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In this work we generalize the Bochner criterion addressing the characteristic function, i.e., the Fourier
transform, of the Glauber-Sudarshan phase-space function. For this purpose we extend the Bochner theorem by
including derivatives of the characteristic function. The resulting necessary and sufficient nonclassicality criteria
unify previously known moment-based criteria with those based on the characteristic function. For applications of
the generalized nonclassicality probes, we provide direct sampling formulas for balanced homodyne detection. A
squeezed vacuum state is experimentally realized and characterized with our method. This complete framework—

theoretical unification, sampling approach, and experimental implementation—presents an efficient toolbox to
characterize quantum states of light for applications in quantum technology.
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Introduction. Quantum physics differs in various ways from
a classical description of nature. Exploiting these differences
became a major research interest for the aim of developing
quantum technologies. One principle scope of this field is
the formulation of measurable conditions, which are fulfilled
for classical systems but may be violated for nonclassical
systems.

In quantum optics, a fundamental approach for separating
classical light fields from quantum ones is defined in terms
of the Glauber-Sudarshan P function [1,2]. If a harmonic
oscillator system can be solely described by coherent states
and classical statistics, then its P function is a classical
probability density. Whenever the P function does not exhibit
such classical behavior, it identifies a nonclassical quantum
state [3]. In general, the P function can represent a quasiprob-
ability. For example, squeezed light cannot be character-
ized by a classical P function, as has been experimentally
confirmed [4,5].

In order to certify quantum features of states, a number
of nonclassicality criteria have been formulated. Here, let
us focus on two hierarchies of criteria which have been
successfully applied in theory and experiment to determine
the quantum character of light. Both of them prove the
nonpositivity of the P function in terms of experimentally
accessible quantities.

The first hierarchy is based on Bochner’s theorem and the
characteristic function (CF), being the Fourier transform of the
P function [6,7]. Bochner’s theorem expresses necessary and
sufficient conditions for a function to be the Fourier transform
of a classical probability density [8]. It presupposes only the
fact of the function to be defined for all arguments, so that it
is nonlocal in phase space. The CF can be directly sampled
from balanced homodyne detection (BHD) data, as shown
in experiments [9—12], uncovering nonclassical phenomena
through violations of the Bochner conditions. From the
hierarchy of the latter, only the second-order condition has
a clear geometrical interpretation. Higher-order conditions,
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however, fail to exhibit such a geometric meaning, since they
correlate a higher number of points in phase space.

The second hierarchy is formulated in terms of the so-called
matrix of moments (MOM) [13,14], containing the statistical
moments of the P function. Some second-order minors of
MOM are known to identify fundamental quantum effects,
such as sub-Poisson [15] or squeezed light [16]. The MOM,
however, includes more general quantum effects in terms of
higher-order moments (cf., e.g., [17-20]). Generalizations of
this method even allow one to identify entanglement [21,22]
and space-time-dependent quantum correlations [23].

In the present contribution we combine the advantages
of the CF and the MOM of the P function resulting in
a generalization of Bochner’s theorem. This leads to a
hierarchy of nonclassicality conditions embedding CF and
MOM nonclassicality probes. Beyond the established cases,
we obtain previously unknown conditions, which are shown
to outperform the previously known criteria for specific mixed
quantum states. In order to apply the proposed technique,
we derive sampling formulas to reconstruct derivatives of the
CF from BHD data. The path—starting with the theoretical
treatment of unified nonclassicality probes—is finalized with
our experimental implementation of the criteria for a squeezed
state. Even though such states have a demanding sampling
behavior, due to the exponential growth of their CF, the
nonclassicality of the measured state is confirmed with a high
significance.

Identification of nonclassical CFs. Any single-mode quan-
tum state of light can be given in Glauber-Sudarshan represen-
tation [1,2],

p= /dza P(a)|a) (el (1)

where P is a quasiprobability distribution. On the one hand,
if P is a classical probability density, the state p has a
classical counterpart. On the other hand, nonclassical states
are characterized through negativities in the quasiprobability
distribution, such as Fock or squeezed states. The P function
is often strongly singular [2] and, hence, not always experi-
mentally accessible.
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Even if the P function is a highly nontrivial distribution, its
CF,

d(B) = (Pt Fay = / d*a P(a)ef* P (2)

is a well-behaved function. Here : - : denotes the normal
ordering prescription, and & and 4 are the annihilation and
creation operators, respectively. Bochner’s conditions [§]—for
®(B) to be the CF of a classical probability distribution—were
reformulated for quantum optics in [7]. Namely, () is the CF
of a classical state if the following conditions are fulfilled: (i)
normalization, ®(0) = 1; (ii) hermiticity, &(—8) = P*(B) for
all 8 € C; and (iii) positive semidefiniteness: for any positive
integer N and arbitrary complex numbers By, .. .,Sy holds

= [D(B; — B} =1 = 0, 3)

i.e., the matrix & is always positive semidefinite. Since
conditions (i) and (ii) are valid for any state, the violation
of condition (iii) discerns classical and nonclassical states.

