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We experimentally demonstrate and theoretically explain the onset of optical frequency combs in a simple
cavity-enhanced second-harmonic-generation system, exploiting second-order nonlinear interactions. Two combs
are simultaneously generated around the fundamental pump frequency, with a spectral bandwidth up to about
10 nm, and its second harmonic. We observe different regimes of generation, depending on the phase-matching
condition for second-harmonic generation. Moreover, we develop an elemental model which provides a deep
physical insight into the observed dynamics. Despite the different underlying physical mechanism, the proposed
model is remarkably similar to the description of third-order effects in microresonators, revealing a potential
variety of new effects to be explored and laying the groundwork for a novel class of highly efficient and versatile
frequency comb synthesizers based on second-order nonlinear materials.
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I. INTRODUCTION

The quest for optical frequency combs (OFCs) was strongly
motivated by the need of increasingly precise frequency
measurements and, more recently, of broadband though highly
coherent sources. Subsequently, OFCs have quickly found new
applications beyond frequency metrology and are nowadays
routinely used in many laboratories as tools for frequency
transfer, precision spectroscopy, astronomical spectral cali-
bration, and generation of low-phase-noise microwave and
radio frequency (rf) oscillators [1,2]. Originally, mode-locked
femtosecond lasers were used for producing frequency combs
[3–5]. However, in view of miniaturized photonic tools, comb
generation has been demonstrated recently in continuously
pumped optical microresonators, exploiting the third-order
nonlinear susceptibility χ (3) [6–8]. In such Kerr combs, the
first couple of side modes are produced through a degenerate
four-wave-mixing (FWM) threshold process, where two pump
photons at frequency ω0/2π annihilate, creating a pair of signal
(ωs) and idler (ωi) photons symmetrically placed around the
pump so as to satisfy energy conservation, i.e., ωs − ω0 =
ω0 − ωi. The occurrence of self- and cross-phase modulation
(SPM and XPM) can compensate the unequal spacing of the
cavity modes due to the group velocity dispersion (GVD)
of the material so that the resonator modes become locally
equidistant. Successive cascaded FWM processes eventually
lead to a uniform broadband frequency comb. To date, Kerr
combs have been demonstrated in various geometries using
different materials and a variety of dynamic regimes and
physical features have been observed, stimulating a large
number of experimental and theoretical studies [9–17]. It is
worth mentioning the demonstration and modeling of OFCs
in quantum cascade lasers [18,19].

Materials with second-order susceptibility, χ (2), have been
used for transferring and extending otherwise generated
OFCs to different spectral regions [2,5]. Combs in the near
infrared have been transferred in the MIR range by difference
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frequency generation between a femtosecond comb and a cw
source [20,21] or between different teeth of the same comb
[22–24]. A more efficient conversion is achieved through
optical parametric oscillators synchronously pumped by a
femtosecond laser [25–30]. Periodically poled lithium niobate
wave guides have been used for spectral broadening of fs fiber
lasers generation [31,32]. Interestingly, Kerr microresonators
can exhibit second-order nonlinearity, whether intrinsic to
the material, such as AlN [33], or induced by symmetry
breaking the original centrosymmetric structure [34,35]. Even
in this case, the effect of the χ (2) nonlinearity is to frequency
up-convert the original χ (3) comb in the second- and third-
harmonic ranges, but no evidence is reported of a direct
intervention of the quadratic nonlinearity in the generation
of the fundamental comb [15,17,33].

Yet, there is a growing interest in the possibility of direct
generation of OFCs, entirely through χ (2) interactions, usually
more efficient than third-order ones. Moreover, cascaded χ (2)

processes show a variety of effects typical of χ (3) materials,
such as SPM, XPM, FWM, etc. [36,37], which have been
exploited in Refs. [31,32].

More recently, Ulvila and coworkers observed frequency
comb generation in a singly resonant optical parametric oscil-
lator (OPO) with an additional intracavity crystal, intentionally
off-phase matched for the second-harmonic generation (SHG)
of the signal frequency [38,39]. They qualitatively explain their
comb generation as a consequence of a Kerr-like SPM occur-
ring in off-phase-matched SHG, where the power propagating
in the χ (2) crystal, initially converted from the fundamental
to the second-harmonic wave, after half a coherence length
is down-converted back to the fundamental with a phase shift
proportional to the fundamental power, finally resulting in an
effective optical Kerr effect [36]. However, while Kerr-like
SPM can justify the spectral broadening of ultrafast lasers
[31,32], for a continuous-wave-pumped crystal it does not
necessarily lead to new frequencies, unless FWM is considered
as well [40]. In addition, off-phase-matched SHG is not
essential for the appearance of a comb, as we show in our work.

