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We provide a complete and exact quantum description of coherent light scattering in a one-dimensional
multimode transmission line coupled to a two-level emitter. Using a recently developed scattering approach, we
discuss transmission properties, the power spectrum, the full counting statistics, and the entanglement entropy
of transmitted and reflected states of light. Our approach takes into account spatial parameters of an incident
coherent pulse as well as waiting and counting times of a detector. We describe the time evolution of the power
spectrum and observe deviations from the Poissonian statistics for reflected and transmitted fields. In particular,
the statistics of reflected photons can change from sub-Poissonian to super-Poissonian for increasing values of
the detuning, while the statistics of transmitted photons is strictly super-Poissonian in all parametric regimes. We
study the entanglement entropy of some spatial part of the scattered pulse and observe that it obeys the area laws
and that it is bounded by the maximal entropy of the effective four-level system.
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I. INTRODUCTION

A. Overview of studies of scattering in one-dimensional
channel with emitter

With current advances in experimental nano-optics, the
problem of light scattering in quasi-one-dimensional waveg-
uides becomes an important cornerstone for understanding
physics behind the light-matter interaction in a confined
geometry. A number of recent experimental studies have been
devoted to photon scattering when a single emitter is coupled
to a one-dimensional (1D) scattering channel [1-9]. The focus
of these studies is on the possibility of making few-photon
devices (transistors, mirrors, switchers, transducers, etc.) as
building blocks for either all-photonic or hybrid quantum
devices. While a number of few-photon emitters based on
single molecules, diamond color centers, and quantum dots
are available nowadays [10,11], an understanding of the
extreme quantum regime of a few-photon scattering in a 1D
fiber or transmission line [12,13] should be supplemented by
microscopic studies of scattering of a coherent light (e.g.,
generated by a laser driving) off an emitter in a confined 1D
geometry. This is the main motivation of the present work. In
addition, it is worth mentioning that the model studied here can
be derived as an effective model in a 3D scattering geometry
when scattering channels are restricted to the photonic states
with the lowest angular momentum values (s-wave scattering).

Theoretical studies of quantum models describing light
propagation in 1D geometry were pioneered in the 1980s by
Rupasov and Yudson [14-20]. They introduced and solved a
broad class of Bethe ansatz integrable one-dimensional models
and even managed to determine exactly the time evolution of
certain initial states [18]. In the next decade these studies were
extended by Konik and LeClair [21-24]. The exactly solvable
class of models includes linearly dispersed photons interacting
with a single qubit, a Dicke cluster, and distributed emitters.
However, the integrability imposes a rather strict constraint:
It requires the absence of backscattering, thus limiting this
class to the chiral, or unidirectional, models. This constraint,
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however, is not restrictive if a scatterer is local: Transforming
left- and right-propagating states of photons to the basis of
their even and odd combinations, one can observe that the
odd modes decouple from the scatterer and thus a model with
backscattering is mapped onto an effective chiral model for
even modes. In turn, to realize the physical chiral model with
distributed emitters, it was recently proposed [25] to employ
scattering of edge states in topological photonic insulators.
Experimentally, a quantum nondemolition measurement of
a single unidirectionally propagating microwave photon was
achieved in Ref. [26] using a chain of transmons cascaded
through circulators that suppress photon backscattering.

A revival of interest in problems of photonic transport in
1D geometries was triggered in the past two decades by the
progress in quantum information science, which resulted in
series of publications from various groups [27-55]. In these
works, a variety of different setups were carefully analyzed,
comprising three- and four-level emitters, the nonlinear photon
dispersion, effects of driving, and dissipation. In addition,
recent experimental achievements [56] have motivated a
theoretical consideration of models containing both distributed
emitters and backscattering [57-60].

B. Scattering approach: Role of detector

In this paper we focus on a basic model consisting of a two-
level qubit coupled to a 1D channel and driven by a coherent
field. We develop a complete and exact quantum description
of all physical properties of this system using the scattering
formalism.

A characterization of different scattering regimes in this
model can be obtained by introducing parameters quantifying
(i) an initial state, (ii) a qubit (iii), a waveguide, and (iv) a
detector. Throughout the paper we assume that the initial state
is a pulse of spatial length L. In units i = v, = 1, where
v, is the group velocity of linearly dispersed photons in a
waveguide, the parameter 1/L defines one of the important
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FIG. 1. (Color online) Our system consists of a two-level emitter coupled to a waveguide (transmission line) at x = 0. The sketch shows
spatial snapshots of the wave-packet propagation. The coherent initial pulse |«y) of the length L (shown in pink with dashed contour) is injected
at time r = —f1( and the point x = —#,. At time ¢ = 0 its front hits the scatterer. The scattered pulse (shown in blue with solid contour) leaves
the scattering region and after time ¢, its front reaches a detector located at x = #;. At time ¢ = #, + T the detector starts counting photons,

which lasts during the time interval 7. It is assumed that 7o > L > t.

energy scales: the wave-packet width in the k space. Another
energy scale is given by the qubit relaxation rate I' = mg?,
where g is a photon-qubit interaction strength. In addition,
we have a dimensionless parameter N characterizing the
mean number of photons in the initial pulse. In terms of
these parameters, one can distinguish three different regimes
in this problem: (a) N > 'L > 1, (b) 'L > N > 1, and
(¢)TL > 1> N. Note that in all cases we assume 'L > 1,
meaning the long-L (or narrow bandwidth) pulse limit.

Regime (a) was studied in the 1970s in connection with the
resonance fluorescence phenomenon [61] (see also the review
in [62]). In this regime, a semiclassical description of the laser
beam is sufficient.

In contrast to regime (a), in regime (c) single-photon
(elastic) processes dominate, while a contribution of many-
photon (inelastic) processes to the scattering outcome is weak;
the most remarkable inelastic effect in this regime is perhaps
the formation of the two-photon bound state. Various aspects
of regime (c) have been recently studied in the numerous
publications cited above.

To complement the previous studies, we wish to achieve
a comprehensive understanding of the crossover regime (b),
where the mean number of scattered photons is already large,
but the Rabi frequency proportional to /NT'/L is still much
smaller than I'. To this end, we apply the quantum scattering
approach developed in our earlier paper [49]. It will be shown
in the following that it is eventually capable of covering all
three regimes, thereby establishing a theoretical platform for
studying the classical-to-quantum crossover in this model.

In addition to the system-related parameters, our approach
can accommodate information contained in the detection
protocol as shown in Fig. 1. A pulse of spatial length L (shown
in pink) is injected into the waveguide at time t = —fy and
the coordinate x = —f; (recall that v, = 1). Due to the linear
dispersion, it moves without changing its shape toward the
qubit coupled to the waveguide at the point x = 0. From the
time instant ¢ = 0 the photons in the pulse start interacting with
the qubit and this interaction lasts for a time ~ L. Subsequently,
the scattered pulse leaves the interaction region around x = 0
(only the transmitted part is shown in blue in the figure),
its shape being modified, and at 1 = ¢, its front reaches the
detector (the eye) at the position x = ty. To make the scattering
formalism applicable we must assume that #, >> L, meaning
that the detector is far away from the scattering region. After

the front of the scattered pulse reaches the detector att = #, the
latter remains switched off during the waiting time 7 and at¢t =
to + T it switches on and starts to count transmitted photons
during the subsequent time interval t (counting time). Thus,
the setup in Fig. 1 is characterized by the two important time
scales T and 7. In the following we will assume L > 7 (which,
in particular, allows us to take the limit L — oo before the
limit T — o0). This assumption is based on the instrumental
possibility to create an initial wave packet of a sufficiently
narrow width in the k space; from the conceptual viewpoint
we impose this condition to enable an open-system description
of the scattered pulse, for which the aforementioned order of
limits is essential. The detector-related time scales together
with the system-related energy scales exhaust the most relevant
parameters of this problem.

C. Physical observables and their generating function

Major statistical properties of a scattered light field are char-
acterized by a collection of m-point (m = 2,4, ...) correlation
functions [63]. Another basic observable quantity is a trans-
mission (reflection) spectrum. It quantifies the amplitude of the
transmitted (reflected) field and has been measured in various
experiments with microwave transmission lines [2-5]. A more
involved quantity of interest is the resonance fluorescence
power spectrum, which is a Fourier transform of the field-field
gV correlation function. This (Mollow) spectrum is know
to feature a three-peak structure [61]. Further experimental
practice is to collect information about the density-density
g® correlation function using the Hanbury-Brown-Twiss
setup [64]. Higher-order correlators can also (at least, in
principle) be accessed in an experiment and this motivates us
to study the generating function of all moments of the density
operator, being related to the m-point functions. In mesoscopic
physics, such a generating function is known as the full
counting statistics (FCS), though in the historical retrospective
this concept was originally introduced in the quantum-optical
context [63,65] in order to characterize statistical properties
of a noninteracting quantized electromagnetic field. Its fully
quantum derivation was presented in Ref. [66]. For a co-
herent light field driving a two-level system (the resonance
fluorescence model), the FCS was studied in [67-70]. It was
observed [67] that the FCS distribution of the fluorescent
photons is narrower than the Poissonian distribution. An
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important measure of this effect is the Mandel Q parameter
0 = [(N®) — (ND)2]/(ND), which is obtained from the
first and the second factorial moments of the FCS.

