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We say that two (or more) state assignments for one and the same quantum system are compatible if they could
represent the assignments of observers with differing information about the system. A criterion for compatibility
was proposed in [Phys. Rev. A 65, 032315 (2002)]; however, this leaves unanswered the question of whether
there are degrees of compatibility which could be represented by some quantitative measure, and whether there
is a straightforward procedure whereby the observers can pool their information to arrive at a unique joint
state assignment. We argue that such measures are only sensible given some assumption about what kind of
information was used in making the state assignments in the first place, and that in general state assignments do
not represent all of the information possessed by the observers. However, we examine one particular measure and
show that it has a straightforward interpretation, assuming that the information was acquired from a particular
type of measurement, and that in this case there is a natural rule for pooling information. We extend this measure
to compatibility of states for k observers and show that the value is the solution to a semidefinite program. Similar
compatibility measures can be defined for alternative notions of state compatibility, including post-Peierls and
equal support compatibilities.
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I. INTRODUCTION

While there has been much debate about the exact nature of
the quantum state, the most persuasive interpretation is that the
state represents the knowledge or belief of an observer about a
given quantum system. Using the state, the observer can assign
probabilities to the outcomes of any possible measurement of
the system. From this point of view, a pure state represents a
state of maximal knowledge (or minimal ignorance) about
a system and a mixed state represents a description with
incomplete knowledge. Whether the state also reflects the
structure of an underlying physical reality is a subject of heated
debate, but at a practical level, we make state assignments
based on our available information.

If the state assignment reflects the information of an ob-
server, it follows reasonably that two observers with different
information will make different state assignments. This can
arise naturally in a number of ways; for example, one observer
may have access to certain measurement outcomes that another
observer does not, or may have additional information about
how the system was prepared. In [1] this question was
examined, and a necessary and sufficient condition was found
which must be satisfied by any two or more state assignments
which reflects differing information about the same physical
system, provided that the information underlying all of these
assignments is accurate and reliable.
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Classically, the state of knowledge about a system is
described by a probability distribution. New information about
the system can be acquired by performing a measurement,
and updating the state assignment based on a measurement
result is done using the Bayes rule. Classically, two probability
distributions can be compatible as long as they are not
actually contradictory. Furthermore, it is possible to pool the
information of different observers using only their individual
states of knowledge (probability distributions), provided that
the information of different observers is independent. In this
case, other information (such as how the knowledge was
obtained) is not required.

A reasonable question is whether similar conditions hold
in quantum mechanics. Can we take the state assignment to
reflect all information about a quantum system? If so, under
what conditions? What assumptions do we have to make about
how the information underlying the state assignments was
acquired?

In this paper, we look at different ways that a state can
be derived from underlying information and show that in
general the state assignment does not completely summarize
all the information used to derive it. In particular, we consider
two significantly different ways of constructing the state. In
the first case, the information is derived from measurement.
Each party obtains his or her information by making a
measurement. In the second case, each observer is given
classical information about how the system was prepared, for
example, from the third party who prepared it. The method
of pooling information becomes clear once we know how the
information was obtained, but different types of information
can result in very different ways of acquiring a joint state
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assignment. However, this does not rule out the possibility that
within a very sharply defined context, it may be possible and
useful to both define reasonable measures of compatibility
and give rules for for pooling state assignments.

There have been various studies concerning compatibility
of state assignments and pooling of information [1–8]. Quite
recently, the authors in Ref. [8] used the conditional states
formalism [9] to show that earlier results [2,4–7] can be recast
in this more general formalism. Our results differ from theirs
in that the main focus of this paper is an attempt to quantify
the degree of compatibility in the assigned quantum states.
We also note that the problem of pooling information so that a
unique joint state assignment can be derived is very sensitive to
the type of information used to make the state assignment in the
first place, and we illustrate this with a couple of representative
examples.

In Sec. II, we briefly describe the necessary and sufficient
condition for two different states to be compatible. We discuss
the possible existence of a compatibility measure (or measures)
that quantifies how much the two states are compatible.
In Sec. III, we show two significantly different ways of
obtaining the state assignment and argue that the state does
not encapsulate the whole information in general. In Sec. IV,
we explore a particular compatibility measure and show that
this measure is actually a distance measure between two
states, while in Sec. V we show how if we assume that
the state assignments were derived from a particular type of
measurement, there is a simple rule for forming a joint state
assignment. In Sec. VI we extend this measure to compatibility
of states for k observers and show that it is the solution of a
semidefinite program; we then define similar compatibility
measures for two more restrictive notions of compatibility,
post-Peierls (PP) and equal support (ES) compatibility. We
conclude the paper in Sec. VII.

A. Information, knowledge, and belief

It seems necessary to make a bit more concrete what we
mean when we talk about different observers have different
information about a given system. What, exactly, do we mean
by information in this context?

