 1

2π

∫ π

−π

〈(δÎθ )2n〉dθ. (14)

These measured moments can be expressed in terms of
quadrature operator moments (and therefore related to the
two-mode quantum state) through the measurement operators
δÎcos and δÎsin of Eq. (8). These observables correspond to what
would be measured with doubly phase-coherent detection, and
represent the phase-locked photocurrent components masked
by the phase mixing as well as pure independent measurements
of the spectral quantum state. In order to relate those quantities
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to the mixed photocurrent moments of Eq. (14), we denote
the moments of the phase-locked photocurrent as σ

{2n}
cos =

〈(δÎcos)2n〉 and σ
{2n}
sin = 〈(δÎsin)2n〉.

For the particular but important case of Gaussian statistics
(applicable to both the quantum state and the measured
photocurrent), odd moments (other than the first) are null
and all even moments can be expressed in terms of the
variance of the distribution. This fact motivates us to denote
the standard deviations of distributions as follows: s =

√
σ {2}

for the measured (mixed) photocurrent, and scos =
√

σ
{2}
cos or

ssin =
√

σ
{2}
sin for the cosine or sine components subjacent to

phase mixing. We also denote their normalized correlation
(equal to the correlation between spectral modes) as c ≡
〈δÎcosδÎsin〉/(scosssin) (where −1 � c � 1).

We would like to establish how the Gaussian character
of the photocurrent constrains the field quantum state. Let
us consider for example the fourth-order moment σ {4} of the
mixed photocurrent. On the one hand, a Gaussian photocurrent
would imply σ {4} = 3s4; on the other, Gaussian quantum states
would require fourth-order moments fulfilling σ

{4}
cos = 3s4

cos,
σ

{4}
sin = 3s4

sin, and 〈δÎ 2
cosδÎ

2
sin〉 = (1 + 2c2)s2

coss
2
sin.

To better analyze the actual distributions in terms of the
Gaussian statistics, we define “deviations,” i.e., quantities
constructed to be null for Gaussian distributions, as follows:
δ{4} = σ {4} − 3s4 for the measured photocurrent and, for the
quantum state, the quantities δ

{4}
cos = σ

{4}
cos − 3s4

cos, δ
{4}
sin = σ

{4}
sin −

3s4
sin, and δ

{4}
c = 〈δÎ 2

cosδÎ
2
sin〉 − (1 + 2c2)s2

coss
2
sin.

We then employ Eqs. (8) and (14) to relate the (fourth-order)
photocurrent deviations and quantum state deviations from the
Gaussian statistics by

8
3δ{4} − (

δ{4}
cos + δ{4}

sin + 2δ{4}
c

)
= (

s2
cos − s2

sin

)2 + 4c2s2
coss

2
sin. (15)

Interpretation of Eq. (15) requires careful consideration of
possible experimental scenarios. We note that actual measure-
ments can only access the term δ{4} on the left side of the
equality above with the goal of determining all the remaining
terms: an impossible task if no a priori assumptions are
allowed. Let us analyze the exact content of those assumptions
in particular cases of interest.

The first and more common possibility, here labeled (A),
is that the experimental data establishes the photocurrent
statistics as Gaussian, imposing the constraint δ{4} = 0.
Equation (15) then yields the condition

−(
δ{4}

cos + δ{4}
sin + 2δ{4}

c

) = (
s2

cos − s2
sin

)2 + 4c2s2
coss

2
sin. (16)

This equation ties in a very stringent manner the fourth-order
moments of the photocurrent components (inaccessible in the
phase mixing regime) and second-order moments of the quan-
tum state Wigner function (the final goal of measurements).
Furthermore, it establishes that infinitely many quantum states
can in principle produce Gaussian spectral photocurrent.
However, most of the quantum states satisfying Eq. (16) would
be very unusual, a fact that may facilitate interpretation of the
data.