Employing Sylvester’s theorem, the non-negativity in (3)
can be written in terms of minors. For example, the second-
order nonclassicality condition (N = 2) reads as

detd =1—|®B)* <0, 4)

having a clear geometric interpretation. Whenever the absolute
value of the CF exceeds 1, the state is nonclassical [6]. Beyond
this second-order minor, there is no clear geometric view of
the higher-order conditions.

Generalizing Bochner’s theorem. For the desired general-
ization, let us recall that for any classical state and any function
f(a) holds

/ Lo P@) f@) > 0. 5)

The relation of the inner product of two functions g(«) and
h(a) to the inner product of their two-dimensional Fourier
transformed functions g(8) and h(B) is given from Parseval’s
theorem: 72 [ d’a g*(a)h(a) = [ d*B g*(B)h(B). Hence, the
non-negativity condition (5) can be written as

/ B S(B)AULFI(B) > O, (©)

using the Fourier transform of the function |f(a)|> which
is given by the autocorrelation function Aut[f](8) =
[ d*y f*(y) f(y + B). Choosing arbitrary non-negative inte-
gers m; and n; as well as complex numbers B; and f;, we can
define a function

N
FBY = £:05 0588 — By). (7)

Now, the classicality condition (6) reads as

nj+m; oltitm; an;+m;
Zﬁ DT T BB,y 20 (®)

i,j=1

(see the Supplemental Material [24] for details).
The definition of a generalized Bochner matrix (GBM),

[( 1))1 +m18n +m/8n/+m/ q>(13)|ﬂ=ﬁ,*ﬂj]jt/j:1’

€))
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and the vector f = (fi,...,fn)" leads to the generalized
version of Bochner’s theorem. Before formulating the details,
let us comment on some properties of d®. First, the GBM is
Hermitian [24]. Second, 1nequahty (8) may be formulated in
the compact form f FTad f > 0. Third, the elements of GBM
can be also given as

ni+m; ol +mj anj+m;
(=D o BBy
— (_l)ni+n/(:&flli+mjan +m,e[/3, —Bjlat—[Bi—B;I*a. ). (10)

Theorem. For any classical state it holds that the GBM is
positive semidefinite, i.e., d® > 0. |
Properties of the generalized theorem. As mentioned
earlier, a minor representation for the generalized Bochner
theorem can be formulated. Namely, a state is nonclassical,
if there exists a positive integer N, non-negative integers n =

(n1,....ny)" andm = (my, ...,my)", and complex numbers
B = (Bi.....Bx)" such that
detd® < 0. (11)

As an example, let us construct a nonobvious nonclassi-
cality criterion. The parameters N =3, m = 0,1,00T, 1 =
(0,0,1)T, and ﬁ (8.0.8)" for B € C produce the GBM:

@(0) dpD(B) - D(0)
0 =[ —9p®(—p) —0p0p-(0) —32.D(—P)|. (12)
—5P(0) —0;0(8)  —0p0p-D(0)

This previously unknown nonclassicality criterion (11) for the
GBM (12) combines moments and the CF of a nonclassical
state. That is, for 8 =0, the minor corresponds to the
quadrature squeezing condition [14,24]

det(@®)| ,_o=7 ([AR(@min)]*) (LA (Pman)]*1) <0, (13)

using the relation (10). The general relation between CF
and MOM nonclassicality conditions will be derived in the
following by applying the above theorem.

First, we may compare the GBM, Eq. (9), with the
corresponding MOM and Bochner matrices of the same
dimensionality N. A Bochner matrix &, defined in Eq. (3),
corresponds to a GBM 0® in Eq. (9), if we set the integers

asmy=---=my =n; =---=ny = 0. Thus, the matrix
elements of the GBM reduce to
(=050 (B y_y_p, = @B = Bp). (14

Since constraints (i) and (ii) of a CF are already fulfilled, this
special case of the non-negativity of the GBM is equivalent
to condition (iii) in inequality (3). Consequently, & > 0
implies ® > 0, which is already necessary and sufficient
to characterize a classical state [7]. Note that the Bochner
criterion is nonlocal in phase space, since it correlates distant
points §; and B; (i # j).