For clarity, we draw somewhat arbitrary distinctions be-
tween information, knowledge, and belief. When does it make
sense even to talk about compatibility and state pooling?
Arguably, two observers will only have a basis for comparison
between their state assignments if they start from a fairly
substantial base of shared knowledge about the system.

For example, the two observers might both know that the
given system was prepared by a given type of experimental
apparatus, or by performing a particular generalized measure-
ment. This would represent their shared knowledge base about
the system. Given that shared knowledge, the two observers
might still have different information about the system. For
instance, they might each have partial, but different, informa-
tion about the settings of the device that prepared the system;
or they might each have partial, but different, information
about the outcome of the generalized measurement. When we
refer to information in the discussion that follows, we will
mostly be using it in this rather restrictive sense—that is, some

amount of numerical data about the system, or more generally,
a probability distribution over such data.

If the two observers do not have a shared knowledge base
then it becomes harder to compare their state assignments, or
for such comparisons to even make sense. If two observers
think that the system was prepared in radically different ways,
then it is hard to see how they could share their knowledge,
even if their state assignments were almost identical. This
is where knowledge shades over into belief. A number of
authors have pointed out that two observers in possession of
the same facts might nevertheless arrive at quite different state
assignments if they have different prior distributions or priors.
(See, for example, [3].)

In most discussions of compatibility—including that in
this paper—we are implicitly assuming that the observers
with compatible state assignments begin with identical (or
very similar) priors about the system and a strong base of
shared knowledge. Their state assignments differ due to the
acquisition of different data about the system. While there
is certainly no necessity that different observers should start
from the same prior—quite the contrary—in practice, it is
quite common in science for observers to come to consensus
about particular experimental systems, generally by sharing
large amounts of data from repeated trials or preparations.

It would be interesting to study the idea of compatibility for
observers with different priors, and in particular, the process
whereby consensus can be reached, but that is beyond the
scope of the current paper.

II. COMPATIBLE STATE ASSIGNMENTS

Let ρA and ρB be two different assignments of density
matrix to the same system. If we assume that these assignments
were made by two observers with different information, what
restriction does this place on the state assignments? We call two
states that satisfy such a restriction compatible. A necessary
and sufficient criterion [1] for ρA and ρB to be compatible is
that the intersection of their supports is nonempty:

supp(ρA) ∩ supp(ρB) �= ∅. (1)

To show that this condition is necessary, we assume that the
information used to derive state descriptions ρA and ρB is
accurate and reliable. The two observers should then be able to
combine their information to produce a joint state description
ρAB . Since their information is accurate and reliable, any
measurement result which is ruled out (i.e., assigned zero
probability) by either party should also be ruled out in the
joint state ρAB . This then implies

null(ρA),null(ρB) ⊆ null(ρAB)

⇒ span{null(ρA),null(ρB)} ⊆ null(ρAB)

⇒ supp(ρAB) ⊆ supp(ρA) ∩ supp(ρB). (2)

Sufficiency is proven by constructing an explicit situation in
which ρA and ρB could arise as state estimates by two observers
making different measurements. We introduce purifications of
ρA and ρB with two ancillas and then combine them into a
single state. The given state then results from Alice and Bob
each measuring his or her own ancilla and getting a particular
outcome. See [1] for details.
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The compatibility criterion in Eq. (1) is robust against
sufficiently small distortions of the states. For example, given
ρA = |0〉〈0| and ρB = ε|0〉〈0| + (1 − ε)|1〉〈1|, the two states
remain compatible until ε → 0. Unfortunately, it is in some
ways not very informative. The criterion is an all-or-nothing
property; it says only that two state assignments could result
from observers with differing information but gives no clue
how likely it is that they did. This makes it natural to seek a
measure of compatibility that would indicate this likelihood.
The measure would be zero for incompatible states and go
up to 1 for identical states. We discuss the possibility of such
measures in Secs. IV and VI.

We note that other (more restrictive) notions of compatibil-
ity also exist; see Ref. [3] for an extensive discussion of this
subject and a variety of different compatibility criteria. We
briefly look at two of these other criteria in Sec. VI.

III. TYPES OF INFORMATION

We think of the state assignment as being based on
information possessed by the observer, but information can
come in many different forms. In this paper, we consider
two different types of information in particular: classical
information about the state preparation, in which the state
assignment is made using the maximum entropy estimate, and
information derived from measurements.