In the first interpretative scenario—labeled (A1)—one
could resort to theoretical models to argue that the quantum
dynamics capable of producing such stringent quantum states
is unlikely to be taking place in most experiments in quantum
optics or atomic physics. In fact, such experiments commonly
employ at least one bright light beam to participate in the
quantum dynamics, in which cases a linearized or mean field
approach in general supports the onset of Gaussian quantum
states.1 If these considerations can be accepted as reasonable
in a given experiment, then the observation of Gaussian
mixed photocurrent [Eq. (16)] together with the assumption
of Gaussian quantum states, implies the new condition

(
s2

cos − s2
sin

)2 + 4c2s2
coss

2
sin = 0, (17)

which can only be fulfilled if

scos = ssin and c = 0, (18)

meaning that the cosine and sine photocurrent components
must present the same variance and be uncorrelated: a state-
ment of stationarity [14]. Even though phase mixing always
leads to stationary mixed photocurrent, verifying that its
fourth-order moment is compatible with the Gaussian statistics
makes it a better case to establish as stationary the phase-locked
photocurrent related to pure quantum measurements. Thus
checking higher-order photocurrent moments allows us to
remove some hindrances of the phase mixing process and
partially “see through it.”

As noted previously, the most relevant consequence of
stationarity in our context can be established by interpreting
Eq. (18) in terms of properties of the spectral quantum state.
Assuming it as Gaussian, stationarity implies the form of
Eq. (13) for the two-mode quantum state, which in turn allows
us to employ only the mixed photocurrent variance as source
of information about the quantum state. Only after this formal
verification can one confirm that both HD and RD are able
to access the single-mode quantum state of either mode S or
A, justifying the application of entanglement criteria directly
to the spectral noise matrix, equal in this case to the single-
mode covariance matrix of the quantum state (semiclassical
approach). If necessary, RD can be used to further access
exclusive two-mode spectral features, a capability especially
important in case one needs to reconstruct not only the local
quantum state of S or A mode, but also the local quantum
states of individual sideband modes ±�, in which case the
energy imbalance becomes essential to perform the change of
modal basis on the two-mode quantum state.

We may summarize scenario (A1), which may be adopted
to interpret the observation of Gaussian mixed photocurrent,
as employing the following set of concepts in a self-consistent
manner: Gaussian quantum state ↔ stationary phase-locked

1We stress however that Eq. (16) alone is indeed not sufficient to rule
out the possibility that a very uncommon non-Gaussian quantum state
has moments which conspire to produce a Gaussian photocurrent.
The inherently incomplete information furnished by the incoherent
spectral photocurrent obliges us to rely on reasonable assumptions
(or to offer deeper experimental study in case those are missing) to
interpret it in terms of the two-mode quantum state.
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photocurrent ↔ symmetric S and A local quantum states.
If one of these concepts is adopted as a priori assumption
to help interpret the experimental data (since none of them
can be directly checked due to measurement mixedness) the
others follow as consequences. For instance, in the case of
phenomena associated with parametric down-conversion, the
broadband nature of the physical interaction will probably
favor the adoption of “symmetric S and A local quantum
states” as assumption, from which follow as consequences
the validity of the semiclassical approach and the fact that an
EPR-type quantum state is produced on the spectral sidebands
(by a change of modal basis made possible with RD).

In scenario (A2), Eq. (16) allows the possibility that
Gaussian photocurrent could be produced by non-Gaussian
quantum states. This scenario is indeed the most general
explanation of the photocurrent statistics if only the mathe-
matics would be considered, since there are apparently many
combinations of quantum state deviations δ

{4}
cos , δ

{4}
sin , and δ

{4}
c

that could satisfy the identity imposed by Eq. (16). However,
such quantum states would present very unusual connections
between fourth- and second-order moments. As we show
later, the conditions to be fulfilled become more stringent as
moments of even higher degree are considered, making it a
difficult case for this kind of interpretation without further
evidence. Moreover, given the prized value of non-Gaussian
resources in quantum information, additional evidence would
certainly be required to attest the non-Gaussian character of
the quantum state, since a Gaussian photocurrent would hardly
have any credibility in this case.