Second, a MOM corresponds to a GBM, if we choose
B1 = --- = Bn = 0in (10), since the matrix elements simplify
to 9 = [(—1)4t" (&Jf”"*’"f&”f*’"")]fvjzl. Using the represen-
tation of the non-negativity in Eq. (8), we obtain

N

Yo fifatanty > o, (15)

i,j=1
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with f = (=1)™ fi fork = 1, ...,N. In this special case, the
generalized Bochner theorem coincides with a MOM criterion
for annihilation and creation operators [14]. Since the MOM is
represented through derivatives of the CF at the origin, 8 = 0,
they are local characteristics in phase space.

The previously independent approaches of the CF and the
MOM have been unified and generalized by our method.
Nonlocal Bochner and local MOM nonclassicality probes
occur simultaneously in the nonclassicality theorem based
on the GBM. In the following, we provide an example of
a particular GBM inferring quantumness of a state which
is inaccessible via the corresponding MOM and Bochner
approaches.

Let us consider the situation, when the condition (4) does
not verify the nonclassicality of a given state. Additionally, the
MOM minor

)
a:>) >0 (16)

is non-negative for any state, as it represents the mean number
of incoherent photons [14]. The second-order minor resulting
from the GBM and the choice mi =my =n; =0, n, =1,
and 8 = B; — B, reads as

A Bat—pra.
det 0 d =det< 1 (ae '>>

(:afe—pa'+pa,) ata:)
=¢ata:) — |¢aeP! P a2 = (AAN[AAD, (17)

with A = Bﬁ*eﬂ&f’ﬁ*&. Now, we construct a mixed state, Ppmix,
being a mixture of a thermal state with three- and four-photon-
added thermal states [25-27]. Its CF is

Buix(B) =poe ™ 4 pyLs[(1 + 713)| B[ e ™"
+ paLal(1 4 )| B le A0 (18)

with probabilities p;, mean numbers of thermal photons 7;, and
the Laguerre polynomials L;(z) (i = 0,3,4). The visualization
of the minor (17) for this state is given in Fig. 1. It can be seen
that negativities infer the quantumness of this state, which can
neither be observed through the nonclassicality condition (4)
nor the MOM minor (16) (see [24] for details).

Sampling the CF and its derivatives. Properties of quantum
states of light may be directly sampled from BHD [28,29]. In
this setup one measures the statistics of the field quadrature
operator, £(¢) = e'?a + e~'%al, resulting in M data points of
quadrature values [x; ((p)]y: | for a fixed phase ¢. The CF (2)
is readily obtained from the set of data,

M
1 .
O(B) ~ eIﬂIZ/ZM E PO (19)
j=1

where arg f = /2 — ¢ (cf. [9-11]). For sampling the deriva-
tives in an analogous way, the knowledge of two noncommut-
ing operators, [a,a7] = i, is required. Hence, another ansatz
for reconstructing the GBM elements has to be developed.

In order to apply our generalized Bochner conditions to
experimental data, we need to reconstruct the characteristic
function and its derivatives. An alternative way to reconstruct
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FIG. 1. (Color online) Left half: The scaled (3.06x) minor (17)
for the state (18) is shown for the parameters py = 0.944,i1p =
0.1, p3 =0.03,7,3 = 0.12, ps = 0.026,7i, = 0.182. The displayed
negativity at | 8| &~ 5.8 of this determinant verifies the nonclassicality
of the state under study. Right half: The lowest-order criterion (4)
does not verify the nonclassical nature of the state.

the CF is based on its Taylor expansion,

< k (_ p*x\l
B(B) = (- = %(#m“‘&’» (20)
k=0 " ’

The normally ordered moments can be represented with
quadrature distributions p(x,¢) and Hermite polynomials
H,(2) as [30]

brg +00
(@*al) =/ dﬁl)/ dx p(x,9)
0 —00

b4
e k=De g < x >
X ——H, — . 21
V2 (k 4 1) ke ﬁ
The double series (20) can be evaluated as
T +00
q,(ﬂ)zf dw/ dx PP
0 o Ty +¥H)
x [ye? 7P pyre 2 (22)

with y = Be’? (see [24,31] for more technical details). By
differentiation of (22) the following pattern function emerges:

ri(=D)ithithk(g 4 kp)12=k/2 '
Dl(x,y) = 2
q(x Y) Z ki ko Vs ' (y +y*)q+k|+1
ki + ko
+k3 =r

x exp(xy — y2/2)Hi,(y //2), (23)

and D; = 0 for ¢<0 or r<0. Now, the derivatives of the CF
can be directly sampled as