A. Maximum entropy estimate

If an observer acquires classical information about the
way a system was prepared, he or she can make a state
assignment based on the maximum entropy principle [10]:
choosing the state with the highest entropy consistent with
the given information. This takes a particularly simple form if
the information is in the form of an expectation value 〈Ô〉 ≡
Tr{Ôρ} = o. The observer can construct a state assignment by
maximizing the Von Neumann entropy,

S(ρ) = −Tr{ρ ln ρ}, (3)

under the following two constraints:

f (ρ) ≡Tr{Ôρ} = o,

g(ρ) ≡Tr{ρ} = 1.
(4)

This is a constrained maximization problem and can be solved
with Lagrange multipliers:

∂S(ρ)

∂ρ
+ λ1

∂f (ρ)

∂ρ
+ λ2

∂g(ρ)

∂ρ
= 0

⇒ ln ρ + Î = λ1Ô + λ2Î . (5)

The estimated state is

ρ̃ = eλ1Ô+(λ2−1)Î

Tr{eλ1Ô+(λ2−1)Î } , (6)

where we can solve for λ1 and λ2 from (4). This assignment
is obviously based on the observer’s knowledge; further
information can alter the assignment. If an additional piece of
information 〈Â〉 = a is given, the state changes accordingly:

ρ̃ ′ = eλ′
1Ô+λ′

2Â+(λ′
3−1)Î

Tr{eλ′
1Ô+λ′

2Â+(λ′
3−1)Î } . (7)

If Alice and Bob wish to form a joint state assignment,
they must share all the information they have about the state
preparation and perform a maximum entropy assignment with
this shared information. It is easy to see that as long as all the
information provided to Alice and Bob is consistent—that is,
that there exists a state with all those expectation values—their
state assignments will be compatible. Moreover, the entropy of
the joint state ρAB must be less than or equal to the entropies of
the individual states: S(ρAB) � S(ρA) and S(ρAB) � S(ρB).

B. Learning measurement results

Consider now a different situation. Suppose that Alice and
Bob share two halves of an entangled state, which we write in
the Schmidt decomposition:

|�〉 =
∑

j

λj |ψj 〉 ⊗ |φj 〉,

with 〈ψj |ψk〉 = 〈φj |φk〉 = δjk . Alice has the reduced state

ρA = TrB{|�〉〈�|} =
∑

j

λ2
j |ψj 〉〈ψj |, (8)

which can accurately predict the probabilities for any mea-
surement she makes. Suppose Bob makes a measurement in
the basis {φj } and gets outcome k. Then Alice’s state should
immediately become ρA = |ψk〉〈ψk|. She cannot, however,
update her state until she learns the outcome of Bob’s
measurement. Until that point, her original state assignment
ρA is the best she can make.

C. The state does not include all information about the system

As mentioned in Sec. I, the state itself does not always
include all the information an observer has about a system. For
information acquired from measurements, this was shown by
Jacobs [2], who demonstrated that if ρA and ρB are compatible
state assignments, which are assumed to be obtained from the
results of measurements by Alice and Bob, then it is possible
to construct an initial state and choice of measurement such
that the joint state assignment ρAB can be any density matrix
at all, so long as supp(ρAB) ⊆ supp(ρA) ∩ supp(ρB). Thus, in
general more information is needed than ρA and ρB in order to
construct ρAB ; ρA and ρB do not encapsulate all of Alice and
Bob’s information about the system.

Here we give another example showing that the same is true
if Alice and Bob make their state assignments using classical
information and the maximum entropy principle. Suppose
Alice assigns the following state to a qubit:

ρA = (Î + aX̂ + bŶ + cẐ)/2, (9)

where a2 + b2 + c2 � 1. This same state can be obtained from
classical information in many ways. Here are two examples:

1. 〈aX̂ + bŶ 〉 = a2 + b2, 〈Ẑ〉 = c,

2. 〈bŶ + cẐ〉 = b2 + c2, 〈X̂〉 = a.
(10)

Suppose that Bob makes his state assignment,

ρB = (Î + dŶ )/2, (11)

based on the classical information that 〈Ŷ 〉 = d. We can readily
see that ρA and ρB are compatible. (Indeed, any two qubit
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states are compatible unless they are two distinct pure state
assignments.) Now suppose that Alice and Bob share their
information to obtain a joint state assignment ρAB . The joint
state in cases 1 and 2 will be different:

1. ρAB = (Î + (a + b(b − d)/a)X̂ + dŶ + cẐ)/2,
(12)

2. ρAB = (Î + aX̂ + dŶ + (c + b(b − d)/c)Ẑ)/2.

This shows that knowledge of the state assignments ρA and
ρB alone is not sufficient to know how to pool information
in the case where the information is classical as well. The
state assignment does not encapsulate all information about
the system.

IV. MEASURES OF COMPATIBILITY

The compatibility criterion of [1] is all or nothing: either
two states are compatible, or they are not. This includes
extreme examples such as ρA = |0〉〈0| and ρB = ε|0〉〈0| +
(1 − ε)|1〉〈1|. For any ε > 0 these states are compatible, even
though they are practically orthogonal for very small ε. This
leads to the natural question: Can we define measures of
compatibility? Intuitively, while compatibility indicates that
two state assignments could represent different information
about the same system, such a measure would represent a
probability that they actually do. We should therefore expect
the measure to go from 0 for incompatible states to 1 for
identical states, with some kind of smooth behavior in between.