Since non-Gaussian features are desirable as a resource
for quantum information protocols in CV, we consider the
scenario (B) in which non-Gaussian mixed photocurrent is
observed. In scenario (B1), it could be used as misleading
evidence of non-Gaussian features of the quantum state. In fact,
according to Eq. (16), Gaussian quantum states impose upon
the fourth-order moment of the photocurrent the condition

8
3δ{4} = (

s2
cos − s2

sin

)2 + 4c2s2
coss

2
sin. (19)

This identity states very generally that whenever the two
individual S or A single-mode quadratures follow different
Gaussian distributions, i.e., are not symmetric in those modes
in the form 〈(δÎcos )2〉 	= 〈(δÎsin )2〉, the photocurrent will
present non-Gaussian statistics. The photocurrent deviation
from Gaussian statistics could thus follow as a consequence
of mixed Gaussian processes, which is in fact the favored
explanation in view of the ubiquity of Gaussian states in
quantum optics [21,22]. Such cases could be spotted by
investigating the complete statistical distribution of measured
quantum fluctuations, wherein Gaussian mixed models could
be employed to estimate the single-mode probability distri-
butions subjacent to the mixing of the measurement process.
In the interpretative scenario (B2), failure to identify mixed
Gaussian distributions would support further investigating the
truly non-Gaussian character of the quantum state, a scenario
that would require additional experimental capabilities. Im-
provement of the quantum measurement by locking the phase
of the spectral photocurrent decomposition with respect to the
quantum state would lead us in the right direction.

Hence care must be exercised even to interpret the onset
of non-Gaussian photocurrent statistics in terms of truly
non-Gaussian quantum states. In most cases, given that the
generation of Gaussian quantum states could be expected,
the non-Gaussian photocurrent should be rather interpreted
as evidence of asymmetric quantum processes affecting the
A and S quantum dynamics. Conversely, Eq. (19) makes the
observation of Gaussian photocurrent a special event and its
occurrence a strong indication of Gaussian quantum states
possessing a high degree of modal symmetry.

The conclusions reached above for the fourth-order mo-
ments are accentuated by extending our analysis to moments of
even higher degrees. We find that the observation of Gaussian
photocurrent in all orders either substantiates the Gaussian
character of the quantum state or imposes increasingly strin-
gent criteria upon the moments of the non-Gaussian quantum
states capable of producing it. Performing the integral in θ ,
Eq. (14) applied to higher-order moments furnishes the identity

σ {2n} = n!

(2n)!

n∑
k=0

1

(n − k)!k!
〈(δÎcos )2n(δÎsin)2(n−k)〉. (20)

The above equation states that each higher-order photocurrent
moment, taken as a mixture of the two-mode quantum state
higher-order moments, will impose strong restrictions on the
quantum state even though it cannot be used to identify it
completely. To make clearer the connection of Eq. (20) with the
fourth-order moment of Eq. (15), we suppose in the following
uncorrelated single S and A modes (i.e., c = 0), a simplifying
restriction that does not alter our main conclusions. In this
case, the analysis below is directly applicable to those simpler
quantum states; we note however that the complete restriction
of Eq. (20) has to be considered in the analysis of more
general quantum states showing those correlations.2 We define
the deviation δ{2n} of the 2nth-order moment from Gaussian
statistics as

δ{2n} = σ {2n} − (2n − 1)!! s2n. (21)

Similarly, the deviation δ{2n,2k} from Gaussian statistics regard-
ing the quantum state is defined as

δ{2n,2k} = 〈
δÎ 2n

cosδÎ
2k
sin

〉 − (2(n − k))!(2k)!

2n(n − k)!k!
s2(n−k)

cos s2k
sin , (22)

where k = 0,1,2, . . . ,n and s = scos = ssin . In this case, the
connection between photocurrent statistics and quantum state
statistics provided by any even moment of order larger than 2
is

δ{2n} − n!

(2n)!

∑
k

1

(n − k)!k!
δ{2(n−k),2k}

= (2n − 1)!!