Later on, the concept of the FCS was borrowed and
actively developed in the field of mesoscopic physics [71,72]
to study statistical properties of electronic currents in meso-
and nanoscopic devices for both noninteracting and interacting
electrons [73-82]. It was shown that the FCS can be very
useful for characterizing classical-quantum crossover [83],
quantum entanglement [84—86], and phase transitions [87,88].
The FCS of nonlocal observables can be used to quantify
correlations [89-92] and prethermalization in many-body
systems [93,94], as well as to define some kind of a topological
order parameter [95].

The studies of the FCS in mesoscopic physics have gen-
erated a backflow of ideas to the quantum optics community.
Inspired by the recent experiments in the context of the 1D
resonance fluorescence, the subject of the FCS has received
renewed attention (see [96-99]).

D. This paper: Content and results

Motivated by previous developments, we revisit the original
problem of computing the FCS for photons interacting with
an emitter. This is the first goal of the present work. We give
it a detailed quantum consideration, treating the interaction
nonperturbatively. We present an exact calculation of the FCS
in the basic model of light-matter interaction (see Fig. 1):
a multimode propagating photonic field in one dimension
interacting with a two-level emitter. Since one of the objec-
tives in nanophotonics research is to obtain strong photon
nonlinearities as well as a strong photon-emitter interaction
for the purpose of efficient control over individual atoms and
photons, knowledge of statistical properties of an interacting
photon-emitter device becomes essential.

The geometry of our system (see Fig. 1) suggests to define
the three types of counting statistics: the FCS of transmitted
photons, the FCS of reflected photons, and the FCS of the chiral
model. Below we discuss this classification in more detail.
The multimode nature of the waveguide implies an emergence
of many-body correlations. As such, interactions modify the
statistics of photons in forward- and backward-scattering
channels in comparison with the Poissonian one of the incident
coherent beam. As a by-product of our FCS computation, we
revisit the transmission properties and evaluate the Mandel Q
parameter exhibiting super-Poissonian, sub-Poissonian, and
Poissonian statistics for the three counting models in question.

We also provide a derivation of the Mollow spectrum
based on knowledge of the exact scattering wave function
that avoids the usage of the quantum regression theorem and
reproduces the original expression [61] derived for the 3D
scattering geometry. It helps to understand how the resonance
fluorescence can be decomposed into elementary scattering
processes.

Yet another quantity that has received a great deal of
attention due to developments in quantum information science
is the entanglement entropy (see, e.g., the review in [100]).
While several measures of entanglement exist, the entropy
of entanglement has several nice properties such as addi-
tivity and convexity. In quantum information theory, the
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entanglement entropy gives the efficiency of conversion of
partially entangled to maximally entangled states by local
operations [101,102]. In other terms, it gives the amount of
classical information required to specify the reduced density
matrix. A large degree of entanglement is what makes quan-
tum information exponentially more powerful than classical
information, so states with lower entanglement entropy are
less complex. For extended systems of condensed-matter
physics it is customary to distinguish between area and
volume law [100] behavior of the entanglement entropy. Here
the notions of area or volume refer to a typical geometric
measure of a region bounded by a subsystem A with respect
to the rest of a system. Thus, in the 1D case, relevant for
our discussion here, the area of an interval A consists of
just two end points, while the volume is a length of the
interval of the subsystem A. Systems with volume law behavior
entanglement possess much higher potential for applications in
quantum simulations and computing. It was shown [100] that
in most cases a quantum ground-state wave function of gapped
systems exhibits the area law, while typical excited states
mostly follow the volume law. An intermediate logarithmic
behavior of the entanglement entropy is related to gapless
systems. These features should be understood as asymptotic
properties of a system, when the area and the volume of a
subsystem entangled with the rest part of a system become
large. Our complete knowledge of the scattering state allows us
to calculate explicitly the entanglement entropy of the scattered
pulse’s interval of length t (see Fig. 1) for different values of
7, T, and system parameters. The (dimensionless) duration I't
of the observation interval plays the role of the volume of the
subsystem A in this context. One of our central results in that
section is a demonstration of the existence of the absolute limit
for the entanglement entropy in our system: It is bounded by
In4, the entropy of the four-level system. Another important
observation is that while the entanglement entropy at large ©
asymptotically approaches the area law bounded by In 4, it can
behave very differently for small and intermediate values of
T; we even observe its nonmonotonic oscillatory behavior for
some intermediate regime of parameters.

II. DEFINITIONS AND APPROXIMATIONS

We start our analysis by defining the model and approxima-
tions involved in its derivation, the bosonic operators creating
the initial pulse, and the FCS.

A. Theoretical model
1. Approximations and the effective Hamiltonian

Our model is described by the Hamiltonian H = Hp, +
Hem + Hphem, Where Hpy is the Hamiltonian of the free
propagating photonic field, H.n, is the Hamiltonian of an
emitter, and Hpyem describes the field-emitter coupling. We
involve approximations that are customary in quantum optics:
(i) the dipole approximation for the interacting Hamiltonian,
(i1) the two-level approximation for the emitter Hamiltonian,
(iii) the rotating-wave approximation (RWA), and (iv) the
Born-Markov approximation (energy independence) for the
coupling constant. In addition, we linearize the photonic
spectrum around some appropriately chosen frequency €2
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that is commensurate with the emitter’s transition frequency
Q and extend the linearized dispersion to infinity. With
these assumptions [except for (iii)] we obtain an effective
low-energy Hamiltonian

Q.
H= ézl / k(S + Ek)alag, + = e

+20 Y f dk(al, + az)ot +o7), (1)
E=rl

featuring the two-branch linear dispersion with right- (§ =
r = +) and left- (¢ = [ = —) propagating modes. Here % =
(0* £io”)/2 are expressed in terms of the Pauli matrices
0% a=x,y,z. The states of the emitter are separated by
the transition frequency 2. To implement the RWA in a
systematic way, we first perform the gauge transformation
H — U'HU +i(dU'/dt)U with

U =exp | —iQot Z /dkagkagk—i- 5 , 2)
E=rl

which leads us to the Hamiltonian

H= ZfdkékaSka§k+

E=rl

o Y [ dkalo +ana™)
E=r,l

—i—goZ/dk(a L0 TP 4ggoT e (3)
E=r,l

where A =Q — ). As soon as g3/Qy < 1, the time-
oscillating terms in (3) can be treated as a time-dependent
perturbation. In zeroth order it is simply neglected, which
is equivalent to the RWA. Note that this approximation is
consistent with the assumption about the absence of lower and
upper bounds in the linearized dispersion.

2. Transformation to the even-odd basis

Due to energy independence of the coupling constant g,
one can decouple the Hilbert space of the model defined in (3)
into two sectors. To this end, one introduces even (symmetric)
and odd (antisymmetric) combinations of fields corresponding
to the same energy |k|,

ary +ar — u ark — A —k
—7 Uk = =
V2 V2

By virtue of this canonical transformation the Hamiltonian (3)
turns into a sum of the two terms H = H, + H,, defined by

“4)

Aefp =

_ t to— e A
H, = | dklka,ac + g(a, 0™ + ago™)] + 70

H, = / dkka an, (5)

where g = gov/2. Note that the odd Hamiltonian H, is
noninteracting and therefore odd modes do not scatter off
a local emitter (S, = 1). The even Hamiltonian H, can be
interpreted in terms of a chiral model with a single branch of
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the linear dispersion. A similar decomposition can be applied
to an initial state. Both even and odd photons are labeled by
a momentum value k lying on a single branch of the linear
dispersion.

B. Definitions of wave-packet field operators and the initial state

In order to define the incident coherent state we need field
operators annihilating and creating states that are normalized
by unity. The field operators a; and aZ, which are the Fourier
transforms of a(x) and a'(x), do not fulfill this requirement,
as they obey the commutation relation [ak,a;] =8k — k') (in
other words, they annihilate and create unnormalizable states).
To circumvent this difficulty, we construct wave-packet field
operators

i 1 L2 f ik
b, = —/ dx a'(x)e’™™, (6)
¢ VL J-1p

bil=1.
dx a} (x)e'** and

which do satisfy the desired commutation relation [by,

For example the operators br ko = f I L2

L/2
b;_ko = \/» f Lﬁz dx a, (x)e”k"x create wave packets that are

centered around +ko (—ko) of the right (left) branch of
the spectrum and broadened over the width ~2m /L. In the
coordinate representation, they create states that are spatially
localized on a finite interval of length L. We note the identity
[ag(x), bg, ko] = 8eer } ®(L/2 — |x]). In the following, ko
denotes the laser driving frequency (measured from the
linearization point).

Having introduced br 1.k0» We define the initial (incoming)
state |Z) = |ag)r ® 1), where the incident right-moving pho-
tons are prepared in the coherent state |«g), = D,(a)|0) and
the two-level emitter is initially in the ground state || ). Here
|0) denotes the photonic vacuum and D, () = exp(aob
agby.x,) is the coherent-state displacement operator.