From our earlier discussion, some caveats are clearly
needed. Since the states do not represent all information about
the system, it is impossible to truly measure the compatibility
based on the state assignments alone. For example, it is
impossible to arrive at compatible state assignments using clas-
sical information, which is contradictory; e.g., the two pieces
of classical information 〈X̂〉 = 0.5 and 〈X̂〉 = −0.5 lead to
compatible state assignments for a qubit but are obviously
inconsistent with each other. (This inconsistency comes from
the assumptions of the maximum entropy procedure, where
these expected values are taken to be guaranteed properties of
the state.) Therefore, in defining a compatibility measure, one
must implicitly assume that the state assignments represent
information which was acquired in a consistent manner—for
example, by Alice and Bob performing measurements on the
same system.

One such measure was proposed by Poulin and Blume-
Kohout, in close analogy with the measure of distance
between classical probability distributions [4]. The correct
interpretation of this measure is not exactly clear in the
quantum case, but it does have the right sort of qualitative
behavior and reduces to a known measure in the case of
essentially classical states (i.e., when ρA and ρB commute). In
other cases, however, it is somewhat difficult to compute, since
it requires taking a minimum over all pure state decompositions
of density matrices.

Here we examine a different compatibility measure, which
was originally suggested by Kitaev [11]. The original idea is
to find a positive matrix R̂ that “fits” into both the state matrix
ρA and ρB to the greatest degree possible.

Definition 1 (Compatibility measure). Let ρA and ρB be
compatible states. Consider all positive matrices R̂ � 0 such

that

ρA − R̂ � 0,

ρB − R̂ � 0.
(13)

The compatibility measure K is defined as

K(ρA,ρB) = max
R̂�0

TrR̂. (14)

We have found no simple formula for this measure, in
general. (In Sec. VI we show that this value can be found as
the solution of a semidefinite program.) However, it is possible
to upper bound K(ρA,ρB) with the trace distance between ρA

and ρB [12]:

K(ρA,ρB ) � 1 − D(ρA,ρB),

where D(ρA,ρB) is the trace distance:

D(ρA,ρB) ≡ 1
2 Tr{|ρA − ρB |}. (15)

To see this inequality, define R̃ = ρA − R̂. We can rewrite
Eqs. (13) and (14) in terms of R̃:

R̃ � 0,

ρB − ρA + R̃ � 0,

ρA − R̃ � 0,

(16)

and

K(ρA,ρB) = max
R̂�0

Tr{R̂} = 1 − min
R̃�0

Tr{R̃}. (17)

This just rewrites the original definition of the measure in
terms of the new operator R̃. However, we can put an upper
bound on this quantity by relaxing the third requirement above
that ρA − R̃ � 0. In this case, we can find an exact expression
for (17). From [13], we know that ρB − ρA can be expressed
as

ρB − ρA = Q̂ − Ŝ, (18)

where Q̂ and Ŝ are positive operators with orthogonal support.
This implies that |ρB − ρA| = Q̂ + Ŝ. We can satisfy (16) and
minimize Tr{R̃} by choosing

R̃ = Ŝ = 1
2 (|ρB − ρA| − ρB + ρA). (19)

Then

K(ρA,ρB) � 1 − 1
2 Tr{|ρB − ρA|} = 1 − D(ρA,ρB). (20)

It is easy to see that this measure has the right qualitative
behavior for a measure of compatibility: it goes from 0 for
incompatible states (where, in general, the above bound will
be nonzero unless the states are actually orthogonal) to 1 for
identical states (at which point it will agree with the above
bound).

We now show a couple of examples of this compatibility
measure for states of qubits, in which the information which
produces the state assignment is either classical information
about the preparation or the results of measurements. For our
first example, suppose that Charlie prepares the pure state

ρ = (Î + r · ̂σ )/2,
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FIG. 1. (Color online) Compatibility measure between KA,B ver-
sus angle θ .

where r = (rx,ry,rz) and ‖r‖ = 1. Define an Hermitian oper-
ator Ô = cos(θ/2)Ẑ + sin(θ/2)X̂. Charlie gives the expecta-
tion values o = 〈Ô〉 = rx sin(θ/2) + rz cos(θ/2) to Alice and
x = 〈X̂〉 = rx to Bob. Alice’s and Bob’s state estimates are,
respectively,

ρA = (Î + o · Ô)/2 = (Î + rA · ̂σ )/2,
(21)

ρB = (Î + x · X̂)/2 = (Î + rB · ̂σ )/2,

where rA = (o sin(θ/2),0,o cos(θ/2)) and rB = (rx,0,0). The
measure K(ρA,ρB) is then

K(ρA,ρB ) = 1 − ‖rA − rB‖
2

= 1 − 1

2
cos(θ/2)

√
r2
x + r2

z . (22)

This expression obviously depends both on Charlie’s choice of
state and his choice of observables to pass on to Alice and Bob.
If we average this over all possible pure states, then we get a
simple result which depends only on the choice of observable:

KA,B = E‖r‖=1
[
1 − 1

2 cos(θ/2)
√

r2
x + r2

z

]

= 1 − (1/3) cos(θ/2). (23)

We plot this in Fig. 1. The states ρA and ρB become identical
when θ = π and therefore are perfectly compatible.