M
1 . .
g 0. P(B) ~ i E el m=me; [mD;”_](xj,,Be”/’f)
j=1

+ B D) (x;.Be'?) + nDpy (—x;. e ')
+B*e iDL (—x;,Bre )], (24)
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FIG. 2. (Color online) Experimental scheme for the generation
and measurement of a squeezed state. The state was generated in
an OPA with an 7%MgO:LiNbOj; crystal, which was pumped with
a 290 mW laser beam at 532 nm generating —4.13 dB squeezing at
1064 nm. A BHD (LO power 1.23 mW) is set up for the detection. The
phase of the LO was altered continuously by applying a triangular
alternating voltage onto the piezo that is responsible for the mirror
position.

with the need of a uniform distribution of the measured data
(xj,0; )yzl with respect to the phase ¢.

Experimental implementation. We generated the squeezed
field through a hemilithic, standing wave, nonlinear cavity
(see Fig. 2) serving as an optical parametric amplifier (OPA).
As X(2) nonlinear medium we used an 8-mm-long, 7%
magnesium-oxide-doped lithium niobate (7%MgO:LiNbO3)
crystal. The OPA is pumped with a strong laser beam (290 mW)
at 532 nm, resulting in a classical gain of 3.3, which yields
—4.13 dB squeezing and 6.11 dB antisqueezing at 1064 nm.
A BHD was implemented [32,33] with 98% visibility and a
quantum efficiency of 90%. Along with additional losses in
the squeezed field due to losses in optical components and an
escape efficiency smaller than unity, this results in a overall
efficiency of 77%. The optical phase of the signal, relative to
the local oscillator (LO), was controlled by a mirror mounted
on a piezoactuator. A continuous variation of the optical phase
ensures an equally distributed phase of the quadrature data
points (xj,goj)y:l [5].

Using the sampling formula (24), we reconstructed the
determinant of the GBM (12). It is important to mention that
the CF of the squeezed state is diverging in one direction of
B, which causes high sampling errors. This fact makes such a
state an optimal test for demonstrating the applicability of our
sampling approach under difficult premises. Figure 3 shows
the determinant det(d ®) of the GBM, Eq. (12), together with
its signed significance,

det(3 )

Y[det(dd)] = M )

(25)
where o [det(d®)] denotes the standard deviation. Without an
additional search for optimal phases, the squeezing condition
(13) is fulfilled as det(d®)|g—o = —0.469 £ 0.007. At this
point the highest significance of a negative value of above
70 standard deviations is reached. From the decay of the
significances, it can be observed that the squeezed and
antisqueezed axes are—up to a slight rotation—the imaginary
and real axes, respectively.

Conclusions. We derived necessary and sufficient non-
classicality probes by generalizing Bochner’s theorem. This
generalization has been proven to embed two hierarchies
of previously known nonclassicality criteria. Namely, the
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FIG. 3. (Color online) The top plot depicts the experimental
implementation of the nonclassicality condition for the determinant
of (12), det(0®) < 0. Negative values demonstrate that the GBM
criterion is capable to prove the nonclassicality of the generated
state. The bottom plot shows the signed significance X[det(dP)] =
det(0®) /o [det(dP)] up to —70 standard deviations at the origin and
+60 in side peaks. The region with |X| < 5 is shown in white. The
error o [det(0®)] is obtained via a linear error propagation of the
GBM elements.

conditions resulting from the original Bochner’s theorem
and the matrix of moments can be reproduced by suitable
parameter choice. Our generalized Bochner theorem makes
use of the advantages of the original Bochner theorem,
being nonlocal characteristics in phase space, and of the
matrix of moments, directly yielding quantum features such
as squeezing.

We explicitly constructed a nonclassical state, for which
specific second-order moments and Bochner criteria fail, but
the corresponding generalized second-order criterion truly vi-
sualizes its quantumness. Pattern functions have been derived
to sample our criteria from balanced homodyne detection
data. For a direct demonstration, a squeezed state—having
a demanding sampling behavior—has been prepared and mea-
sured. We could successfully demonstrate that our approach
certifies the nonclassicality of this state with high significance.

Thus, we explored the entire process from formulating a
unified technique to uncover quantumness until its successful
experimental implementation within this work. Moreover, it is

011801-4



UNIFIED NONCLASSICALITY CRITERIA

straightforward to generalize our method to multimode scenar-
ios by applying the present techniques. The here established
method allows one to infer quantum effects of previously
unknown structures in phase space beyond local properties,
such as higher-order moments, and nonlocal properties of the
characteristic function, as addressed by the original form of the
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Bochner theorem. Eventually, this unified characterization of
quantum features will allow one to assist quantum technologies
with properly designed quantum states of light.
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