The mean number of photons in the state |«g), is given by
Ny = |ao|?. We also quote a useful relation

rk()

aoelkox

VL

which follows from the commutation relation between a and
b' operators. The initial coherent state defined in the original
right-left basis admits a decomposition into the product state
in the even-odd basis

D(@0)a,(x)D;(a0) = a(x) + O(L/2 = |x), (7)

T 2
jarg), = eI 20)

(Oto/f)bpkoflﬂto\ /4 (ao/f)bnAU loro|? /4|O>

D (o) Do()|0) = |er)e ® [ex)o,

where « = a/+/2 and the displacement operators D, , are
defined using the mutually commuting operatorsb & and bo ko
respectively. Importantly, ,(oglog), = 1, , the incoming
state is properly normalized.

The major consequence of the even-odd decoupling is a
factorization of the scattering operator S into the product
S =S.S,, where S, is the identity operator and S, can be
studied in the context of the effective one-channel chiral model
described by H,. Scattering in chiral models was studied
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by us in Ref. [49] for arbitrary initial states, including the
coherent state. In particular, we established the explicit form
of the operator S, in the latter case, which provides the
full information about the scattering wave function. Here we
take over this result and use it for calculation of observables
announced in the Introduction. All expressions necessary for
this purpose are quoted below for the readers’ convenience.

C. Definition of the full counting statistics

The statistics of the initial field, defined by the probability
Day(n) to find n photons in the mode ko, is given by the
Poissonian distribution p,(n) = e‘NU]Z—f for the coherent
field, with the mean value Ny = |og|?. Due to the photonic
dispersion and inelastic scattering processes, photons can
leak from the right-moving mode ky to other modes on both
branches of the spectrum by virtue of scattering processes,
thus modifying the photon statistics. A fraction of photons is
reflected and their statistics is also of great interest. We propose
a calculation of the FCS in both forward- and backward-
scattering channels, which is exact and nonperturbative in both
80 and 1\7().

Generally speaking, the FCS can be defined as a generating
function F(x) = Y .-, €'*" p(n) associated with a probability
distribution p(n) to detect n photons in some given state.
The function F(x) generates mth-order moments of the
distribution p(n) that are determined by evaluating the mth
derivative with respect to i x at x = 0. The Fourier expansion
of the 2 -periodic function F(x) yields power series in terms
of the fugacity z = e'X, F(x) =Y v y2"pn) = F(z). The
normalization of a probability distribution implies F(l)=1.
The expansion F(z) = 3 %%, %(N ) around z = 1 gives
the factorial moments of a distribution (N®) = (N(N — 1) - - -
(N —r+1)).

To define the photon FCS we need the two main con-
stituents: (i) the scattering (outgoing) state |O) = (S,|a).) ®
|}, necessary to perform the average and (ii) a meaningful and
experimentally measurable counting operator N. In particular,
as such we can choose the number of transmitted photons
that pass through the detector during the time 7 (see the
Fig. 1). Because of the linear dispersion, the same operator
characterizes the number of photons in the spatial interval of
the length v,7 viewed in the frame comoving in the right
direction with the velocity v,. Introducing the coordinate

J
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system in this comoving frame such that the pulse’s front
has the coordinate value L/2, we define the photon number
operator

Ny = f " dx af(a, () ®)

of transferred photons that appear in the spatial interval
[z1,22]. Here —L/2 < z; < 2o < L/2 [we note that the tail
of the scattered pulse extends to —oo (see below); however,
we will focus on counting intervals t =z — z; < L]. The
corresponding FCS reads

Fr.r(x0) = (e%0%). €))

In the chosen coordinate system, the waiting time is expressed
by T = L/2 — z,.Inthe same setting one can consider the FCS
of the chiral model. To define the FCS for reflected photons,
one can put the second detector at x = —#; and consider the
comoving frame with the velocity —v,, defining in it the
counting operator N ; via a;(x).

III. METHOD OF COMPUTING OBSERVABLES BASED
ON THE EXACT SCATTERING MATRIX

A. Scattering of the coherent state in the chiral model

As we discussed above, we need to know the expression
S.|a). for the scattering state in the effective chiral model for
the even modes. In this section we quote the result of Sec. 5 in
Ref. [49] for the coherent light scattering in the chiral model.
In particular, we copy Eq. (134) from this reference, adapting
the notation therein to the present paper. The subscript e is also
omitted in the following.

Thus, for the incoming coherent state |«) in the mode ko,
the outgoing scattering state amounts to Sp|c), where

So = S¢[L/2,—L/2] + Sg[L/z,—L/Z]J%Ag. (10)

The operator
—L/2
Al = VoT f dxge 0% IOHDL2E0 Ty (1)
—00

describing the states in the tail of the scattered pulse, is

normalized by (0|A0A(T,|O) = 1. In turn, the states within the
initial pulse’s size L are expressed via the operators

Sely.xl =14 2" / Dx,do(y — xn)a’ (6™ do(xy — x,-1)a’ (o, )e 1o do(xy — xp)al (ke (12)

n=1

[e.¢]
Soly.xl = do(y —x)+ Y _ A" / Dix,do(y — x)at ()™ do(x, — xp—1)al ()™ 1 - do(xy — xp)al ()™ dy(x) — x).

n=1

Here the parameter

13)

2illa
G +iDWL

(14)
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is expressed in terms of the detuning § = kg — A and the relaxation rate I = ngz; do(x) =1 —expli(d +i")x] is the bare

single-photon propagator and the shorthand notation has been used for the integration measure Dx,, = O(y > x, > - - -
-dx;. We also consider L/2 > y > x > —L/2. For later use we also define the operators

x)dx, - -

> X >

Soly,x1 —HZA” / Dxyal (e)e™ oy — xp-1)a’ (xp—1)e™™ 1 do(x, -1 — x,2) -+ - do(xa — x1)al (x)e™™, (15)

n=1

Sily.xl=1+ Zk”/Dxn Fen)e™ 0 do(xy — x—1)a’ (u—)e ™ do ey = x42) - - a (e d(x) — x). (16)

n=1

The set of operators S, S('j .56 Sg is complete in that sense that
they exhaust all possible arrangements of the bare propagators
d() (X ) .

B. Algebra of scattering operators

The scattering state (134) of Ref. [49] (equivalent of
Sola)) can be used for a computation of observable quantities.
In particular, we will be interested in correlation functions
(angaT(zl)o~aT(zm)a(zm)o~-a(zl)SO|oz) and therefore we
need to know how the local annihilation operators a(zy)
commute with the many-body scattering operator Sy defined on
a finite spatial interval. For a systematic treatment, we observe
the following algebraic properties of the scattering operators
S8¢,8b,85,83.

Let us choose an arbitrary point z € [x,y]. Using the
obvious identity

Oy >x,>:+>x1 > X)
n
= Z@(y>xn> X >T > X > > X > X),
j=0
a7

where x,4; =y and xp = x, one can show by rewriting
Egs. (12), (13), (15), and (16) that the operators S(‘)’,SS,S(‘)',Sg
satisfy the following closed algebra with respect to the interval
splitting operation:

S8ly,x] = Sily,z185[z,x]1 + SoLy, 2{S§lz.x1 — S§[z,x1},
Soly.x] = S§[y.z1S51z.x] + Sgly.z){ S§lz.x] — S§[z.x1}.
Soly.x1 = Sgly.z185[z.x] + S [y, z1{ S§lz.x] — S§[z.x1},
Sly.x1 = S§[y.z185[z.x] + S§[y.21{S[z.x] — Splz.x1}.

(18)

If one divides the interval [x,y] into three parts y > z, >
z1 > x by arbitrary points z; and z,, one can prove by a direct
calculation that the algebra (18) is associative, as expected.
The algebra (18) also allows us to express the action of
annihilation operators on the scattered state in a simple form

a(2)S§1y.x110) = S§ly.z1re™*S{[z.x1|0),  (19)
a(z)Sg1y.x110) = S§ly.z1re™*S{[z.x110),  (20)
a(z)Ssly.x110) = S§[y.z1re™*S§[z.x110), (21
a()S§ [y, x110) = S§Ly,z1re™*S{[z.x10).  (22)

For the proof of (19)-(22) we used the property dy(0) = 0.

(

Similarly, for an action of the ordered product of two
annihilation operators a(z»)a(z;), with y > zo > z; > x, we
obtain

a(z2)a(z1)S§y.x1|0)
= Si[y,z20he™%2 820,21 10e™ 1 SA[21,x1]0),  (23)

a(z2)a(z1)SpLy,x1|0)
= Sbly,z2)he™ 2 S8 [20, 21 10e™ 071 SE[21,x110),  (24)

a(zz)a(z1)S5ly,x110)
= S3ly,z20re™2 8822, 21 1he™ 0% S8 21,x]10),  (25)

a(z2)a(z1)S5[y,x110)
= Saly,z20re™2 820,21 10e™ 0% SE[21,x1]0).  (26)

Iterating this procedure, one can find an action of the ordered
product of m annihilation operators a(z,,) - - - a(z1), y > zm >

-+ z1 > x.Itproduces the product of m + 1 S operators, which
can be symbolically written as

amsy — Sb...sb...s4, (27)
amsh — Sh...8b... 88, (28)
amnsy — S5 S---88, (29)
a"Sd — Si...Sb... 8P (30)

Note that in all intermediate positions only S; appears. To
classify the leftmost and rightmost operators in these expres-
sions, we introduce the mappings o and u according to

o(@)=b, ula)=a, 31)
o)=>b, nb)=0>, (32)
o(c)=a, uc)=a, (33)
0@ =a, ma =>h. (34)

In their terms, the relations (27)—(30) acquire the compact
form

a"sy — sgP(shy" sy, (35)
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C. Dressing S operators

In the following we will also need the shifted scattering operators

SPLy.x] = D'()SE [y, x1D() = "% SPLy,x]e" ", (36)

where 8 = a,b,c,a and D(v) = exp[vb,t0 — v*by, ] is the displacement operator of the fields such that D'(v)a'(x)D(v) = a'(x) +

vie % /\/L. Our next goal is to establish explicit expressions for the operators SP[y,x] for the arbitrary complex-valued

parameter v.