In our second example, the information comes from
measurement. Assume that the initial state is unknown to Alice
and Bob so that they assume a completely mixed state. That
is,

ρ0 = Î /2.

Alice performs projective measurement {A0,A1} with outcome
0 and 1,

A0 = |�0〉〈�0|, A1 = |�1〉〈�1|, (24)

where |�0〉 = cos θ
2 |0〉 + sin θ

2 |1〉 and |�1〉 = − sin θ
2 |0〉 +

cos θ
2 |1〉. For θ = 0 this is a Ẑ measurement; for θ = π/2
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FIG. 2. (Color online) Compatibility measure KA,B versus
angle θ .

it is an X̂ measurement. Bob also performs a projective
measurement of X̂:

B0 = |+〉〈+|, B1 = |−〉〈−|. (25)

However, as in the paper of Jacobs [6], we assume that Alice
and Bob don’t know the order of their measurements and that
they each know only the outcomes of their own measurements.
Their state estimates are thus

ρi
A =

1∑
j=0

BjAiA
†
i B

†
j + AiBjB

†
jA

†
i

pi

, pi =
1∑

j=0

pij ,

(26)

ρ
j

B =
1∑

i=0

BjAiA
†
i B

†
j + AiBjB

†
jA

†
i

pj

, pj =
1∑

i=0

pij ,

where pij = Tr{BjAiA
†
i B

†
j + AiBjB

†
jA

†
i }. Let Ki,j =

K(ρi
A,ρ

j

B), and KA,B = E[Ki,j ] = ∑
i,j pijKi,j . Shown in

Fig. 2 is the compatibility measure KA,B versus the angle θ ,
where the compatibility measure saturates when θ = π/2.

One caveat should be inserted here. When the degree
of compatibility is high, this implies that Alice and Bob
each have information that leads to almost the same state
assignment. This might lead one to think that when the degree
of compatibility is low, their information is only marginally
consistent. But this need not be the case. Consider the example
given in Eq. (8). While Alice’s and Bob’s state assignments
are guaranteed to be compatible, it is possible for their
degree of compatibility to be quite low—particularly if Bob
makes a measurement with many possible outcomes. But their
information is clearly perfectly consistent; Alice merely lacks
one piece of data possessed by Bob.

As we will see in the next section, this compatibility
measure has a natural interpretation in terms of a particular
method for gathering information, which also leads to a natural
rule for pooling states.
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V. POOLING STATES

Jacobs showed [2] that one can construct different measure-
ment situations—that is, initial states, choices of measurement,
and measurement outcomes—which yield ρA and ρB when
Alice and Bob each have only partial knowledge of the
outcomes, but that upon sharing information will produce
any state ρAB at all, so long as the support of ρAB is in the
intersection of the supports of ρA and ρB . Given only ρA and
ρB , the problem of determining ρAB—information pooling—
is not uniquely solvable. However, if we make particular
assumptions about the type of measurement used to determine
ρA and ρB , we can single out a particular state ρAB by choosing
the measurement which maximizes the probability of the
outcome yielding ρA and ρB . This probability turns out to be
essentially identical to the compatibility measure K(ρA,ρB).

Assume that Alice and Bob have no information regarding
the quantum system, then the density matrix ρ0 is maximally
mixed,

ρ0 = Î /D,

where D is the dimension of the state space. Alice and
Bob carry out some joint measurement {M̂jk}, where∑

jk M̂
†
jkM̂jk = I , and Alice gets result j while Bob gets result

k. Then

ρA =
∑

k M̂jkM̂
†
jk∑

k Tr
{
M̂

†
jkM̂jk

} , ρB =
∑

j M̂jkM̂
†
jk∑

j Tr
{
M̂

†
jkM̂jk

} ,

(27)

ρAB = M̂jkM̂
†
jk

Tr
{
M̂

†
jkM̂jk

} .

Given fixed states ρA and ρB , consider all measurements which
yield ρA and ρB for some pair of outcomes of j and k. We show
that the particular measurement that maximizes the probability
of ρAB is the positive matrix that satisfies (13). This gives a
particular interpretation for the compatibility measure defined
in Sec. IV.