Here, we experimentally demonstrate frequency comb
generation in a continuously pumped cavity-enhanced SHG
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system, where multiple cascaded χ (2) nonlinear processes
enable the onset of broadband χ (2)-comb emission both around
the fundamental pump frequency and its second harmonic. The
observed results are discussed in view of a specially devel-
oped dynamical model, which shows a striking resemblance
to FWM-based models for Kerr combs in microresonators
[10,11]. In fact, a properly phase-matched χ (2) material placed
in an optical cavity, singly resonant for the fundamental
frequency, can act either for SHG or OPO, depending on
whether it is pumped at the fundamental or a harmonic
frequency, respectively. In the former case, the harmonic
power generated within the material can exceed the OPO
threshold, leading to an internally pumped cascaded OPO,
with steady oscillations of a frequency-symmetric signal-idler
(s-i) pair around the fundamental frequency [41–47]. The
occurrence of such an internally pumped OPO in cavity SHG
is usually deleterious for optimal harmonic generation [48].
Nevertheless, the emergence of unexpected features motivated
a series of works, which investigated Kerr-like phase shift
and subharmonic pumped OPO as separately occurring effects
[44,45,47]. Technical limitations and likely the fact that, at that
time, the importance of OFCs was not well understood outside
a small circle of people [49] prevented an early observation
of OFCs in quadratic nonlinear media. We show that the
cascaded SHG-OPO system displays an even richer dynamics,
mimicking typical third-order effects, like those leading to
frequency comb generation in χ (3)-nonlinear microresonators.

II. DYNAMICAL MODEL

A simplified model was previously derived [46], based on
a reduced set of coupled mode equations, considering only
the two first processes of frequency doubling and cascaded
degenerate OPO: a perturbative solution provides, for the three
resonating subharmonic fields, a set of dynamic equations,
which displays effective third-order interaction terms; how-
ever, not all the relevant terms appear in these equations. We
generalize this model by including the following processes,
which start at once with OPO onset: generation of the signal
and idler second harmonic; sum frequency of signal (idler)
and fundamental [Figs. 1(a) and 1(b)]. These are all processes,
and the only ones, that lead to a complete, closed three-wave
dynamical model for the resonant fields. Once these processes
are considered, the derived dynamic equations are still limited
to three subharmonic fields, but with new relevant interaction
terms. Obviously, other possible cascaded processes occur,
which indeed lead to the generation of other side modes and
possibly to a frequency comb. However, their inclusion in
the starting coupled mode equations unnecessarily burdens
the present analysis without significantly improving our
understanding.

Then, we derive a complete set of dynamic equations for
the sole resonant subharmonic fields, i.e., fundamental and
parametric fields:

Ȧ0 = −(γ + i�0)A0 − 2g0η0siA
∗
0AiAs

− g0(η00|A0|2 + 2η0s|As|2 + 2η0i|Ai|2)A0 + Fin, (1a)

Ȧs = −(γ + i�s) As − g0η00i A
2
0A

∗
i

− g0(2ηs0|A0|2 + ηss|As|2 + 2ηsi|Ai|2)As, (1b)

Ȧi = −(γ + i�i) Ai − g0η00s A2
0A

∗
s

− g0(2ηi0|A0|2 + 2ηis|As|2 + ηii|Ai|2)Ai. (1c)

Subscripts 0, “s”, and “i” indicate fundamental, signal, and
idler modes, respectively. The A’s are the normalized electric
field amplitudes; Fin is the pump amplitude coupled into the
cavity; γ is the cavity decay constant, assumed to be the same
for the three fields; the �’s are the cavity detunings of the
respective modes; the η’s are complex nonlinear coupling
constants, depending on the wave-vector mismatches of the
considered second-order processes; and g0 = (κL)2/2τ is a
common gain factor depending on the crystal length L, the
second-order coupling strength κ , and the cavity round-trip
time τ (see Appendix A for a detailed derivation and full
mathematical expressions).