2n

∑
k

dn,ks
2(n−k)
cos s2k

sin , (23)

2In the particular case of Gaussian photocurrent produced by
(assumed) Gaussian states, we find that Eq. (20) does not offer
anything new with respect to Eq. (15): in this case, the fourth-order
moment is sufficient to show that the S and A modes must obey the
same statistics.
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where the coefficients are dn,k = n!−(2(n−k)−1)!!(2k−1)!!
(n−k)!k! . The

left-hand side of this expression relates only to photocurrent
deviations from the Gaussian statistics, and the right-hand side
only to quantum state deviations. In fact, δ{2n} is the only
parameter in Eq. (23) available in the data. The quantum state
must be determined from incomplete information due to the
mixing process affecting the measurement operator. This is
indeed impossible if any quantum state can be expected in the
experimental dynamics under study. However, as noted before,
usually that is not the case, and in fact the quantum dynamics
producing non-Gaussian states constrained by Eq. (23) for a
given measured value of δ{2n} is very difficult to attain in the
laboratory. Such state of affairs calls for a detailed analysis of
Eq. (23) in particular cases of interest.

In case the photocurrent is Gaussian, i.e., δ{2n} = 0,∀n,
Eq. (23) provides very stringent restrictions connecting the
quantum state deviations from the Gaussian statistics with
second-order operator moments. Those types of quantum
states can usually be ruled out based on physical considerations
of the quantum dynamics acting on the system. It is thus more
plausible in this case to interpret the Gaussian photocurrent
as indicating the Gaussian character of the quantum state,
for which the left-hand side of Eq. (23) must vanish (i.e.,
δ2(n−k),2k = 0,∀n,k). Assuming then the quantum state as
Gaussian, one finds that the right-hand side of Eq. (23) can
only vanish (as required to uphold the identity) if scos = ssin ,
in which case it is simple to verify that the sum of coefficients
yields

∑
k dn,k = 0. We find once more the self-consistent

connections between Gaussian quantum states, symmetric A
and S modes, and stationarity of the phase-locked photocur-
rents subjacent to the mixing process. Conversely, a Gaussian
quantum state will produce non-Gaussian photocurrent with
respect to every higher-order moment if scos 	= ssin .

It is a striking fact that Gaussian photocurrent together
with the assumption of Gaussian quantum state will always
lead to the equality of the single modes A and S quadrature
distributions (apart from a local rotation), and vice-versa.
Similarly simple conclusions cannot be reached for non-
Gaussian photocurrents, since they could result either from
truly non-Gaussian quantum states or from a mixture of two
different Gaussian processes (i.e., when both single-mode
quadrature distributions of mode S and A are Gaussian, but
different).

IV. EXPERIMENT AND DATA ANALYSIS

Experimental setup. The experiment (Fig. 2) employs a
frequency-doubled diode-pumped Nd:YAG cw laser (Inno-
light Diabolo) at 532 nm wavelength to pump a nondegenerate
triply resonant optical parametric oscillator (OPO). Prior
to injection in the OPO, the cw pump laser is filtered in
transmission by an optical resonator (bandwidth of 0.7 MHz)
to attenuate classical noise for analysis frequencies above
15 MHz. In this manner, the pump laser shows nearly vacuum
noise limited quantum fluctuations at the spectral modes of
interest at � = 21 MHz. The OPO consists of a type-II phase
matched KTP (potassium titanyl phosphate, KTiOPO4) crystal
with length l = 12 mm and a linear resonator with spherical
mirrors with 50 mm radius of curvature. The input coupler

FIG. 2. (Color online) Experimental setup. Nd:YAG Diabolo:
pump laser; OPO: optical parametric oscillator; PBS: polarizing beam
splitter; FR: Faraday rotator; KTP: nonlinear crystal.

mirror has reflectivity of 70% for the pump (532 nm) and
>99.9% for the signal and idler beams (≈1064 nm), and the
output coupler mirror has transmission of 96% for the infrared
beams and is highly reflective for the pump beam. The OPO has
a free spectral range of about 5 GHz and cavity finesses of 18,
135, and 115 for pump, signal, and idler modes, respectively.
The KTP crystal temperature is actively stabilized at 23 ◦C.
The OPO oscillation threshold power is Pth = 60(3) mW.
Operating above the threshold, it generates collinear signal
and idler beams with orthogonal polarizations, which are then
spatially separated by a polarizing beam-splitter (PBS). The
reflected pump beam is separated from the input beam by a
circulator employing a Faraday rotator (RF) and a PBS.

