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Determining which quantum measurement performs better for state estimation
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We introduce an operational and statistically meaningful measure, the quantum tomographic transfer
function, that possesses important physical invariance properties for judging whether a given informationally
complete quantum measurement performs better tomographically in quantum-state estimation relative to other
informationally complete measurements. This function is independent of the unknown true state of the quantum
source and is directly related to the average optimal tomographic accuracy of an unbiased state estimator for
the measurement in the limit of many sampling events. For the experimentally appealing minimally complete
measurements, the transfer function is an extremely simple formula. We also give an explicit expression for
this transfer function in terms of an ordered expansion that is readily computable and illustrate its usage with
numerical simulations and its consistency with some known results.
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I. INTRODUCTION

Quantum-state estimation constitutes a broad class of
tools catered to the verification and diagnostics of states for
quantum systems, a necessary step in accessing the validity
of quantum protocols. Thus far, much work has been devoted
to the development of statistical methods for quantum-state
reconstruction [1-3], to the investigation of the tomographic
accuracies of quantum-state estimators [4—6], to improving
the performance of state reconstruction under difficult circum-
stances (such as large Hilbert-space dimensions, noisy and
ill-calibrated detections, etc.) with various approaches [7-10],
and to the assignment of statistical measures that quantify the
error and reliability of state estimators [11,12], and so forth.

This article focuses primarily on the comparison of different
quantum measurements available for state estimation, which
is yet another important aspect in this field. In particular,
a value of a certain statistically meaningful quantity is
assigned to every quantum measurement that serves as a
gauge on their tomographic performance. The ascription
of a measurement [13—15] with a meaningful number that
quantifies its performance is not a recent proposal. In optics,
one can describe the performance of an optical system with the
optical transfer function [16], which incorporates the details of
signal propagation from every single component in the optical
system to the image plane. In quantum-state estimation, it is
also useful to introduce such a function to every quantum
measurement. Further assessment of tomographic accuracies
can be subsequently carried out by other means (see, for
instance, Ref. [17]).

II. BACKGROUND

In quantum-state estimation, the unknown quantum state p
of a source is reconstructed from a set of measurement data
supplied by the quantum measurement apparatus, which is
mathematically represented by a probability-operator measure
(POM) consisting of M positive operators IT;: )" ;=1
For a D-dimensional Hilbert space, p can always be written
as a linear combination of D? Hermitian, trace-orthonormal
basis operators, where one operator is a multiple of the identity
1/ VD, and the rest of the D> — 1 operators £2; are traceless.
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This operator basis conveniently incorporates the unit-trace
constraint of the state, tr{p} = 1, and organizes all the
relevant D? — 1 independent state parameters to be estimated.
The correct probabilities p; = tr{p I1;} for the source and
apparatus are related to the state p according to Born’s rule,
which translates to a linear matrix equation p’ = Ct, where t is
a column of D? — 1 independent coefficients tr{p ©;}, p’ has
components p; — tr{I1;}/D, and the central object of our dis-
cussion, the M x (D? — 1) measurement matrix C with entries
Cji = tr{IT; €}, provides complete information about the
apparatus. Throughout this discussion, we shall consider only
informationally complete POMs (M > D?), that is, POMs that
uniquely characterize p. A POM is minimally complete if it
contains M = D? outcomes that are all linearly independent.

There exists a well-known concept of the condition number
(ratio of the largest to the smallest singular value of the
measurement matrix) that quantifies the error stability for the
experiment. The preferred measurement is usually one that
maximizes this stability or, in other words, has the smallest
condition number « out of the conceivable choice. It can be
easily shown that this number is simply inadequate to assess
the tomographic accuracies of state estimators, and such a
preferred choice is not always the one that maximizes the
tomographic accuracy. The pitfalls in comparing different
quantum measurements solely by studying the condition
numbers of C are discussed in Sec. 1.

The appropriate quantity to consider for tomographic-
accuracy estimation is the trace of the inverse of the scaled
Fisher information matrix F(p) =C"™P~!'C for the usual
multinomial detection statistics (Sec. III) as the meaningful
quantity in determining the performance of a POM, with
P = diag(py,p2, - - -, pu)- This quantity is well motivated.
First, if the unknown state p is full rank, which is always
the case in realistic experiments, the matrix trace Sp{F (0™}
gives the scaled (over sampling events) optimal tomographic
accuracy for all unbiased state estimators p in the limit of large
sampling events. This accuracy is given as the Hilbert-Schmidt
distance between p and p, which is a natural distance for
quantum states and has been investigated in, for instance,
Refs. [4-6]. Second, the scaled Fisher matrix F(p) possesses
an important physical invariance property—it is invariant
under channel duplication (Sec. I). Given a POM with M
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outcomes, no additional information is obtained if any part of
this POM is precisely duplicated.