Equations (1) fully describe, in a compact form, the
elemental dynamics of the cavity SHG-OPO system in
terms of effective third-order interactions between the three
subharmonic fields, with the constants η’s playing the role
of third-order complex susceptibilities (it should be noted
that here the real part gives the absorption component, while
the dispersion component is the imaginary part, differently
from the usual definition of susceptibility). The related
harmonic fields are fast variables, which instantaneously—on
the cavity round-trip time scale—follow the cavity fields [see
Appendix A, Eq. (A7)]. However, we note that harmonic
fields are not a mere reflection of subharmonic fields, but
they physically mediate the effective interaction of Eq. (1),
eventually leading to comb formation in both spectral ranges.

FIG. 1. (Color online) Schematic representation of the first steps
leading to the formation of a double optical frequency comb in
cavity-enhanced second-harmonic generation: (a) second-harmonic
generation with cascaded nondegenerate OPO gives rise to (b)
multiple subharmonic components, which in turn lead to succes-
sive, multiple second-harmonic and sum-frequency generations. (c)
Second harmonic and intracavity parametric power as a function of
the pump power, calculated by numerically solving Eq. (1) for a set of
physical parameters corresponding to the experimental configuration.
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The formal analogy between Eq. (1) and the modal expansion
for the Kerr-comb dynamics [10] is remarkable and provides
an insightful viewpoint over the dynamical regimes of our
system. A thorough analysis of the steady states of Eq. (1) and
their stability is beyond the scope of the present work. Here,
we only provide qualitative comments specifically related to
what we experimentally observe.

Equations (1) predict the onset of a cascaded OPO, above
a given input power threshold, and the clamping of the
second-harmonic power [Fig. 1(c)]. More in detail, we focus
our attention on some of the interaction terms. Imaginary parts
of terms |Al|2Al , and |Am|2Al (with l,m ∈ {0,s,i} and l �= m),
are, respectively, self- and cross-phase modulation terms,
producing an effective change of the refractive index, which
locally compensates the effect of GVD; also their real parts
play a relevant role, as they determine the frequency distance
from the fundamental mode at which a s-i pair oscillates.
Indeed, of all the s-i pairs that can oscillate, the one with the
minimum oscillation threshold prevails, i.e., the one for which
the parametric gain exceeds cavity losses first. In particular,
as a s-i pair starts to oscillate, the second harmonics, 2ωs,i,
and sum frequencies, ωs,i + ω0, are generated at once, with
an efficiency determined by the respective phase-matching
conditions. We use the subscript s,i to refer to alternate
choices. The latter sum frequency generations (SFGs) give,
in Eqs. (1b) and (1c), the terms |A0|2As,i, whose real part
thus represents a nonlinear loss for the respective field As,i

(a photon is created in the harmonic region at the expense of
a couple of subharmonic photons). The amount of this loss
is generally proportional to the fundamental power |A0|2,
but, more importantly, strongly depends on the value of
the corresponding SFG wave-vector mismatch, i.e., on the
frequency of the fields (Appendix B). As a result, for a given

parametric gain and a spectrally equal linear loss, the s-i pair
that minimizes the nonlinear losses has the lowest threshold,
thus it preferentially oscillates. Actually, because of GVD, the s
and i modes of a doubly resonant OPO generally oscillate with
finite detunings �s,i, resulting in additional effective losses.
Hence, the lowest-threshold parametric pair is determined by
a tradeoff between cavity dispersion, linear and nonlinear
losses, and parametric gain. Regarding the terms |Ai,s|2As,i,
originating from second harmonic of parametric waves, also
their real part represents a nonlinear loss; however, at the
threshold, they can be neglected in a first approximation, as
they are of higher order in the parametric fields.

III. EXPERIMENTAL SETUP

The SHG system is based on a periodically poled nonlinear
crystal, lithium niobate, placed in a traveling-wave optical
cavity, resonant for frequencies around the fundamental pump
frequency [Fig. 2(a)]. The nonlinear cavity consists of two
spherical mirrors (100 mm of radius of curvature) and two
plane mirrors in a bow-tie configuration. The system is
pumped by a cw narrow-linewidth Nd:YAG laser, (λ0 �
1064.45 nm), amplified by an Yb:fiber amplifier (maximum
available power, 9 W). The pump beam enters the cavity
through a 98%-reflectivity plane coupling mirror, while the
remaining mirrors are high-reflection coated (R > 99.98%).
The generated harmonic field exits from the cavity through
the first encountered mirror, AR-coated at 532 nm. The
measured cavity FSR is 493.00(1) MHz, with a cold cavity
resonance full width at half maximum of 3 MHz (finesse,
160; Q factor, ∼108). The crystal, placed between the two
curved mirrors, is a 15-mm-long sample of periodically poled
5%-MgO-doped lithium niobate, MgO:LiNbO3, with a grating