Performing the displacement (36), we obtain a new series in field operators defining S%¢9. Appropriately reorganizing

(resumming) them, we find the expressions

o0
Sely.xl=dy(y —x)+ Y A" / Dxydy(y = xa)a’ (e)e™ ¥ dy (v, — xp-p)al (et .

n=1

oo
Shy.x] =dy(y —x)+ Y _ A" / Dipdy(y — xp)a’ (6,)e™ " dy(x, — xp-1)a’ (o)1

n=1

o0
Sily.xl=dy(y —x)+ Y A" / Dixydy(y — xp)a (6,)e™ " dy (o — x,-1)a’ (1)

n=1

o
Sily.xl =dy(y —x) + Y _ A" / Dx,ydy(y — xa)al (x)e™ ™ dy (xy — x5 -1)a’ (x,—p)e* o1 -
n=1

as well as
S, = D'(v)SyD(v)

= S“[L/2,—L/2] + Sfj[L/z,—L/z]LzA'g, (41)

V2T
where
dy(x) = _ﬂ(e*imx _ e*ip-x)’ (42)
+ = P-
dyx) = ——Lm e P2 (43
P+ — P- P+ — P-
I~ p2 . pi .
dy(x) = ————e P+ — T —7tP-"
pi—p2 pi—r2
Lo+ —2 4w (44)
= X —_— X
0 S +ilWL

are the dressed single-photon propagators and p1 = p1(v*) =
mCRIAREZY (B;ir) 2+8mv*/L. Additional details on evaluation
of (37)-(40) are presented in Appendix A.

D. Factorization property

To evaluate the FCS we prove the following key property of
generalized m-point correlation functions: their factorization

dy(xy — xp)a' (x)e " d,(x; — x),
(37)
dy(x2 — xp)at (x))e™ ™ d,(x; — x),
(38)
-dy(xy — xp)a’ (x))e™ d, (x) — x),
(39)
-dy(xy — xp)at (x)e™ 1 d, (x) — x)

(40)

(

into the (m + 1)-fold product of the two-point functions.
Generalized correlation functions are defined by

Gy(zi); y.x)

= <0|55’T[y,x]<:Ha*(z»a(zl):)Sf[y,x]|0>, (45)

=1

where the time-forward S? and the time-backward ST scatter-
ing operators depend on different and arbitrary displacement
parameters v and u, respectively. We also assume here that
y > Z, > --- > 71 > x.Note that an additional symbol for the
path ordering in this expression is not required: Operators a(z;)
and a(z;) commute with each other since (i) they are bosonic
and (ii) they are written in the interaction picture (which is
equivalent to the Schrodinger picture in the comoving frame).

We observe that the relations (18) are also fulfilled by
the dressed operators S?: One just has to dress (18) with
D(v). Along with the property d,(0) = 0, this implies that all
relations (19)—(35) also remain valid under the replacement
Sg — SP. These properties allow us to split both S# and sP t
into m 4 1 operators defined on the ordered intervals [see
Eq. (35)]. Applying Wick’s theorem, we contract operators
from S{f and Sf 't belonging to the same interval; in total we
have m + 1 pairwise contractions of intervals. This procedure
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leads to a factorization of (45),

Gz} y.x)

m—1
= A" Go o) (Y — Zm)|:1_[ Oup(zi41 — Zl)i|

=1
X Gupnup)(21 — X)), (46)

into the product of m + 1 two-point functions defined by

Gpp(asr —20) = (OIS} Mzr1,21180 z41,21110). (47)
In the following we will also use the special case of (47) with
u=v=uc,

Gop(zior — 21) = (018 T[z14 1,218 [2141,2:110),  (48)

corresponding to the standard definition of the correlation
functions. The factorization property (46) in this case is well
known (see, e.g., Ref. [65]).

IV. COMPUTATION OF THE FCS
A. Detailing the definition

In our setup shown in Fig. 1 we have the right-moving
photons in the incoming state. Therefore, in the outgoing
state the right-moving photons correspond to the transmitted
particles, while the left-moving photons are those that are
reflected. Extending the definition (9), we represent

Fy1.:(x0) = (01D}(@) D} (@)s"
x XN S D, () Do(a)]0),  (49)

where

22 t i
Nt :/ dxae(X)iao(x)ae(X)iao(X). (50)

z V2 V2
Since D, () commutes with D, («) and S(()e) and it holds that
D}(@)N,/1.: Do(@) = DJ(£a)N;/1 : Do(+a),  (51)
we can cast (49) in the form
Fry1.:(x) = (01D}(e)S§" D} (2ar)
xe 0N D (+a) S5 D (@)[0).  (52)

Using the identity
eiXONr/l.r — e Zo*l)Nr/l.r:
o0 m
=1+ Z(ZO -b" / Dz, (5 1—[ aj//(zi)ar/l(Zzl)I),
m=1 k=1

(53)

where zo = e/%°, and taking into account that in (52) there
are only even operators from both sides of ¢/*V/ix and the
vacuum average is performed, we can integrate out the odd

oy
modes. It can be effectively done by replacing a: /1 (z) — ()

V2
and a,/(z}) — a"(jzf) in (53). This eventually results in the
replacement

eiXONr/l,r N eiXNE,z’ (54)

PHYSICAL REVIEW A 91, 063841 (2015)

where

New = / " dx al()a. ) (55)

21

and x is defined by z — 1 = 2! and z = e'X. Thus,

Fry12(x) = (0|D}(@)SS Dl (+a)
xe*New D (+a) S D(@)[0).  (56)

For the chiral model, we define the FCS by
F.2(x) = OID}(a) S e *Ner S D(@)[0).  (57)

This expression is very similar to (56), so we can combine
them together

FO(x) = (01D ()} D' (ket — )
xe ™ D(ka — a) Sy D(e)|0), (58)
where the parameter x = 0,1,2 distinguishes between the
reflected, chiral, and transmitted modes, respectively. We have
also suppressed the label e, since all subsequent calculations
will be performed in the effective chiral basis using the results

of the previous section. After a simple transformation of (58)
we find

— — T *
F{O0) = e (0] se™ Mo e

. T .
x e/ KN g Pl o= Dby G 10) - (59)

which is our starting expression for a computation of the FCS.

B. Integrating out the future and the past

The operator N, = f;l’ dx a’(x)a(x) in the definition (59)
contains only fields belonging to the counting interval [z},z>].
In turn, the operator

Lo Y
bko - ﬁ /L/Z dx a(x)e for = bko + bko (60)

contains the counting part

_ 1 2 .
by, = — f dx a(x)e ko (61)
VLU

and its complement by, = b,{o + by, . The latter consists of the
future (z; > x > —L/2) and past (L/2 > x > z») parts (see
Fig. 1), which are defined by

1 o .
bl = — f dx a(x)e kx| (62)
ko VL J 1

L)2 '
bl = 7 dx a(x)e™ k¥ (63)
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Integrating out the states lying outside of the counting interval (see Appendix B), we obtain

FO(y)e—G-Delale/L) _ Py A2 AP
T X)e =|1 + R(T) 1 o 2Re C(T) Aaa(f) + T Abb(f) + R(T) Acc(f) + Aau(f)

2r
I X |22
+[C(T) — R(T)] <Aac(f) + EAba(T)> + [C*(T) — R(T)] (Aca(f) + anb(T)>’ (64)
where

App(t) = (01SF (22,211 "N SP[22,2,1]0) (65)

evaluated at u = z,« and v* = z,a*, withz, = k(z — 1) + 1, and
R(T) = Gu(L/2 — 22). (66)
C(T) = Gap(L/2 — 22). (67)

The properties of the functions R(T") and C(T') are summarized in Appendix E.
The last remaining step is to compute the terms (65). Using the identity

Ve = TV = 1 Y - 1" f Dz, (r []e (z})a(z}):), (68)
m=1 =1

the definition of the generalized correlation functions (45), and their factorization property (46), we express

00 m—1
App(®) = Gpp(z2 —z0) + ) [z = DIAPT" / Dz, Go(p10(8)(22 — an)[l_[ Gob (2141 — ZE)} Gupuep) (@ —21). (69)

m=1 =1

Defining the Laplace transform for x > 0 and its inverse

Gors(p) = / dx Gy (1), (70)
0
00+i0 dp i
Gpp(x) = /—oo+i0 Ee "Gpp(p), 7D
we establish
d i o(B)o w(p’
op0 = [ 2 6o+ e - P SRR |

The Laplace transforms (70) for all components Gg g(p) are listed in Appendix C. With their help we find (see Appendix D) the
expressions

|42 / dp je~irT [ Q(z — D(p + iF)}
A —A = — 1— , 73
O o A = | o T [2/Re]c — D(p + DT —«(p + D] 2Ro(p) 73
[A]2 dp je”irT [ A2 iTQ2(z — 1)1 —K)( (p+2iF)2>
U T oy e o e+l 2T 2Ro(p) 62412
Q(z — D(p+iD) [ Qkz —1)+3)
T R <1+ 862+ 12) )} 7

|)\‘|2 dp ie*ipl
Aca(T) + EAab(T) = 3, rop . ;
TP+ riy@— D +iDIT —k(p +iD)]
X|:1 iFQf(Z—l)(l—K)(P+5+iF)_Qflc(z—l)(p—i—ir‘)(l p(p+8+ilh) )} (75)
2Ro(p)( — i) 2Ro(p) 2p+iD)s —iD) )|
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where Q, = /8T ||? / denotes the Rabi frequency (note also
the relation W m) and
Ro(p) = p* +4iT'p* — p(Q? + 8> +5I?)
—iT(Q7 +28% +2I'%) (76)

is the third-order polynomial. An expression for A,.(t) +
W = N pa(T) is obtained from (75) by flipping the sign § — —34.