For simplicity, we start by considering only positive
measurement operators,

M̂
†
jk = M̂jk � 0, M̂2

jk ≡ Êjk.

We can lump together all the measurement outcomes other
than the “correct” one (i.e., the one that is assumed to actually
occur), so we can restrict ourselves to the case where j = 0,1
and k = 0,1, and

Ê00 + Ê01 + Ê10 + Ê11 = Î .

Without loss of generality, we assume that the outcome (0,0)
is the case of interest. Then we can rewrite (27) as

ρA = Ê00 + Ê01

Tr{Ê00 + Ê01}
, ρB = Ê00 + Ê10

Tr{Ê00 + Ê10}
,

(28)

ρAB = Ê00

Tr{Ê00}
.

Let a ≡ Tr(Ê00 + Ê01), b ≡ Tr(Ê00 + Ê10). We want to make
Tr{Ê00} as large as possible while keeping ρA and ρB fixed and
having Ê01,Ê10,Ê11 all still positive. This corresponds to the
measurement for which the particular outcomes (0,0) are most

probable. Assume first that Ê00 = cR, where c is a constant
and 0 < R < Î . Note that

supp(Ê01) ∩ supp(Ê10) = ∅. (29)

Otherwise, we can always move the intersection part to Ê00 to
make the above statement true. Since

Ê01 ∝ ρA − c

a
R � 0, Ê10 ∝ ρB − c

b
R � 0, (30)

together with (29), implies that

c

a
R = c

b
R = R̂.

Thus the constant c is chosen to be equal to a and b, and matrix
R = R̂. We have one last requirement:

Ê11 = Î − c(ρA + ρB − R̂) � 0.

From that, we can choose c to be the largest value such that
Ê11 � 0. From the solution for R̂ in Sec. IV, we see that

(1/c) = max
|ψ〉,〈ψ |ψ〉=1

1

2
〈ψ |(ρA + ρB + |ρA − ρB |)|ψ〉. (31)

The probability of (0,0) outcome is then

p00 = Tr{Ê00}
D

= c
Tr{R̂}

D
. (32)

We now show that the probability of (0,0) outcome will
be maximized if Tr{R̂} is as large as possible within the
constraints given by (13). Consider a different positive operator
R̂′ that satisfies

R̂′ − R̂ � 0, ρA − R̂′ � 0, ρB − R̂′ � 0. (33)

Defining Ê00 = cR̂′ retains the positivity of {Êij }, while the
probability of (0,0) outcome becomes

p′
00 = TrÊ00

D
= cR̂′

D
= p00 + c

Tr(R̂ − R̂′)
D

� p00. (34)

So to maximize the probability of the (0,0) outcome, we must
choose Tr{R̂} as large as possible subject to the constraints
of (13). This concludes our proof. The combined density
matrix will then be ρAB = R̂/Tr{R̂}, and the probability of
the outcome will be

p00 = c
K(ρA,ρB)

D
, (35)

where c is given in (31).
We have shown that we can actually find the particular

measurement such that when two parties pool their infor-
mation, the probability of the joint outcome is maximized.
Note, however, that this required us to make very particular
assumptions about the initial state (maximally mixed—the
state of maximal ignorance) and the type of measurements that
were done (positive measurement operators). With a different
initial state or more general measurements, this result need not
have held. Such assumptions must always be made to justify
a particular choice of compatibility measure and information
pooling procedure.

012107-6



COMPATIBILITY OF STATE ASSIGNMENTS AND . . . PHYSICAL REVIEW A 92, 012107 (2015)

VI. EXTENSION AND RELATION TO OTHER
COMPATIBILITY MEASURES

The measure of state compatibility in Sec. IV was defined
for two states, ρA and ρB . This can be generalized to a set
of k states, P = {ρi}ki=1, by defining the compatibility of the
set P , KBFM(P), to be the value obtained from the following
optimization:

Maximize:
R

Tr[R],

Subject to: R � ρi, 1 � i � k; R � 0.
(36)

While no simple formula is known for this measure for any
number of states k, the optimizations in Eqs. (13) and (36) are
examples of a general class of problems called semidefinite
programs (SDPs) [14,15]. These are efficiently numerically
solvable (e.g., using [16,17]).

Within the SDP formalism, for a given problem it is possible
to construct a related dual problem (see Appendix A for an
outline of how to do so). For the SDP in Eq. (36), this dual
problem is

Minimize:
M={Mi }ki=1

k∑
i=1

Tr[ρiMi],

Subject to:
k∑

i=1

Mi � I; Mi � 0, ∀i.

(37)

Any feasible solution to this dual SDP provides an upper bound
on KBFM(P) due to the property of weak duality that all SDPs
obey. Furthermore, the two optimal solutions will be equal.
(This can be shown using Slater’s theorem.) Note that the
set M = {Mi}ki=1 resembles a measurement, except that it
is required to sum to more than the identity in the SDP’s
constraints. It would be interesting if there was an operational
interpretation of this.