FIG. 2. (Color online) Experimental setup. (a) A four-mirrors traveling-wave cavity, with a periodically poled nonlinear lithium niobate
(PPLN) crystal inside, is pumped by an amplified cw Nd:YAG laser, which is frequency locked to an ultra-low-expansion (ULE) reference
cavity. The nonlinear cavity output beams are detected and processed by radio-frequency (rf) analyzers, an optical spectrum analyzer (OSA),
and a confocal Fabry-Pérot interferometer (CFP) for spectral analysis in the visible range, not covered by the OSA. (b) Frequencies of a couple
of χ (2)-comb teeth can be simultaneously measured against an absolutely referenced mode-locked fiber-laser comb (ML-comb), by counting
the beat notes of each χ (2)-comb tooth with the corresponding nearest ML-comb tooth. C, frequency counter; DL, diode laser; DM, dichroic
mirror; PZT, piezoelectric actuator.
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period of � = 6.96 μm. The crystal temperature is actively
stabilized by a Peltier element driven by an electronic servo
control. The high-reflectivity plane mirror is mounted on a
piezoelectric actuator (PZT) for cavity length control. The
SHG process for the fundamental wavelength of 1064.45 nm
is quasi-phase-matched at a crystal temperature T0 = 39.5 ◦C.

The laser is frequency stabilized against an ultra-low-
expansion (ULE) cavity by a Pound-Drever-Hall (PDH)
locking scheme [50] with a residual drift of ∼1 Hz/s [51].
A second PDH scheme is implemented to lock the SHG cavity
to the pump frequency. At higher pump powers, photothermal
effects strongly distort the PDH signal, preventing active
frequency locking. However, the same effects induce a thermal
self-locking mechanism [52], which enables stable operation,
with the laser slightly blue detuned with respect to the cavity
resonance. Fundamental and harmonic light beams exiting the
cavity are separated by a dichroic mirror and sent to different
diagnostic systems: two fast photodiodes, whose ac signals
are processed by a radio-frequency spectrum analyzer; an
optical spectrum analyzer (OSA), with a spectral range from
600–1700 nm; a 1-GHz-FSR confocal Fabry-Pérot cavity,
acting as a spectrum analyzer for the visible range not covered
by the OSA.

Frequency measurements of comb teeth separation are
made using a commercial OFC synthesizer (Menlo Systems,
FC-1500), with a spectral span of 1–2 μm and mode spacing
fr = 250 MHz, referenced to the Cs primary standard via the
global positioning system [Fig. 2(b)]. The beat note fb between
a specific χ (2)-comb tooth and the nearest reference comb
tooth is detected and counted, the optical frequency being
determined as ν = mfr + fo + fb, where fo is the reference
comb offset frequency. To get the mode number m, a diode
laser (DL) is frequency tuned within a few tens of MHz from
the χ (2)-comb tooth. In this way, the mth reference comb
tooth is the closest to the DL too; then, by measuring the
DL wavelength with a 50-MHz-resolution λ meter, m can be
determined unambiguously. The availability of two DL allows
simultaneous measurement of two χ (2)-comb teeth.

IV. RESULTS

When the crystal is quasi-phase-matched for SHG, we
observe a first regime of pure harmonic generation, at low
pump powers, in which the generated second-harmonic power
increases with the input pump power, with a SHG efficiency
of ∼50% [Fig. 3(a)]. As the laser power exceeds a threshold
value of about 100 mW, the second-harmonic power clamps
at a constant value, irrespective of the increasing input power,
and a s-i pair starts to oscillate at frequencies ω0/2π ± �ν

around the fundamental frequency as predicted by Eq. (1)
[Fig. 3(b)]. The frequency separation �ν corresponds to
simultaneous resonant parametric modes, which minimize the
OPO threshold, determined by a nontrivial tradeoff between
(linear and nonlinear) losses, GVD, and parametric gain. While
the last two processes favor s-i pairs closest to pump, for
quasi-phase-matched SHG, the nonlinear loss due to SFG
between the fundamental wave and any possible signal or idler
is maximum for s-i pairs nearby the pump (see Appendix B).
As a result, the lowest-threshold s-i pair rises at a frequency
spacing �ν much larger than the cavity FSR.