The expressions (64) and (73)—(76) completely define the
FCS for reflected, chiral, and transmitted photons in the model
under consideration. One should also keep in mind that for
k = 0,2 it is necessary to replace in the end of the calculation
z—1— %, since the counting parameter for the reflected
and transmitted photons is xo and it is related to zo = e'* [see
also the discussion before (56)].

C. Normalization of probability distribution

We must check normalization of the probability distribution
generated by (64), which is expressed by the condition

PHYSICAL REVIEW A 91, 063841 (2015)

identities
2
GoulT) + ugbb(r) 7
Gee() + 1 A2 G <r>—1+ﬁ (78)
cc a; 2F
Gm(r>+' | " Gue) = 1, (79)

which hold for arbitrary , by setting z = 1 in (73)—(75), and
insert them into (64). We see that FT(’()(O) = lisindeed fulfilled
for all T and 7. This also means that the scattering wave
function is properly normalized.

D. Limiting cases of the waiting time 7'
1. Waiting regime T — oo

One of the important detection regimes is when the detec-
tor’s waiting time is long enough 7' — oo, which physically
means that 7' is much larger than all the system’s time scales
but still smaller than L. Depending on the context, we will also
call this regime stationary (for the resonance fluorescence) and
bulk [for the entanglement entropy (see below)].

F0) = 1. Noticing t.hat. at x = 0 the functions Agg(t), The stationary values R(oc0) = C(c0) = %IMZ (see
Gpp(t), and Gg () coincide with each other, we check the Appendix E) allow us to express (64) as
|
2 )\|2 r | |2
F(K) —(z—l)K2|oz|2(r/L) = —| | aa _A . 9 CC Eu_z
©(x)e 2 1 o M@ S A ) + s (A + T Aa()
_ / dp ie P W p) (50)
27 p+ [Q2/Ro()](@ = D(p + iDL = k(p +iD)]’
where
Q-1 [ild—«) (p +2iIN)? Qr(z— 1) +4]
W (p)=1 4 1 - i1+~ 81
=1+ (|)»|2+F)R0(P)[ 2 ( 54 T2 ) Kt )( ) )} ®D

To find the relation of this result to the photon number statistics in the stationary resonance fluorescence [67,70], we must consider
the case k = 0 corresponding to the reflected photons. We note that the fluorescent photons do not interfere with the driving field
and this is precisely the case for the left-moving photons in the presence of the right-propagating driving field. In fact, we find
the full agreement of (80) and (81) at « = 0 with the result of Mandel [67] and especially with that of Smirnov and Troshin [70],
who have also expressed it in terms of the Laplace transform.

2. Waiting regime T = 0

In this regime (which we will also call boundary in the context of the entanglement entropy below) the detection starts from

the forefront of the pulse. Using the initial values R(0) = C(0) = 0 (see Appendix E), we cast (64) in the form
A
FO(e G — 7 (0) + uAbb(r) (82)

In the case ¥k = 0 our result
je~ipT

F(x0) = / @
‘ 27 p 4 [iTQ2/2Ro(p)](z0 — D(p +iT)

identically coincides with that of Lenstra [69], which was derived for the corresponding regime of the resonance fluorescence.

(83)

E. Limit of long counting time 7

When the counting time 7 is much larger than all the system’s time scales, the main contribution to F*) comes from the
pole in the vicinity of zero, the contributions from other poles being exponentially suppressed. The dependence on z — 1 in the
numerators of Egs. (73)—(75) can be also neglected in the large-7 limit and we obtain

F(K)( )e—(z—l)Kzloz\z(r/L) ~ /dp je”ipT
o 21 p+[Q2/Ro(p)](z — D(p +iD)iT" —k(p+il)]’

(84)
independently of the waiting time 7.
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Setting p = 0 in the remaining term proportional to z — 1
in the denominator of (84), We arrive at the Poissonian
distribution F, (")(X) ~ ¢@=DIN) characterized by the mean
value

2 2 _
<N>=z[;c2ﬁ+ QI (1 — «) ] (85)

L Q242824212

In particular, in the chiral model the mean number of photons
remains the same 7|«|?/L as in the incident beam, while the
mean numbers of reflected and transmitted photons are

Ny = Linyy = Tleol re 36
(N) = 5o = " e 89
N ol (1/2)92 + 8

Recall the necessary replacement z — 1 — <= L giving the

additional factor 1/2 in the expressions (86) and (87).
To find corrections to the Poissonian distribution, we
expand the denominator in (84) to the linear order in p,

. iy i E=D  @ra-wo
+@=D P Yy G- Dz Q2+ 257 212
, Q2r(1 — k)
~p—i(z—D[l —(z— I)Z]M7 (88)
where
d |: Q2 i|
Z=— (p+iD)il —k(p +il)]
dp | Ro(p) =0
2 22 252
_ " K(927+38%—T?%) +3I? -3 . (89)

(@2 + 252 +212)°

Thereby we achieve the O((z — 1)?) correction to the pole
position in the vicinity of zero, which leads to a modification
of the Poissonian form of the generating function

Q2 (1 —«)
Q2 +28% + 212
(90)

F®(x) ~ & DN exp (—T(Z -1’z

Deviations of (90) from the Poissonian statistics can be
quantified in terms of the Mandel Q parameter [67]
@)y _ 2
0= fim N~ N7 o1
700 (N)
where (N®) is the second factorial moment. For Q <0 a
distribution is narrower than the Poissonian and it is called
sub-Poissonian; for Q > 0 a distribution is broader than the
Poissonian and it is called super-Poissonian. If Q =0, a
distribution is almost indistinguishable from the Poissonian.
Performing an expansion of (90) in z — 1 up to the quadratic
term, we establish

Z(1 — )2

¢= _2(K2/8)(Qz +282+2I2) + 21 — k)

92)

We note that in the chiral model (x = 1) the Mandel Q param-
eter identically vanishes, rendering it Poissonian. Considering
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FIG. 2. (Color online) Probability distributions p,(n) (dark yel-
low diamonds) and p;(n) (magenta squares) calculated on the basis
of Eq. (90) for 8 =0, Q, = +/2I', and (N,) = (N,) = % = 50.
Blue circles indicate the Poissonian distribution with the same
mean value. Solid lines correspond to the Gaussian approximations

—(n—(Nr D2 /2(N)(14+0r) . —(—(Np))? /z (Nr)
e " (dark yellow line), ¢ )P (blue line), and

27 (N )(1+0Qr) V27 (
o~ (= (Nr)? /2N )(14Q)) . .
RV AT ET (magenta line), which become rather accurate at

large mean values. The Mandel Q parameter, which are Q, = %

and O, = —% for the chosen parameters, quantify deviations of the
variances from that of the Poissonian distribution.

k =0 and « =2, we find the factors Q; and Q, for the
reflected and transmitted photons (recall again the necessary
replacement z — 1 — - 1)

1 , 3-8
01 == Qc0= - 5o (93)
2 (Q22 4282 + 212)

Q21?2 2Q% + 582 +1I?
(1/2)Q} + 8 (Q2 4 262 + 212)*

1
Qr = §QK:2 = (94)

We see that for § < I'+/3 the statistics of the reflected photons
is sub-Poissonian and it becomes super-Poissonian for § >
I'v/3, while the statistics of the transmitted photons is always
super-Poissonian. At § = 0 the expression (93) coincides with
the original result of Mandel [67] for the photon number
statistics in the stationary resonance fluorescence.

In Fig. 2 we show the probability distributions p,(n) and
pi(n) of transmitted and reflected photons for the long counting
time T = 200 , which are generated by (90). We also choose
8 =0 and Q, = +/2T", which provide (N,) = (N;), to ease
a comparison of these two distributions. This plot elucidates
the physical meaning of the Mandel Q parameter. We also
mention that these theoretical results on photon statistics are
supported by the recent measurements of the second-order
correlation function [6] showing photon antibunching in the
reflected field and superbunching in the transmitted field.

V. TRANSMISSION, REFLECTION,
AND THE MOLLOW TRIPLET

The mean field and the resonance fluorescence power
spectrum, also known as the Mollow triplet [61], are usually
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computed using the equation of motion method and the quantum regression theorem. In this section we demonstrate how to
obtain these expressions in the framework of our scattering approach.