To define a measure that is independent of the unknown
state, one can perform an average over the state space to obtain
an averaged performance for a given POM. Since the state of
the source is unknown, and nearly pure states are typically
the quantum states of interest in many quantum protocols, this
average may be taken in an uninformative way [18], in the
sense that the Haar prior for pure states is used for the average.

III. MAIN RESULTS

A. A power series

Unfortunately, state averages on F(p)~' are generally
difficult to calculate directly, and this difficulty begins with the
fact that (C™P~'C)"' =C~P(C")" does not hold in general
for generalized inverses C~ of C. Instead, the average is carried
out termwise on an expansion of the right-hand side of the
identity

(1

Sp{F(p)"}=Sp{f_l}+Sp{ *AP }

1-YAP

in powers of AP =P —P. Here, P is the diagonal
matrix of probabilities p; = tr{I1;}/D for the maximally
mixed state, F = F(1/D), X = PICFCP ' andy =
PcF'ecP ' —P . The positive matrices X and —)Y
have several interesting properties. First of all, they are mu-
tually conjugate orthogonal: XPY =0 = YPX. The matrix
—7P turns out to be the generalized inverse of Y: YPY = -)Y.
The matrix Y also belongs to the kernel of C:C"Y = 0 = JC.

A power series for Sp{F(p)~'} exists only when the
eigenvalues of |YAP| are sufficiently small. It is possible to
take advantage of the scaling transformation F(ap) = F(p)/«
to obtain convergence series for any p by setting o < op =
1/(Y ||, max;{tr{IT;}}) (see also Sec. III). After taking the
Haar average of this series, we define the tomographic measure
for any POM as

qTTF({IL;})
= Sp{F(p)~"}
| M
= 2
=SlF )+ 5 Z X5 YVirGi, + 0 @)
zeroth order 1=
second order
where Q(j'f;z j = tw{Il; I, .. T1; } are elements of high-

order Gram matrices, which is the main result of this article
(Sec. IV). As this function keeps track of all connections
related to the quantum measurement with the average optimal
tomographic accuracy of an unbiased p, we shall name
it the quantum tomographic transfer function (qQTTF) for
convenience, in a similar spirit as the optical transfer function
in classical optics. Terminologies and acronyms aside, one
should remember that this function was defined on a solid
conceptual framework in statistics.

One can now understand the fallacies arising from
solely studying the condition number of C. In its real
singular-value decomposition, C = OSO'", with O'O =
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1=0'0"=0"0, 8 and O of dimensions (D> — 1) x
(D? — 1) and O of dimensions M x (D* — 1), the quantity
Sp{F(p)~'} = Sp{(SO™P~'0S8)~'} depends on both the
diagonal matrix S of singular values, as well as the orthogonal
matrix . While S loosely describes the distribution of
tomographic weights given to the measurement outcomes, the
matrix O contains information about the mutual relationships
among these outcomes. The complete information about the
optimal tomographic accuracy of o that is carried by these
two mathematical objects is distributed throughout the series
in Eq. (E3), with part of this information manifested in the
higher order Gram matrices G. Leaving any of these objects
out of the description renders any POM comparison potentially
illegitimate. For instance, it is a simple matter to find two
POMs such that the one with the bigger « value (weakly
conditioned) gives the lower qTTF value (greater optimal
tomographic accuracy).

The higher-order terms in Eq. (E3) determine the difference
between the averaged quantity and the quantity evaluated
at the maximally mixed state. The formula shows that this
difference can only be accounted for by Gram matrices of
all orders. The comprehensive role of these Gram matrices
is now clear—they contain all crucial mutual relationships
among the measurement outcomes that enter the tomographic
error propagation to 0, a characteristic that is analogous to
the mechanism behind the optical transfer function, which
encompasses all relative phase information of the signal
through the individual components of an optical system.