We employ the RD technique to reconstruct the quantum
states of spectral modes in the pump, signal, and idler beams
individually [13]. In addition to being a complete quantum
measurement for Gaussian quantum states, in our experiment
RD has also the advantage of allowing the use of the bright
beams produced by the OPO as independent LO’s at the
appropriate optical frequencies. One analysis resonator is
employed to perform RD in each beam. Spatial mode matching
between the beams and the analysis resonators is higher than
95%. The analysis resonator labeled j = 0, corresponding
to the pump mode, has spectral bandwidth of ≈12 MHz;
resonators labeled j = 1 and j = 2, respectively used to
measure signal and idler beams, have bandwidths of ≈14 MHz.
With these values it is possible to access all quadratures for
the chosen sideband modes at the chosen analysis frequency
of 21 MHz.

Photodetection is performed with high quantum efficiency
(>95%) photodiodes (Epitaxx ETX300 for the twin beams and
Hamamatsu S5973-02 for the pump beam). Quantum noise of
each beam is measured with a pair of amplified photodetectors
using the balanced detection scheme. The standard quantum
level (SQL) of the shot noise is obtained by subtracting their
photocurrents. The overall detection efficiencies accounting
for photodetector efficiencies and losses in the optical paths
are 87% for the twin beams and 65% for the pump beam. Elec-
tronic noise is subtracted according to independent calibration
of its Gaussian distribution.

The photocurrent is spectrally analyzed by a demodulating
module, where the temporal signal is electronically mixed
with a sinusoidal reference (eLO) at � = 21 MHz, in this
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manner defining the frequency of spectral field modes of
interest. The result of electronic mixing is filtered by a 600 kHz
bandwidth low-pass filter and recorded by a computer with an
analog-to-digital board (NI PCI-6110). For each combination
of field quadratures on a single beam, 1000 spectral quantum
measurements are realized in order to obtain photocurrent
moments. In total, 450 different directions in the two-mode
phase space of each beam are probed with RD, providing a
total of 450 000 spectral quantum measurements per beam in
750 ms acquisition time.

Experimental results. We now examine the quantum
statistics of photocurrent fluctuations of the tripartite system
composed of the pump, signal, and idler light beams produced
by the above-threshold OPO. Our aim is to provide a
detailed study of the Gaussian or non-Gaussian character
of the resulting quantum states, which involve in principle
six spectral modes (a pair for each beam) [13]. Different
quantum states can be produced by controlling the input
pump power P = P0/Pth (measured relative to the threshold
power). For each of them, we probe with RD the quadrature
probability distribution in a given direction in the phase space
of quadrature observables.

We start by analyzing the quantum states of each individual
beam (two spectral modes) for different values of pump power
P . For each quantum state (i.e., each value of pump power),
we perform a thorough investigation of a single quadrature
direction in phase space. Focusing on a single quadrature
observable allows us to gather larger statistical samples
and analyze the Gaussian character of the photocurrent up
to the 14th-order moment (n = 7). The chosen quadrature
corresponds to the semiclassical amplitude quadrature and
is measured with the analysis resonators far off resonance
(� � 1). We collect N = 280 000 consecutive quadrature
quantum measurements for each quantum state. One such data
set, for P = 1.72, is presented in Fig. 3. From top to bottom on
the left column, idler, pump, and signal spectral photocurrent
fluctuations are shown. The corresponding histograms are
presented on the right column of Fig. 3. They show clear
visual agreement with the normal distribution.