To compute the mean field (a(z;)) and the first-order correlation function g(l)(z’l,zl) = (aT(z’l)a(zl)) we employ the
expression (58), in which we replace e/ by a(z;) and a"’(z’l)a(zl). Thus,

(a(z1)) = (OS] D (ka)a(z)) D(kar)Sy|0) = %ekaZ' + (0[STa(z1)S,10), (95)
2 2 *
(al(z)a(z))) = (0|SI D (ka)al(z})a(z1) D(xa)S,|0) = %e—wzi—m + %e-”‘ofl (a(zn)
+ <a<z1)>*%e"k°“ + (01SEa(2))alz1)S,10). (96)

Note that to find the reflected and transmitted (k = 0,2) fields and their g‘" functions, it is necessary to multiply (95) and (96)
additionally by the factors 1/+/2 and 1/2. So we see that it suffices to compute

|A*

(01T a(z1)S410) = (0|SAT[L/2,—L/2la(z)SC[L/2,—L/2]|0) + ——(0[S21[L/2,—L/2]a(z)S2[L/2,—L/2]|0)

and

2r

8V(Z),21) = (01SLa'(z))a(z1)S410) = (01S4T[L/2,—L/2]a’(z})a(z1)SA L /2,~L/2]|0)

|A*
or

4+ = (0|S5T[L/2,—L/2]a'(z})a(z1)S2[z1,—L/2]]0).

Applying the a-shifted versions of (19) and (20), we obtain

(01S}a(z1)8410) = re'o ((OISgT[L/Z,—L/2]S§[L/2,11]SZ[Z1,—L/2]|0)

|A[?

+ f(OISi’T[L/Z,—L/2]S£[L/2,Z1]S§[Z1,—L/2]IO))

and

V()2 = |A|2e”<°<ziZ“<<0|Sg*[z’1,—L/z]sji*'[L/z,z;]sg[L/z,z]JSg [z1,—L/2]|0)

|A*
or

Next, using (18), we split in the first case the opera-
tors S“*[L/2,—L/2] into the subintervals [—L/2,z;] and
[z1,L/2]. Assuming zj > z; in the second case, we split
the operators Sg'b"' [z},—L/2] into the subintervals [—L/2,z]
and [z;,z]] and the operator Sg[L /2,z1] into the subintervals
[z1,z]] and [z}, L/2]. After that, we apply Wick’s theorem and
use the identities (77)—(79) to obtain

(01S}a(z1)8x|0) = 1e™* C(L/2 — z1), ©7)
gV(z,21) = APe RGN R(TIM(Z) — 21)
+[CHT) — RMICE, —z1)),  (98)

where T = L/2 — 2} and M(7) = Gaa(7). The properties of
the latter function are studied in Appendix E.

In the stationary regime L/2 —z; — oo the mean field
equals

~ Likozi ko + AT 99
(a(z1)) ~ e ﬁ m . (99)

+ —(0|S§T[z,’1,—L/2]S§T[L/z,z’l]Sg[L/z,zl]Sg[zl,—L/2]|0)).

(

In particular, we find the mean reflected (¢« = 0) and trans-
mitted (k = 2) fields (recall also about the additional factor

1/+/2)

apefo il — i)
JI (/)2 +8+T12

ikoz)
(a,z1) ~ “Of/z (1

(ar(z1)) ~ (100)

_ir@=in) ) (aon
(1/)Q2 +82+12)

Dividing these expressions by %, we obtain the reflection
and transmission amplitudes, in full agreement with [4,5].
We note that for the strong drive the quantities |{a;;-(z1)) 12
differ from the mean numbers of photons per unit time N;,, /7,
defined by (86) and (87). These observables begin to coincide
in the limit of the weak driving field 9 — 0 and 2, — 0,

2
both converging to the single-photon reflection [ loo]

€ 7= - and
transmission gy % probabilities (times the incident photon
density), which indicates the suppression of the inelastic

scattering processes.
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The information about the inelastic (Mollow) part of the
power spectrum is contained in §V(z},z1) expressed by (98)
and, more precisely, in the functions

d . )\’2—
S AP [ dp iy iMo(p)
_rwz(l*T[ge : Ro(p)), (102)
_ [P ipe D)
A E ey
= L(l_/d_peipfico(l?))’ (103)
I+ 27" Ro(p)

in the form of terms containing the third-order polynomial
Ro(p), which is defined in (76). Here r(p) = r(p;a,a*),
7(p) = F(p;a,a™),and c(p) = c(p; a,a*) are the special cases
of the functions (D4), (D5), and (D7) and

2

Q
Mo(p) = (p +2iT)* — ER (104)

[+ |2

Co(p) = Mo(p) — (8 +il)(p+2iT). (105)

We note that the inelastic power spectrum is the same (up
to the factor 1/2) for the chiral and reflected or transmitted
photons, therefore it is sufficient to consider only the chiral
case.

We analyze first the stationary regime 7 — oo of (98). Here
we have R(0co0) = C(oc0) = %\Mz and the Mollow spectrum

is completely defined by & ﬁMzRe%{’(g), in full agreement

with the known results [61,62]. The roots of Ry(p) define
the positions and widths of all three Mollow peaks, while the
functions My(p) [Eq. (104)] contribute to their weights.

The expression (98) shows how the shape of the Mollow
spectrum evolves in time 7 toward its stationary value
discussed above. At T = 0 we have R(0) = C(0) = 0 and the
inelastic power spectrum is absent. For finite 7 > 0 its weight
starts to grow and it acquires the three-peak form, however
its transient shape differs from the stationary one due to the
presence of the additional contribution in Cy(p) [Eq. (105)],
which is not proportional to My(p).

In the formal expression the power spectrum amounts to

ko
T TO

kO Ty 00 )
= Re/ dT/ dt e'"
2 T() 0 0

x(a'(L)2 — TYa(L/2 — T — 1)),

P() =5 f dzidzi(al(z)a(z))e =

(106)

where 7T, is the maximal waiting time. The inelastic part
of (106) equals

kolAI?
27TTO
+[CH(T) = R(D)]Cinar(T)},

Pinel (a)) =

To 00 .
Re / JT / dt ¢ {R(T) Minea(7)
0 0

(107)
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FIG. 3. (Color online) Evolution of the Mollow triplet (from
bottom to top) with increasing time T = %2 98 &1 1 20 for the
parameters 2, = 10I' and § =0. For T = % (top green curve)
it is already indistinguishable from the stationary shape given by

Eq. (112).

where

AP [ dp e iMo(p)

M; = — , 108
nel(T) F+|)\.|2 . RO(P) ( )
I dp _;,.iCo(p)
o7 p—— P (109
inel(T) T+ |)h|2 2]_[‘3 Ro(p) ( )
Computing (107), we obtain
ko [T
Poa®) = 2 / AT pine(@.T), (110)
To Jo
IA[*R(T) iMo(w — ko)
i ,T) = R
Pinet(0.T) hw+ume{m@—mJ
APTC[C*(T) — R(T)]iC, —k
e ATICH(T) (T))i Co(w 0). (111

270(T + | Ro(w — ko)
For Ty — oo we recover the stationary Mollow spectrum
PSlm(w) = kOpinel(waoo)

inel
_ kolAl'T iMo(w — ko)
S 2n(T+ [AD2| Ro(w — ko)

}. (112)

Atlarge Rabi frequency €2, > T',§ it acquires the most familiar
form

PStat(w) —

inel

kol" r
4 | (w — ko)? + 2

1 T2
+ Eszzi(w_kO—SQr)2+9r‘2/4}' (113)

For finite Ty we show in Fig. 3 the augmentation of pjne(w,T’)
with increasing time 7.

VI. REDUCED DENSITY MATRIX
AND ENTANGLEMENT ENTROPY

Explicit knowledge of the scattering state allows us to
determine a reduced density matrix of some spatial interval,
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which we continue to call a counting interval. It suffices to
trace out past and future states of the full density matrix
(Sola))((oc|S£) by a procedure similar to that described in
Sec. IVB. Knowing the reduced density matrix, whose
computation by other methods is questionable, we can study
the entanglement entropy in our model.

Let us consider an arbitrary many-body operator A in the
chiral model that is defined on the counting interval [z;,z>].
Its average value in the scattering state reads

(A) = (0| D' (@)S} ASoD()|0)
= (0|8} D'(@)AD(a)S,|0)
= (0|S[L/2,~L/2]1A,S¢[L/2,—L/2]|0)

' ' <0|Sb‘[L/2 —L/21A,SP[L/2,—L/2]|0),

(114)

where Aa = DT(a)AD((x). Repeating the same steps follow-
ing Eq. (B10), we obtain an expression for (A,) analogous
to (64); it is only necessary to set k =1 and z =1 and
to replace ¢'XN* by A,. This implies that A can be ex-
pressed as a trace TrT(A,é,) over the states in the spatial
interval T = z, — z; with the reduced density matrix of this
interval

2
pr = [1+(1 12 )R(T) 2ReC(T)i|

2
x(WMw 4 2L " iy ><w”|)
2
+R<T)(|w el + 20 Wwfﬂ)
2
+[C(T)—R<T>](|w“><w |+' | W’)(x/fﬂ)
2
+[CHT) — R(T)](w )y |+' | |w”><wb|)
=Y ppp (DY) ("], (115)
B.B
where
[?) = D(@)SP[z2,21110) (116)

are linearly independent many-body states. Thus, it turns out
that §, describes the states in the effective four-dimensional
Hilbert space spanned by |¥#). The reduced density ma-
trix (115) is characterized by four eigenvalues X; and the
entanglement entropy of the interval T with the rest of the
pulse is then given by

4
= —Z)Li 111)\,'.
i=1

The basis (116), however, is not orthonormal and the
corresponding Gram matrix (¥ |47} differs from the identity.
Our central observation is that its components coincide with
the two-point functions (48), (Y [y?) = g_,,/y(r). Therefore,

(117)
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the eigenvalues X; coincide with the eigenvalues of the 4 x 4
matrix o(T)G (7).