B. Closed-form formulas for typical measurements

There exists an extremely simple formula for the qTTF
when evaluating minimally complete POMs. For POMs of
this type, since Y resides in the kernel of C, the rank
of ) must therefore be one, for C now has a (D> — 1)-
dimensional row space. Since ) j Cjr = 0, Y must therefore
be a negative matrix with entries all equal to minus one in the
computational basis: J; x = —1. Then, we have YPY = =Y
for any probability matrix P so that the second term in
the right-hand side of Eq. (1) has a finite series expansion
consisting of only the two lowest-order terms in AP. Thus,
Eq. (E3) with o = 1 greatly simplifies to

AR b = Sp{Fop} ~ 145 )
for any minimally complete POM {I1 }\;y. For overcomplete
POMs made up of D + 1 bases (minimally complete bases)
of D rank-one outcomes [M = D(D + 1)], the qTTF is also
completely described by only the first two terms of Eq. (E3)
with @ = 1, as it can be shown that ) is a rank-(D + 1)
projector that takes a block-diagonal form, with D + 1 blocks
each of dimensions D x D and all matrix elements equal to
—(D + 1) for every block, so that again YPY = —) and

Sp{C€'C)")
(D+1)2
The formulas presented in this article can be verified to be
consistent with known results for highly symmetric measure-

ments. To this end, we note that the trace of the scaled Fisher
matrix Sp{F} < D(D — 1) evaluated at P =P is bounded

qTTF{IT; by pases) = )
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from above by D(D — 1) for any informationally complete
POM. With the help of the inequality Sp{.A}Sp{A~'} >
(dim {A})?, which is saturated when A is a multiple of the
identity, we find that the zeroth term in Eq. (E3) is bounded
from below inasmuch as

D+ 1)(D* -1
( +); )’ 5)

which again holds for any informationally complete POM. For
minimally complete POMs, the equality in Eq. (5) is attained
for symmetric informationally complete (SIC) POMs, where
F = Fyn = Fyc = D/(D + 1) is a multiple of the (D? — 1)-
dimensional identity. We thus obtain the well-known lower
bound for the qTTF evaluated with SIC POMs of dimension
D to be

Sp{F '} >

qTTF({I;}sic) = D*+D -2 (6)

for minimally complete POMs, as reported in Refs. [4-6].
When D is a prime power, it can be shown that any complete set
of mutually unbiased bases (MUB) will also saturate Eq. (5),
and since the inequality Sp{A} < apax dim{A} with respect
to the largest eigenvalue any.x of A is saturated when A is
a multiple of the identity, the right-hand side of Eq. (4) is
correspondingly minimized to

qTTF({ITwes) = D> — 1 < qTTF({I;}c)  (7)

over all minimally complete bases [6].

C. General procedures to handle the power series

For any other kind of overcomplete POMs, there is no
simple closed-form expression for the series of qTTF in
Eq. (E3). Although it is straightforward to obtain higher
order terms as desired, the computation becomes exponentially
exhaustive as either M or D increases. We shall now highlight
the viable procedures for numerically computing the first few
computable terms of the qTTF for different regimes of M
and D. If both M > D? and D are not too large, then the
qTTF of any POM can be found by computing higher-order
corrections in Eq. (E3) for o &~ «y. If D is large, so that the
computation of high-order terms starts to become expensive,
and yet M is not too far from D?, it turns out that taking the sum
of the zeroth- and second-order terms for « = 1 gives good
approximation to the qTTF. The largest relative error—the
ratio of the difference between this approximation and the
actual qTTF to the actual qTTF—as M approaches infinity
is given by D/(D + 2) in Sec. E. One may also take o ~ «
and attempt to approximate the series with various models, but
numerical experience indicates that terminating the series up
to the second-order correction for « = 1 yields more accurate
approximations in this regime of M and D. If both M and
D are large, then performing a Monte Carlo calculation by
averaging Sp{F(p)~'} over a Haar ensemble of pure states is
the most economical way of computing the qTTF.

D. Figures and results

We supply two figures to illustrate the validity of qTTF
and its calculation procedures. Figure 1 shows, for various D,
the halved relative error of the second-order approximation
of qTTF (aqTTF) compared with the correct qTTF value
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FIG. 1. (Color online) A plot showing the halved relative error
of the aqTTF compared with the correct qTTF value. An average
over 500 random rank-one (r = 1) and full-rank (r = 4) POMs is
carried out separately to compute the data points for different u
and D. The full-rank POMs are generated by taking a convex sum
of rank-one POM outcomes and the maximally mixed state with
small admixtures (IT; = N;{|¥;) (1| 4+ 0.05/D}) with proper POM
normalization ;. To perform Monte Carlo computations of the
qTTF, a Haar set of 500 random pure states is used. For values of
u for which the number of POM outcomes M = 1 D? is reasonable,
such as the ones shown in the plot, the halved relative error decreases
with increasing dimension D. The plots indicate that the performance
of the second-order correction improves significantly for the slightly
mixed POM.