Quantitative analysis of the Gaussian character of those
signals is first performed by considering the third- and

 

 Pump Power P (rel. to threshold)

 

FIG. 4. (Color online) Statistical analysis of third- (top) and
fourth-order (bottom) moments of single-beam photocurrent mea-
surements relative to the distribution standard deviation. Dashed lines
represent the values expected for Gaussian statistics. Green circle:
pump; blue up-pointing triangle: signal; red down-pointing triangle:
idler.

fourth-order moments, shown in Fig. 4. We define the third-
order moment dj = σ

{3}
j /s3

j , related to the skewness of the
probability distributions, and fourth-order moment kj =
σ

{4}
j /s4

j , akin to the kurtosis. Indices j = 0,1,2 indicate pump,
signal, and idler beams, respectively. For each value of pump
power, moments are extracted from the complete set of 280 000
data points. For Gaussian statistics, one expects dj = 0 and
kj = 3, as indicated by the black dashed lines on the figures.

According to the results in Fig. 4, all measured fourth-
order moments are compatible with the Gaussian distribution,
meaning that the photocurrent signal of any single beam
produced by the above-threshold OPO would fulfill Eq. (16)
within the experimental uncertainty. In the case of dj , the null
result does not provide information about the quantum state,
since it is a consequence of the phase mixing regime [Eq. (14)].
For both quantities the fluctuations observed in the data sets

FIG. 3. (Color online) (a) Raw data of quadrature amplitude fluctuations obtained with the analysis resonator far off resonance.
(b) Histograms of raw data with the normal density distribution superimposed.
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FIG. 5. (Color online) Statistical analysis of higher-order mo-
ments of single-beam photocurrent measurements relative to the
distribution standard deviation. Dashed lines represent the values
expected for Gaussian statistics. Green circle: pump; blue up-pointing
triangle: signal; red down-pointing triangle: idler.

are compatible with the statistical uncertainty of each data
point. The number N of quantum measurements per data trace
alone would allows us to establish the Gaussian character of
the photocurrent within 1/

√
N ≈ 0.2% of the moment values.

However, at these levels of confidence, we could notice by
the observation of higher than expected discrepancy between
different experimental data points the presence of a systematic
error affecting the mean value of the photocurrent. This error

source, probably caused by the photodetection electronics and
still under investigation, has been included on the overall
uncertainty of our data. The overall values and uncertainty
for pump, signal, and idler fourth-order moments considering
the whole data set as one are respectively k0 = 2.999(2),
k1 = 2.995(3), and k2 = 2.993(3). The third-order moments
are d0 = −0.0006(9), d1 = −0.004(2), and d2 = −0.003(2).

Moments of higher order are now probed in the same way,
by keeping the same choice of quadrature measurement (� �
1). Results are presented in Fig. 5. We consider the ratios
r {2n} = σ

{2n}
j /s2n

j , for n = 2,3,4,5,6,7, where sj is the standard
deviation of the quadrature probability distribution for beam
j . Values expected for a Gaussian distribution are indicated by
the dashed lines. All moments show perfect compatibility with
the Gaussian distribution within the experimental uncertainty.

Next we investigate whether different directions in phase
space could show deviations from the Gaussian statistics,
by varying resonator detunings. We consider the quantum
state produced by a fixed pump power P = 1.66(5) and
perform quadrature measurements with RD (similar results are
obtained for different values of P ). Figure 6 depicts RD the
spectral photocurrent of the three beams measured as functions
of resonator detunings. Formally, each value of � corresponds
to a direction of observation in the two-mode phase space.
Inset (a) shows the measured quantum fluctuations for the
pump beam as functions of � and normalized by its average
intensity (raw data), corresponding to single measurements of
the observable Îθ (�). Inset (b) presents the quantum noise
(variance of photocurrent fluctuations) for the three single