A. Post-Peierls (PP) compatibility

The SDPs given in Eqs. (36) and (37) are similar in form
to an SDP found in [18] where the task of state exclusion is
addressed. State exclusion asks the following: Given a system
prepared in an unknown state from a given set P = {ρi}ki=1,
when is it possible to perform a measurement on the unknown
state to conclusively rule out one of the preparations? If it is not
possible, how small an error can one make when attempting
to exclude a preparation by performing a measurement?

The task of state exclusion can be regarded as encapsulat-
ing another compatibility criteria, that of post-Peierls (PP)
compatibility [3]. For a set of states to be compatible in
the PP sense, for any measurement that could be performed,
there should exist at least one outcome that would occur with
nonzero probability for all states in the set. Hence, if state
exclusion is possible, the set of states is PP incompatible. How
small an error it is possible to make when attempting to exclude
a state gives a measure of the set’s PP compatibility.

We can use the SDP from [18] to define a measure KPP(P)
of PP compatibility for a set P as the result of the following
optimization:

Definition 2. The PP compatibility of a set P , KPP(P), is
defined as

Maximize:
N

Tr[N ],

Subject to: N � ρi, 1 � i � k; N = N †.
(38)

The associated dual to this SDP is

Minimize:
M={Mi }ki=1

k∑
i=1

Tr[ρiMi],

Subject to:
k∑

i=1

Mi = I; Mi � 0, ∀i.

(39)

By strong duality, the result of both optimizations, Eqs. (38)
and (39), will be the same. Notice the similarity in form to
Eqs. (36) and (38) on the one hand and to Eqs. (37) and (39)
on the other.

Caves et al. show that if a set of states is Brun-Finkelstein-
Mermin (BFM) compatible, then it is also PP compatible [3].
This can readily be seen from the two measures of compat-
ibility defined by Eqs. (36) and (38). If the set P is BFM
compatible, then KBFM(P) > 0 and there exists a positive
semidefinite R satisfying the constraints of Eq. (36) such
that Tr[R] > 0. Being positive semidefinite implies that R

is Hermitian, so by setting N = R we obtain an N satisfying
the constraints of Eq. (38) such that Tr[N ] > 0. This implies
that KPP(P) > 0 and the set is also PP compatible. Thus we
have the following result:

Theorem 1. KPP(P) � KBFM(P).

B. Equal support (ES) compatibility

A third compatibility measure for quantum states, stronger
than both BFM and PP compatibility, is that of equal support
(ES) [3]. A set of states P is ES compatible if and only if the
states have the same support. Again, we can define a measure
of ES compatibility KES(P) by an SDP:

Definition 3. The ES compatibility of a set P , KES(P), can
be defined as

Maximize:
λ

λ,

Subject to: λ

k∑
j=1

ρj � ρi 1 � i � k; λ � 0.
(40)

It can be shown (see Appendix) that the dual SDP is as
follows:

Minimize:
{αi }Di=1,M={Mi }ki=1

k∑
i=1

Tr[ρiMi],

Subject to:
D∑

i=1

αi � 1;

k∑
j=1

ρj

k∑
i=1

Mi �

⎛
⎜⎝

α1

. . .
αD

⎞
⎟⎠;

αi ∈ R, αi � 0, Mi � 0, ∀i.

(41)
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Again, the primal and dual SDPs will give the same value and
will return 0 if the states in P are ES incompatible, as they do
not have equal support.

Caves et al. show that if a set of states is ES compatible, then
it is also BFM compatible. Equivalently, if the states are BFM
incompatible, then they are also ES incompatible. This can be
rederived by comparing the SDPs in Eqs. (37) and (41). If P
is BFM incompatible, then there exists a set M that satisfies
the constraints of Eq. (37) such that

k∑
i=1

Tr[ρiMi] = 0. (42)

By picking the set {αi}Di=1 to be the eigenvalues of
∑k

j=1 ρj ,
({αi}Di=1,M) will be a feasible solution to the SDP in Eq. (41)
that returns KES = 0. Therefore P is also ES incompatible.
The fact that a feasible solution to the BFM dual SDP can be
used as the basis for a feasible solution to the ES dual gives
the following theorem:

Theorem 2. KBFM(P) � KES(P).

VII. CONCLUSIONS

The problem of state compatibility is rather subtle, because
state assignments do not perfectly reflect the information
used to create them. Different measures of compatibility (and
different methods of pooling information) may make sense for
different ways that Alice and Bob may have acquired their
information. It is certainly impossible to define a measure of
compatibility without some assumption about what type of
information was used to produce the state assignments. By
contrast, the qualitative criterion of [1] only requires that the
states might describe the same system.