(averaged over many random POMs) obtained by averaging
Sp{F(p)~'} over aset of random pure states distributed accord-
ing to the Haar measure [19]. The one-half factor originates
from error propagation to p. We generate random POMs for
averaging that mimic those used in real experimental scenarios.
A set of M complex positive operators B; = A;A j /tr{A;A i}
is first generated, with the rank{I1;} x D matrices A; having
complex entries distributed according to the standard Gaussian
distribution. The resulting POM is obtained with its outcomes
given by II; = (Zj Bj)’l/sz(Zj B;)~'/? that sum to the
identity. The set of random outcomes generated this way tend
to have similar traces and this models the typical measurement
outcomes employed in an experiment, where the slight varia-
tion in the traces originate from systematic instrumental errors
and losses that result in nonunit detection efficiencies. Figure 1
tells us that for moderate M, the second-order approximation
for Eq. (E3) indeed works rather well even for large D. For ex-
tremely large values of M, the halved relative errors approach
the limiting value D /[2(D + 2)] for rank-one POMs. Witness-
ing this limit is, however, a rather impractical feat in any exper-
iment. Moreover, in a realistic situation, the POM outcomes
designed may have small amounts of white noise, and the
aqTTF is significantly more accurate. As the amount of white
noise increases, the zeroth-order term gets increasingly more
accurate and all other correction terms vanish since AP = 0.

Figure 2 compares the values of four quantities: the

condition number « for E /, the qTTF, the aqTTF, and the scaled
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FIG. 2. (Color online) Comparison of different tomographic
quantifiers for two chosen qubit (D = 2) overcomplete POMs of rank
one, with POM 1 associated with k; = 3.437 and POM 2 associated
with «, = 8.119. A Haar set of 500 random pure states are used for
computing the respective qTTFs for both POMs. For both POMs,
the averaged Hilbert-Schmidt distance between p and p is evaluated
with 50 random states, each of which is a pure state that is slightly
mixed with the maximally mixed state, so that the purity is fixed
at ~0.990. It is clear that the average tomographic performance of
the OU estimator over all the random states lies near the qTTF and
aqTTF for each POM, of course, which tells us that POM 2 performs
much better than POM 1 for nearly pure states, whereas an incorrect
conclusion would otherwise have been drawn by naively comparing
k1 and k, > k;. ML estimators (not shown) were also computed, and
their average performance also lie close to the respective qTTFs and
aqTTFs, as they should.

mean squared-error (MSE) of both the optimal-unbiased (OU)
and maximum-likelihood (ML) reconstruction schemes [20].
Comparisons are made between a fixed pair of POMs for each
of the different D values. This figure gives counterexamples
that confirm, once and for all, that the qTTF is the appropriate
quantity for estimating the tomographic accuracy for p, not «.

IV. CONCLUSIONS

To conclude, we have emphasized the importance of mean-
ingful statistical quantification of a quantum measurement
with the quantum tomographic transfer function, which is
based on the Haar average of the trace of the inverse Fisher
matrix that is equivalent to the optimal tomographic accuracy
for unbiased state estimators, as long as the unknown state
of the quantum source is not rank deficient, which is the
case in any experiment. This transfer function can be thought
of as a quantum analog of the optical transfer function for
optical systems. We gave an explicit expression for this transfer
function as a series [Eq. (E3)] that is readily computable, and
provided numerical evidence for the validity of the transfer
function in terms of tomographic accuracy estimation of
measurements. This function possesses physical invariance
properties that are crucial in properly judging the quality of
the measurement. Typically, one can take the second-order
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approximation of the transfer function as a good approximation
as long as the Hilbert-space dimension and the number of
outcomes are not too large, and in cases where the known
measurement outcomes are full rank due to slight perturbations
by white noise, this approximation improves in accuracy.
Despite the fact that Monte Carlo computation of the qTTF
applies for all quantum measurements, the closed-form for-
mulas [Egs. (3) and (4)] provide a better understanding about
the structural relationships between quantum measurements
and their performance.
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APPENDIX A: THE CONDITION NUMBER