FIG. 6. (Color online) Statistical analysis as a function of resonator detuning. (a) Quantum fluctuations of the pump beam normalized by
the average intensity (raw data). (b) Spectral quantum noise produced by pump (green curve, bottom), signal (blue curve, middle), and idler
beams (red curve, top). (c) Fourth-order moments normalized by the standard deviation. (d) Third-order moment normalized by the standard
deviation. Dashed lines represent the exact value expected from Gaussian statistics. In (c) and (d), symbols follow the same code of Fig. 5.
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FIG. 7. (Color online) Statistical analysis of higher-order mo-
ments of two-beam photocurrent measurements normalized by the
standard deviation of the respective probability distribution. Dashed
lines represent the exact value expected from Gaussian statistics.
Sum (top) and subtraction (bottom) of single-beam photocurrents
are shown. Green circle: pump-idler combination; blue up-pointing
triangle: pump-signal combination; red down-pointing triangle:
signal-idler combination.

beams, relative to the SQL. Each point in the graph is a
realization of Eq. (9), averaged over 1000 single quantum
measurements. While the pump beam presents nearly shot-
noise limited quantum noise for all values of �, signal and idler
beams show excess noise in some directions in phase space
(in the semiclassical picture, the beams would be described
as possessing phase noise), determined by a theoretical curve
used to obtain the optimum values of mixed operator moments.
Figure 6 (c) presents the results of kj for different quadratures
of each single beam, obtained by complete scans in �. The
statistical uncertainty in this case is around 1/

√
1000 ≈ 3%,

and no significant deviation from the Gaussian statistics is
found. Inset (d) displays once more a null value of dj , a
consequence of the phase mixing regime.

Finally, the analysis of two-beam correlations, in which
four spectral modes are involved, is realized by changing
modal basis to the sum or subtraction of single-beam spaces.
We consider the operators Î (±,j,j ′) = (Î (j )

θ ± Î
(j ′)
θ )/

√
2, j 	= j ′,

constructed by the coherent combination of single-beam ob-
servables. In this manner, two-beam probability distributions
are probed with the tools employed above for single-beam
quadratures. In fact, the presence of non-Gaussian correlations

among beams would appear in this picture as non-Gaussian
probability distributions of single quadrature observables
related to two beams, by a change of modal basis. Figure 7
summarizes the experimental results. No deviations from the
Gaussian statistics can be observed for either the sum or the
subtraction of single-beam photocurrents in the data. This
fact supports our interpretation of the OPO quantum state as
symmetric in the S and A modal basis. According to Eq. (16),
the presence of any asymmetry between the local state of those
modes would generate non-Gaussian photocurrent.

We have also applied the Shapiro-Wilk normality test,
or W test, to further confirm the Gaussian character of
the photocurrent signals. The test determines the degree of
reliability by which the data sample would be incongruent
with Gaussian statistics (the null hypothesis). Shapiro and
Wilk proved the power of their test showing its capability
of detecting non-normality in small sets for a wide variety of
statistical distributions, including those with Gaussian kurtosis
values [23]. The test can be extended to sets containing
up to thousands of samples. We have performed numerical
investigations and found no advantage in the W test applied
to our data, for which approximately 1% accuracy is reached.
Due to our large sets of data (hundreds of thousands), the
analysis of higher order moments presented above reaches
better precision.

V. CONCLUSION

When employing the spectral analysis of the photocur-
rent to retrieve properties of the quantum state of light, it
is important to realize that the Gaussian or non-Gaussian
character of the observed photocurrent noise does not establish
by itself the type of statistics followed by the quantum state,
since the photocurrent formally results from an incoherent
mixture of two independent quantum measurements. Pure
photocurrent operators, better understood in the modal basis of
symmetric (S) and antisymmetric (A) combinations of spectral
sideband modes, can only be retrieved if both the optical and
electronic local oscillators are phase coherent to one another
during the whole process of quantum state reconstruction, in
an implementation of a doubly phase-coherent detection.

Thus the observation of Gaussian statistics of the spectral
photocurrent does not provide an unambiguous account of the
quantum state statistics with the usual incoherent detection. It
either strongly constrains the types of non-Gaussian quantum
states capable of producing the Gaussian photocurrent or
provides strong evidence for Gaussian and symmetric single-
mode quantum states of S and A modes. A similar scenario
holds in case non-Gaussian photocurrent fluctuations are
observed. While it is true that non-Gaussian quantum states
could generate the observed statistics, an incoherent mixture of
Gaussian processes may also produce non-Gaussian quantum
noise.