In the bulk regime T — oo we find that one of the
eigenvalues of the matrix p(00)G(t) equals

MR , M(1)—
MO=—mrrrep  Marrpy
At small T we have
Aoy 1 — T 119
O T T e e
A(T) ~ ﬁ (120)
SRR TATYEI)
Aa(t) ~ O(x?), (121)
A1) ~ O(?), (122)

which leads us to the behavior of the entanglement entropy

S A Tt)In(I'7) (123)
~ ————(T1)In(I'7).
T AR
In the limit of large T — oo we have
1 5 1-0?
Mp==-(1F0), A=:= , (124)
' 4 4
where
VI 4 2[r2
o = @ <1, (125)
[+ (A2
leading us to the expression
8 = lim 5
1 1-
= (40 —2 —(1-0)n (126)

For the weak drive |A|> < T (o — 1), S vanishes. This
means that in the absence of inelastic processes there are no
correlations and therefore there is no entanglement. For the
strong drive [A|> > ' (0 — 0) we obtain A; &~ }t and S
approaches its maximal upper bound In 4.

In the boundary regime 7 = 0 the rank of p(0) reduces by 2
[because of R(0) = C(0) = 0] and we have only two nonzero
eigenvalues

1 e e
Aa(T) = [u: (1—TR< )) — 27 ICG )@

(127)

At small t they behave like

Q,7)> Q,1)>
PP A0 O (2

> > (128)

yielding

So ~ —(£2,7)* In(, 7). (129)
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FIG. 4. (Color online) Entanglement entropy S as a function of
the subsystem size t for T — oo (black upper curve) and 7 = O (blue
lower curve); the detuning § = 0 and the Rabi frequency €2, = 4I" are
the same for both curves. The horizontal lines indicate the limiting
values In4 (upper line) and In 2 (lower line).

At large 7 the eigenvalues (127) saturate at the values

l1+o
Ao = (130)
2
and therefore
T—>00
1 1 1-— 1-—
_ ot 1t It gy
2 2 2 2
It is remarkable that
Sy =182, (132)

which means that the subsystem lying deep in the bulk of
the scattered pulse is two times more entangled with the rest
system than the subsystem at the forefront of the pulse. The
existence of the finite values (126) and (131) in the large-t
limit tells us that the area law is asymptotically fulfilled for
the large subsystem size. In our 1D geometry, the area of the
subinterval consists either of two points in the bulk case or of
a single point in the boundary case and this difference in the
area measure is accounted for by the factor 1/2 in (132). At
small 7, the expression (123) and (129) contain the logarithmic
terms, which means that the entanglement entropy for the small
subsystem size violates the volume (~7) law in our model.

Shown in Figs. 4 and 5 is the t dependence of the
entanglement entropy for the bulk (black curve) and boundary
(blue curve) cases using the values 2, = 4I" (moderate drive)
and 2, = 10T (strong drive). The upper limits In4 and In2
are indicated by the horizontal lines. In both cases we set the
detuning § = 0 for simplicity.

We observe that the bulk entanglement entropy is the
monotonically growing function of the subsystem size. In
turn, the boundary entanglement entropy exhibits oscillatory
behavior before it reaches the saturation value. For the strong
driving field both entropies nearly reach the corresponding
maximally allowed values In4 and In2 at large t. Our
numerical analysis also shows that the entanglement entropies
S() for finite values of T lie between the blue and the black

PHYSICAL REVIEW A 91, 063841 (2015)
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FIG. 5. (Color online) Same quantities as in Fig. 4 for the
different Rabi frequency €2, = 10T".

curves (not shown in Figs. 4 and 5), though not always being
bounded by them, but always being bounded by In4 from
above.

VII. CONCLUSION

We have exactly computed the full counting statistics in the
fundamental quantum-optical setup: a finite-size pulse of the
coherent light propagating in the multimode waveguide and
interacting with the two-level system. These results provide a
quantitative determination of many-body correlation effects
of photons mediated by their interaction with the emitter.
Our analysis takes into account the spatial parameters of the
incident pulse as well as the parameters of the detector,
the waiting time 7 and the counting time t, in terms
of which the FCS was defined and analyzed. We showed
that the three types of counting statistics for the reflected,
transmitted, and chiral photons have qualitatively different
behavior (sub-Poissonian, super-Poissonian, and Poissonian).
We have analyzed the entanglement entropy of a spatial part
of the scattered pulse with the rest of it in the chiral model and
observed the fulfillment of the area law for large subsystem
size and the violation of the volume law for small subsystem
size, as well as the oscillatory behavior of the entanglement
entropy as a function of the subsystem size t in the case of the
short waiting time 7.

We believe that the full characterization of properties of the
scattered coherent light presented here will be useful in future
theoretical and experimental studies of many-body effects in
fundamental models of quantum nanophotonics and extended
for more complicated systems.

ACKNOWLEDGMENTS

We benefited greatly from discussions with D. Baeriswyl,
A. Fedorov, D. Ivanov, G. Johansson, A. Komnik, M. Laakso,
G. Morigi, M. Ringel, and M. Wegewijs. The work of V.G. is
part of the D-ITP consortium, a program of the Netherlands
Organisation for Scientific Research that is funded by the
Dutch Ministry of Education, Culture and Science.

063841-15



MIKHAIL PLETYUKHOV AND VLADIMIR GRITSEV

APPENDIX A: ADDITIONAL DETAILS OF THE DRESSING
PROCEDURE (36)

In expressions (37)-(40) we introduced the dressed propa-

gators d,, d,, and d,, which emerge after the reorganization of
the series for S#[y,x] and are themselves defined by the series

2 /A"
dy(y —x) =do(y — x) + ( )
2\ 7z

X /D-xndO(y - -xn)dO(xn - -xnfl)
<+ do(xa — x1)dp(x1 — X),

- 2 v\
dv(y - X) =1+ < ) /Dx11 d()(xn _xn—l)
27z

<o do(xy — x1)dop(x1 — x)

2/ avF\"
—14 ( > f Dando(y — x,)
2\ 7z

X dO(xn - xn—l) c °d()(X2 - xl)’

x Av* 2 ave\"
d(y—x)=14+"F<(y— § -— Dx,
(y —x) +ﬁ(y X)+n—z(ﬁ> / X

(AL)

(A2)

X do(xp — Xp—1) -+ - do(x2 — x1). (A3)
These functions obey the differential equations
dj(x) = i(8 4 iD)[dy(x) — d,(x)] = 0, (A4)
~ Av*
dy(x) = “=dy(x), (AS)
VL
z, )LU* ~
d,(x) = ﬁdu(x)’ (A6)
d,(0) =0, (A7)
d,0) = d,0) = 1. (A8)
Solving them, we find (42)—(44).
APPENDIX B: DERIVATION OF (64)
It is easy to check the commutation relations
- T
[bx, By, | = R (B1)
(515}, ] =0, (B2)
~ ~f T
[bkwbkn] =1- I (B3)
as well as
[N'L’kaU] = _Ekov [NT’B]]ZO] = EIO’ (B4)
[Ne.bi] = [Ne.B) ] =0. (BS)
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Taking them into account in the application of the Baker-
Campbell-Hausdorff formula, we establish the identity

) n 4 o
¢l XNy ekabko — eKabko eszb}{o elXNr ,

(B6)
where z = ¢'%. Next we define B = \/;Bko and B = /5By,
such that [B,B'] = [B,B] = 1 and establish

A Al
e"a*bko gkabko ekazbko

_ em*«/r/LBemz«/r/LBfem* (L—r)/LBem (L—7)/LBT
— Ml @/ L+t laPI(L—1)/L] jkaz/T[LB jxa*/T/LB
> eK(x«/(L—r)/Lf?ieka*a/(L—r)/LB

21,12 21,12 Al Al
— % lee|“(t /L)+K7 x| [(L*I)/L]e’“)‘zbkoe’("‘bkoe'(a*bko' (B7)

Finally, using the identity analogous to (B6)

g""‘*bko eier — eixN, e/coz*bko eka*zbko

(B8)

and combining the result together with (B6) and (B7), we
obtain the expression

: 2012 21,12
eka*kaelxN,eKOlbko — % lee|*(z/L)+x"|a|*[(L—T)/L]

Xekazblo eKaE,EU eiXN, e/(ot*l'yko eKDt*Zl;ko’ (B9)
whose right-hand side contains the exponents of annihilation
(creation) operators standing to the right (left) of /X", in
contrast to the original reciprocal arrangement appearing on

the left-hand side of this expression. Inserting (B9) into (59),
we deduce

FO (5 )e~ G Delal /L)
T
A R e
= (0]S]e™ Pk ¢t X Ve g2 Bro "B 5| 0)
o wbt e
= (01S§T[L/2,—L/2]e"% ¢*Pio ¢*Pio

5 XN g Bly b ea*bl{g S4[L/2,—L/2]]0)
A2 i Al pt
2018y 1L /2,1 216 e ol

. %P %7 spf
% e XNe g by 2 biy p by S{)’[L/Z,—L/2]|0), (B10)

where z, = k(z — 1)+ 1.