There are proposals [13—15] that exploit the condition num-
ber for judging the quality of a given quantum measurement.
We shall briefly demonstrate the shortcomings in deciding
which quantum measurement_performs better by studying
the condition number ¥ of C, the M x D? measurement
matrix constructed from D? trace-orthonormal Hermitian basis
operators I';. First, there can exist two POMs with exactly
the same condition number that perform quite differently in
tomography. A perfect example would be the comparison in
tomographic performance between SIC POMs (M = 2% = 4)
and MUB for D = 2. Upon adopting the set of basis operators

I (1 0 I (-1 0
=20 1) =50 0)

I (0 1 I (0 —i

S
the respective C matrices for the two measurements can be
shown to have precisely the same condition number k =
1.7321. However, it is well known that the MUB outperform
the SIC POMs in terms of lowering the mean squared error
between a quantum-state estimator and the true state that
does not lie on the boundary [4-6], which is the typical
experimental situation. Thus, the condition number fails to
distinguish between two such measurements.

Second, apart from this insensitivity, the condition number
of C has a serious flaw as a tomographic measure—it is not
invariant under channel duplication. To illustrate this, we use
the basis operators in Eq. (A1) and first write down

0.3536 —0.2041  0.2041  0.2041
~ |03536 02041 02041 —0.2041
C= (A2)
03536  0.2041 —0.2041  0.2041
0.3536 —0.2041 —0.2041 —0.2041

for the qubit SIC POM with a set of basis operators, whose
singular values are {0.7071,0.4082,0.4082,0.4082}, such that
k = 1.7321. Next, the fourth outcome of this POM (last row
of C), say, is duplicated with equal proportions, so that the
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resulting 5 x4 matrix

03536 —0.2041  0.2041  0.2041

03536  0.2041  0.2041 —0.2041
C'=2|0353 02041 —0.2041 02041 (A3)

0.1768 —0.1021 —0.1021 —0.1021

0.1768 —0.1021 —0.1021 —0.1021

now has singular values {0.6700,0.4082,0.4082,0.3047}, with
k = 2.1988. Physically, duplicating any channel(s) cannot
affect the Fisher information gain. The condition number «,
and other functions of the singular values of C alone for that
matter, however, would report completely nonsensical results.

This little excursion tells us an important fact: The
condition number cannot be the full story in terms of
gauging tomographic accuracies corresponding to different
quantum measurements. While this number alone appears to
be consistent with the comparison in tomographic accuracy
for the three examples given in Ref. [13], for instance, one
can find other examples showing that the sole consideration
of the condition number is inadequate and can even give
contradicting conclusions for overcomplete measurements.
Nevertheless, the articles [13] and [14] accurately point out
that there are other crucial factors in determining the quality
of a quantum-state estimation protocol.

A word of caution: The articles [13—15] compare M x D?
measurement matrices, which we denote by C, for the usual
linear-inversion (LIN) tomography schemes, rather than com-
paring the M x (D?* — 1) C matrices discussed here. We point
out that the former approach of comparison is incompatible
with unit-trace LIN estimators, and this shall be elaborated in
Appendix B.

APPENDIX B: LINEAR-INVERSION TOMOGRAPHY

The usual linear-inversion tomography schemes involve op-
timizing some figures of merit of interest. A very common ap-
proach is the minimization of the squared error S = |f' — Ct|?,
where f' is a column of components f; — tr{I1;}/D and f;
are the frequency data for the POM outcomes obtained from
the experiment. It is well known that t = C~f is the solution
to the least-squares problem for this quantity, where C~ is
the Moore-Penrose pseudoinverse of C such that C~C = 1, so
that the state estimator p = 1/D + }_, 1;Q;. Therefore, it is
meaningful to directly compare C of dlfferent POMs.

In the other two proposals, the measurement matrices C of
dimensions M x D? are compared instead. The corresponding
least-squares problem involves minimizing the same quantity
S introduced in the previous paragraph. It is easy to see that
the Moore-Penrose pseudoinverses of these matrices do not
guarantee unit-trace state estimators, and that further enforcing
the unit-trace constraint will result in the new estimators being

nonlinear in C . The least-squares estimators can in fact be
shown to be

D2

F=>1IC +xC'C'ee ...

k=1
_1- JVDe'C f
VDe'C'C)le

)k,

(B1)
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where T, form a complete set of D’ Hermitian trace-
orthonormal basis operators and e = (1,0, . ..,0). The linear-
inversion estimators are thus complicated functions of these
measurement matrices, and direct comparisons of C do not
compatibly correspond to the assessment of the quality of
these estimators.