The use of the photocurrent statistics to reconstruct the
quantum state in general requires a priori knowledge. In
most experiments in quantum optics, at least one optical field
with “classical” characteristics participates in the quantum
dynamics, in which case a linearized interaction will favor
the interpretation of data as stemming from Gaussian and
symmetric quantum states in the S/A modal basis (if one
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of those characteristics is taken as assumption, the other
follows as consequence). In this scenario, the Gaussian
character of the photocurrent implies that the phase-locked
photocurrent components (i.e., the ones which would be
measured with doubly phase-coherent detection) are them-
selves stationary. Thus, even though phase mixing does
not allow direct verification of this property, the Gaussian
character of the mixed signal indirectly establishes it, as
long as the quantum state is assumed to be Gaussian (or,
equivalently, the possible non-Gaussian quantum states that
would lead to the same Gaussian photocurrent are dismissed as
implausible).

The correct reconstruction of the quantum state heavily
relies on this fact, since only then can the covariance matrix be
written in the simple form of an effective single-mode Gaussian
quantum state [14]. Most experimental work in quantum optics
employing spectral noise analysis assumes stationarity to hold
without explicitly mentioning it, a limitation that could be
a problem for the realization of CV quantum information
tasks on those systems. Another consequence of the fact
that most experiments with bright light beams will favor
the generation of Gaussian states of the field lies in the
interpretation of non-Gaussian photocurrent, which should
first be likely attributed to a mixture of two different Gaussian
distributions, one pertaining to the pure quadrature distribution
of mode S, and another to mode A. To further substantiate the
non-Gaussian character of the quantum state, the mixing of
two Gaussian processes must first be ruled out, for instance,
by showing that mixed Gaussian models fail to account
for the data. However, the unquestionable establishment of
non-Gaussian properties of the spectral quantum state would
require stronger evidence to be convincing, owing to its prized
value as a resource in the realization of quantum information
protocols.

We apply these considerations to perform a thorough
experimental investigation of the photocurrent noise from
pump, signal, and idler beams produced by the above-threshold
OPO. Our data establishes the photocurrent quantum noise of
those beams as Gaussian within a broad range of investigated
parameters. We analyze moments up to the 14th order for
individual beams and for cross-correlations. From a theoretical
point of view, the OPO dynamics above the oscillation thresh-
old is expected to be completely described by a linearized
model (since only bright beams drive the interaction), from

which Gaussian states of the field follow. The experimental
observation of Gaussian photocurrent together with the well
founded theoretical assumption of Gaussian quantum states
implies the symmetry of S and A local quantum states for
each beam. Our results demonstrate the stationarity of the
phase-coherent spectral photocurrent to justify the use of the
semiclassical model of quantum noise and thus validate our
previous analysis of multipartite entanglement in this physical
system [15–17]. Even though the complete state of the three
beams entails six modes for a given analysis frequency, it is
legitimate to restrict the analysis to three “effective” modes
(choosing either set of the equivalent S or A modes), by a
partial trace operation. The missing correlations between S
and A modes, a feature yet to be measured, can only increase
the strength of quantum correlations in case all six spectral
modes are considered.

We conclude that in most experiments a priori knowledge is
unavoidable to perform spectral quantum state reconstruction.
A few exceptions are experiments which use both the LO
and the eLO to generate the quantum state, as in Refs. [11,13].
Such an improved situation can be applied to all experiments in
quantum optics dealing with spectral modes by phase locking
the optical and electronic local oscillators, e.g., by employing
sub-Hz linewidth lasers [24], to realize doubly phase-coherent
detection. This would ensure the phase coherence of all
oscillators employed to extract the spectral quantum noise,
making the quantum measurement associated with the spectral
photocurrent a pure observable. We view such experimental
improvement as essential to achieve assumption-free real-
ization of quantum information protocols with CV spectral
modes, particularly in the case of quantum protocols requiring
measurements of pure observables to be used as feedback to
control the quantum state.
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