Looking at different methods of acquiring information,
however, remains an interesting question. Within a particular
assumption about information gathering, it may make sense
to define measures of compatibility and methods of pooling
states, and these might be useful in practice. We defined
one such measure—which is the solution of a semidefinite
program—and one such pooling method, which have an
interpretation based on the assumption that the observers’ state
assignments derive from information acquired by measure-
ments of a particular form. There is still considerable room for
development in this area.

Moreover, as discussed in Sec. VI, there are other quite
different approaches to the problem of state compatibility [3],
based on the existence of measurements that discriminate
between pairs of states; these approaches lead to an entire
hierarchy of compatibility conditions. We have shown that for
two of these criteria (PP and ES compatibility), we can define
measures of compatibility based on SDPs, just as for BFM
compatibility. It would be interesting to determine whether
compatibility measures for the other definitions given in [3]
(weak and weak′) also can be formulated as SDPs. The status of
these other ideas of compatibility leaves much to be explored,
and may be the key to understanding compatibility and the
ability (or inability) to achieve consensus between observers
with different priors.
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APPENDIX: SEMIDEFINITE PROGRAMS

Here we give the form of a semidefinite program and the
relation between the primal and dual problems as formulated
in [15]. An SDP is formed of three elements, {A,B,�}. A and
B are Hermitian matrices and � is a Hermicity-preserving
superoperator.

Using these, we define the primal problem to be

Maximize:
X

α = Tr[AX],

Subject to: �(X) � B; X � 0.
(A1)

The related dual is then given by

Minimize:
Y

β = Tr[BY ],

Subject to : �∗(Y ) � A; Y � 0.
(A2)

Here �∗ is the dual map to �, given by

Tr[Y�(X)] = Tr[X�∗(Y )]. (A3)

We now show that the SDP given in Eq. (41) is the dual to
that defined in Eq. (40). First we rewrite Eq. (40) so that it has
the same structure as Eq. (A1). This leads to

Maximize:
λ,{λi }Di=1

α = Tr

⎡
⎢⎢⎣

⎛
⎜⎜⎝

λ

λ1

. . .
λD

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
0

. . .
0

⎞
⎟⎟⎠

⎤
⎥⎥⎦.

Subject to: λ − λi � 0, ∀i;⎛
⎜⎝

λ1

. . .
λD

⎞
⎟⎠

k∑
j=1

ρj � ρi, ∀i;

(A4)
λ � 0; λi � 0, ∀i.

Comparing Eq. (A4) with Eq. (A1), we see that
1. A is a D + 1 by D + 1 matrix:

A =

⎛
⎜⎜⎝

1
0

. . .
0

⎞
⎟⎟⎠. (A5)
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2. B is a D(k + 1) by D(k + 1) matrix where the first D entries on the diagonal are 0, and the remaining matrix is block
diagonal with the blocks given by ρi :

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
. . .

0
ρ1

. . .
ρk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

3. X, the variable matrix, is a D + 1 by D + 1 matrix:

X =

⎛
⎜⎜⎝

λ

λ1

. . .
λD

⎞
⎟⎟⎠. (A7)

4. Y is a D(k + 1) by D(k + 1) matrix whose first D entries on the diagonal we label by αi , and the remaining block diagonal
with the elements we denote by Mi :

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α1

. . .
αD

M1

. . .
Mk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A8)

5. The map � is given by

�(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ − λ1

. . .
λ − λD ⎛

⎜⎝
λ1

. . .
λD

⎞
⎟⎠ ∑k

i=1 ρi

. . . ⎛
⎜⎝

λ1

. . .
λD

⎞
⎟⎠ ∑k

i=1 ρi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A9)

Using Eq. (A3), we see that �∗ must satisfy

D∑
i=1

αi(λ − λi) +
k∑

i=1

Tr

⎡
⎢⎣Mi

⎛
⎜⎝

λ1

. . .
λD

⎞
⎟⎠

k∑
j=1

ρj

⎤
⎥⎦

= Tr

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

λ

λ1

. . .
λD

⎞
⎟⎟⎠�∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α1

. . .
αD

M1

. . .
Mk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (A10)

012107-9



TODD A. BRUN, MIN-HSIU HSIEH, AND CHRISTOPHER PERRY PHYSICAL REVIEW A 92, 012107 (2015)

and hence �∗(Y ) produces the following D + 1 by D + 1 matrix:

�∗(Y ) =

⎛
⎜⎜⎜⎝

∑D
i=1 αi ⎛

⎜⎝
−α1

. . .
−αD

⎞
⎟⎠ + ∑k

i=1 ρi

∑k
j=1 Mi

⎞
⎟⎟⎟⎠. (A11)

If we now substitute these elements into Eq. (A2), we obtain Eq. (41).
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