The straightforward reason is that the unit-trace constraint
is never taken into account automatically in minimizing S.
Rather, this constraint is to be additionally fulfilled, for
instance, by optimizing only the relevant D> — 1 independent
state parameters that are associated to traceless basis operators,
as was done in the main article, or by some other method.

APPENDIX C: FISHER INFORMATION MATRIX
FOR MULTINOMIAL STATISTICS

For multinomial statistics of a fixed sequence of data, the

likelihood is given by

L({n;}; p) =

[]r (C1)
k

In terms of the column ¢ of coefficients ¢;
p=1/D+ Z t;€2;, one can evaluate the term

for the state

d 0
o log L({n ) p) = ;nk o log i

M Ok
— Pk ot

(C2)

The well-known scaled Fisher information dyadic for p can

then be found to be
e 9pk Z mi opi
Pk 0t p ot

1
F(P)=ﬁ<

_ I Z iy dpg dpr
prpr Ot 0Ot

1 dp; Op;

at ot — p Ot Bt

~——————
=0

1 dp; 0
A N (C3)
pr 0t 0t

N =N 3 dp
=— P

Since

p = tr{pll;} =

tr{IT,;}
DJ + thtr{le'Il} s
J

0 _ vy, )

we find that
c'plc. (C5)

1
Flp) = ) (@) (1,9} =
1
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APPENDIX D: CONVERGENCE OF POWER SERIES
There exists a power series for the left-hand side of
X@P-P) ”
1-YeP-P)l I
(D)

1 _
Sp{F(p)™'} = E[Sp{F N Sp{

which is just a scaling transformation mentioned in the main

text, as long as the_ largest eigenvalue of Y(aP — P), denoted

by omad V(@P — P)}, is small. By using the inequalities
Omax{A — B} < max{omax (A}, 0max (B}},

Omax (AB} < Omax (A} omax (B}
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for any positive matrices A and B, it can be shown that
a < 1/(]Y |, max;{tr{I1;}}) is a sufficient condition for this
existence.

APPENDIX E: POWER SERIES

By noting that the Haar average
s,
®n = El
A ¢Dh oS, (EL)

over all pure statistical operators of a given Hilbert-space
dimension D is related to the permutation projector S, on
the n-fold D-dimensional symmetric subspace, it is possible

(D2) to derive the series
J
—1
qTTF({I;}) = Sp{F }+ aF, +a*(Fs— F)+aF+a’(Fy—2F;+ F) +20%(Fs — B) +aF+-- -, (E2)
N— —_—
zeroth order  second order third order fourth order
where
1 M
— (2)
= ooan 2 AeYisdin
Ji2=1
2 M M
(2) (3)
F; = D(D + 1)(D +2) Z ijjlyjljzgj,jz + Z Xj}jlyjljzyjthe{gjljzjs} ’
Ji.j2=1 JisJ2, j3=1
1 M M
2) 3)
Fy = (6-D) Z ijjlyjljzgjljz +12 Z Xij]yjlijijBRe{gj]ijg}

D(D + 1)(D + 2)(D + 3)

J1.j2=1

M
4) 4 4 2 2 2 2 2 2
+ Z Xj4jlyjlj2yj2j3yj3j4 (2 Re{gi'ljzj,%jh + g§1;2j4j3 + g(‘ ) } + g(‘ ) g(' ) + g( ) g(' ) + g(' ) g(' )

Jisj2sjzs ja=1

APPENDIX F: SECOND-ORDER CORRECTION TERM

For any nonadaptive quantum-state tomography scheme
using a fixed POM of M outcomes, the limiting tomographic
performance as M approaches infinity is defined by that of the
covariant measurement for a given Hilbert-space dimension D
[6], whose outcomes themselves form a Haar ensemble of pure
states. Therefore, the relative error between the approximate

Jisj2s 3=l

(E3)

J1J3j2Ja 127 jaja J1i37 2Ja JiJa szs)

(

qTTF, obtained via the second-order correction, and the actual
qTTF increases to the upper bound defined by this measure-
ment. To calculate this upper bound, it is enough to argue
that the zeroth-order term gives precisely the minimum value
(D + 1)(D? — 1)/D and show that the difference between the
approximate qTTF and the actual value is 4(D* — 1)/(D + 2).
Since the qTTF for the covariant measurement is equal to
2(D — 1), the relative error is given by D/(D + 2).
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