The result of counting should not depend on the future;
this is a manifestation of the causality principle. Therefore, we
expect that (B10) identically equals

FT(K)(X )e—(z—l)KZIOIIZ(T/L)

= (1SS L /2,211e% P e

x @ XNt ea*bfo ez“a*BkD SS [L/2,z1]]0)
A2
2r

. *1,P b
x Ve g Wy gz B SPLL 12 21 10).

, L
+ 2 (0ISPTL /2,21 ]P0 ¢*Pho

(B11)

This statement can be rigorously proven using the splitting
relations (18). The identities (77)—(79) appear essential for
such a proof.

063841-16



QUANTUM THEORY OF LIGHT SCATTERING IN A ONE- ...

In the next step we integrate out the fields in the past. They
do influence the counting, therefore the result of this procedure
cannot be simply guessed. To eliminate the past fields in a sys-
tematic way, we employ the first and second relations of (18),
splitting the interval [z;,L /2] into the counting T = 7, — 273
and the past (or waiting) T = L /2 — z, subintervals. Applying
Wick’s theorem separately on each subinterval, we obtain the
formula (64).

APPENDIX C: LAPLACE TRANSFORMS (70)

The explicit expressions for the Laplace transforms (70)
are obtained by the resummation of geometric series in the
Laplace space that emerge from the unique possibility for
Wick’s contraction of the path-ordered field operators. The
result of this procedure reads

P F(psu,v*)
Gual?) = GaalP) = =5 oy (€D
. r(p;u,v*)
G (P) = T iy (2)
e, |A*F2(psu,v)
Gee(p) = Fpuw) + 7 2om BRES(€Y)
_ _ c(p;u,v*)
Gav(p) = Gun(p) = T (o)’ (C4)
. . c(p;u,v*)
Gra(p) = Gra(p) = T pPr(piu)’ (C5)
Gea(p) = Gea(p) = b(p;u,v™)
IA2e(p; u,v*)F(p;u,v*) (C6)
1 — |A2r(p;u,v*)
Gae(P) = Gac(p) = b(p;u,v*)
2=( - BV *
|A|17¢(psu, v )F(psu,v™) )

1 — |A2r(p;u,v*)

dp i, F(p3 20, 2e@®) + (A7 /20)r (ps 2e @, ze@)
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IA2c(ps; u,v*)E(p; u,v*)

Gua(p) = F(piuv) + = mmn— (C8)
Gor(p) = F(piuv™) + '“216(_” [A”';’r’acff fvi’)”*), (9)
Goe(p) = f(pruv®) + |)L|216(_p|;)ft|,2l;2i(5’;vbi,)v*) (C10)
where the functions
r(p;u,v*):/Ooodxd:(x)dv(x)eipx, (C11)
F(psu,v*) = /O Oode;;(x)Jv(x)el‘W, (C12)
7(p;u,v*)=fooodxd:;(x)év(x)e"”, (C13)
c(p;u,v*):/Ooodxcz;k(x)dv(x)ei”x, (Cl14)
a(p;u,u*)=fooodxd;(x)&v(x)eff”, (C15)
b(p;u,v*)zfooodxﬁ;‘(x)civ(x)eim, (C16)
E(p;u,v*)z/(;oodxdlf(x)d:v(x)ei'”, (C17)
f(p;u,v*)=/Ooodxc7:(x)dv(x)ei’”‘, (C18)
F(piu) = fo T dxdi0d e (C19)

are obtaineg using the explicit form of the functions d,(x),
d,(x), and d,(x) from Egs. (42), (43), and (44), respectively.

APPENDIX D: COMPUTATION OF (73)-(75)

To compute the quantities in (73)—(75), we insert into (72)
the expressions for Ggg(p) from Appendix C and obtain

ra@ + 2L A0 =
aal )T S Aty = [ 5 7€

|22 dp _ipe| = o L AT X
Acc(r) + —Aaa(‘[) = —e 7 ”(P§Z/<05’ZKO‘ )+ _V(PZZKOQZKO[ )
2r 2 L

d_pe—ipr
2

A )+ |M2A- —/
calT E an(T) =

, DI
1 — z|APr(ps zeat, Zicr®) b
2 1 4 2T zF (p; 2@, 7 @™) ]
| + 2127 (p; 2, 2cX™) ’ D2)
or 1 — z|Ar(ps zeo, zea®)
A |2 1 4 2T 27 (p; ze @, z,ca™) ]
b(p; 2,0, 2, 0*) + ——c(p; 2@,z . D3
L (p ) 2r (p )1 — Z|)\|2r(p;zkaﬂzka*)_ (B3
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Establishing the functions (C11)—(C14) and (C16) for u = z,« and v* = z,a* in the explicit form

_21‘(32 + T2 (p+il)

r(p; zett,z ™) = ) (D4)
Oo(p.zi)
R —(Q2/2 —D(p+ill
Fpi 2oz = i o(p) — (22/2)(zc — 2(p +i ), D5)
QO(psZK)
. 2 2 2 2 2 2
- N i . ,p-+ 8+ T ) . 6~ —T 5 QF
F(p:2ictt,2e”) Qo(p,zK)[ o(p) — iz, T 21T + Q(p +il) SR TTE %35+ (D6)
(8 +il 2iT)p —8+il
(7 zet,zpe®) = QXD+ 2TXp 3 4iT) (D7)
Qo(p,zx)
[ Q%z, 2iT §+ill
b(p;zxoz,zka*)=f(p;zka,zKa*)—l Zelp 2T + 8 +1T) (D8)

where

Qo(p,z¢) = pRo(p) —iTQ(p +iT)
—(ze — DQAp +il), (D9)

and inserting them into (D1)-(D3), we arrive after some
transformations at (73)—(75).

APPENDIX E: CORRELATION FUNCTIONS (48)

Setting # = v = «, we introduce the notation

Giv(T) = R(1), (EL)
Gab(T) = Gp(7) = C(1), (E2)
Gua(t) = M(2), (E3)
Gep(1) = Gpo(7) = N(1). (E4)

From the normalization identities (77)—(79) it follows that

_ _ K
Gaa(1) = Gaa(t) =1 — %R(r), (ES)
- A4
Gee(r) =1+ WR(T)’ (E6)
- — |A[?
Ga(m) =G, (v)=1- fC(r)- (E7)

We establish the following differential equations for the
functions R(t), C(t), M(t), and N(t). The function R(7)
obeys the differential equation

R(1) + 4T R(v) + (7 + 8% + ST?)R(7)
+ (92 + 282+ 2I%)R(r) = 2I'(8* + T?), (ES)
equipped with the initial conditions R(0) = R(0) =0 and
R(0) = 2(8% + I'?). The function M(t) obeys the same dif-

ferential equation (E8) equipped with the initial conditions
M(@O0)=1,M(0) =0,and M(0) = —93/2. The function C(t)

46 —iT)Qo(p.zi)

(

obeys the differential equation

C(t)—i(8 +iNC(1)
92
= —i(6+il({1—-— —"—R , E9
i6+i )( 2T (r)) (E9)
with the initial condition C(0) = 0. The function N(t) obeys
the differential equation

N(t) —i(8 +iT)N(1)
s+ill . . .
= ———=[M@)+i(6 —il)M(7)],
6 —ill
with the initial condition N(0) = 0. At small t these functions
have the behavior
R(t) ~ (8% + I'H)1?,
QZ‘L’Z
M)~ 11— —L—,
(v) 4

(E10)

C(r)~ —i(§ +iD)1,

N(t) ~ —i(§ + i)z,

while in the limit T — oo they all reach the same stationary

2 2
value r __ _ 28°42r

FIRE = 25ariia In the resonant case § = 0 we find

o —_
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FIG. 6. (Color online) Functions R(t) (dot-dashed blue curve),
C(7) (dashed green curve), M(7) (solid red curve), and N(t) (dotted
black curve) for § = 0 and 2, = +/2T". At large T they all saturate at
the value 0.5.
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the analytic solutions to these differential equations

21?2 2r%(Q,

PHYSICAL REVIEW A 91, 063841 (2015)

cos 2,7 + L sinQ, 1)

R — _ _ —(3F/2)T’ El1l
©=g o Q, (2 +2r?) ¢ 1D
2 2\ i & A =
o = T2 I‘[(Qr -T )_sm Q, v —2I'Q, cos er] -G/ E12)
Q2 4212 Q,(Q2+217) ’
or? 1 ., Q-or? _ I 5Q2—2r2 ]
_ 1 r —(3T/2)t r —@T/2)7

M(z) = RIET + 26 T —2(92+2F2)e cos Q2,7 + o} T e TsinQ, 1, (E13)

N@)=M@E@)—e ', (E14)

where Q, = \/Q2 — T'2/4. They are shown in Fig. 6 for Q, = +/2I".
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