Further increasing the pump power above the OPO thresh-
old, additional s-i pairs appear around the fundamental mode,
seemingly displaced by multiples of �ν. Differently from the
first s-i pair, the appearance of successive pairs is thresholdless
and can be thought as cascaded nondegenerate FWM between
adjacent modes, e.g., the pump mode interacts with each
first-order sideband at ±�ν generating a new sideband at
±2�ν and amplifying the mode at ∓�ν, and so on, eventually
producing a multiple-FSR-spaced frequency comb.

The spectral resolution of our optical spectrum analyser
(0.01 nm or ∼5 FSR) only enables a rough estimate of the
mode separation of the primary comb [Fig. 3(c)]. A more
precise value for the mode separation has been obtained
by simultaneously measuring the frequency of two nearby
side modes, i.e., first- and second-order signal (idler) modes
[Fig. 2(b)], having previously measured the cavity-stabilized
pump frequency. This way, we can separately determine the
frequency separation between the pump and each first-order
sideband, and between first- and second-order sidebands. We
finally estimate an equal spacing of �ν = 288 406.5 MHz with
a statistical uncertainty of 0.3 MHz, well below the cold-cavity
linewidth. In units of FSR the spacing is �N = 585.00 ± 0.01,
an integer multiple within the error.

When the pump power is further increased, typically
Pin > 5 W, secondary parametric oscillation and four-wave
mixing occur, resulting in the emergence of small (secondary)
frequency combs around the primary comb teeth [Fig. 3(d)].
Similar hierarchical comb formation has been experimentally
observed in Kerr combs [53,54] and predicted by numeri-
cal simulations based on modal expansion [10,12]. At the
maximum available power, secondary combs spread towards
a continuous spectral distribution, spanning about 10 nm. The
appearance of secondary combs around side modes can be
understood by considering each primary side mode as the
pump for a secondary elemental threshold process described
by Eq. (1). Contrary to the quasi-phase-matched fundamental
mode, a primary side mode is not quasi-phase-matched for
SHG and, as a consequence, the nonlinear loss due to its SFG
with a possible secondary parametric mode can be minimal
close to the primary side modes, i.e., a secondary comb is
more likely to start closer to the corresponding primary side
mode (Appendix B).

As anticipated, frequency combs are simultaneously gener-
ated both around the fundamental pump frequency and its
second harmonic. Figures 3(e) and 3(f) report the visible
spectra, obtained by the confocal Fabry-Pérot interferometer,
corresponding to IR spectra in Fig. 3(b) and 3(d), respectively.
In correspondence with the first s-i pair oscillation, at least
five different peaks can be observed. We impute them to
fundamental, signal, and idler second harmonic as well as
to the sum frequency combinations ωs + ω0 and ωi + ω0. We
point out that all these processes are not phase matched, except
the SHG ω0 → 2ω0. The rf spectrum of the IR light output for
9 W of pump power is shown in Fig. 3(g). The corresponding
rf spectrum for the green light is practically identical. The
appearance in the rf spectrum of the intermodal beat notes at
the FSR frequency, for both the infrared and visible combs, is
a clear evidence of a teeth spacing of one FSR.

Increasing the crystal temperature, the original SHG
process becomes positive phase mismatched, namely
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FIG. 3. (Color online) Experimental data for quasi-phase-matched SHG: (a) transmitted second-harmonic and parametric power as a
function of the input pump laser power; (b)–(d) OSA spectra around the fundamental mode for 170 mW, 2 W, and 9 W of input powers,
respectively; (e) and (f), spectra of the visible CFP corresponding to IR spectra of (b) and (d), respectively; (g) rf spectrum of the IR light
output for 9 W of pump power; (h) detail of the beat note around 493 MHz (RBW = 10 kHz, VBW = 1 kHz).

ξSH0 = k2ω0 − 2kω0 − Kc > 0, where kω0 and k2ω0 are the
pump and its second-harmonic wave vectors, respectively,
and Kc = 2π/� is the crystal periodic-grating wave vector.
The off-phase-matched pump frequency acts as a seed for a
comb, similarly to a primary side mode in the previous case
of quasi-phase-matched SHG. In our experiment, we changed
the crystal temperature exploring different SHG wave-vector
mismatches, for ξSH0L from 0 to 8 π , with L being the crystal
length, limited by the working range of the Peltier servo
control. Because of the strong photothermal effects, passive
thermal locking is exploited for keeping the cavity nearly
resonant with the pump.

Increasing the pump power, a frequency comb around the
fundamental mode emerges and successively broadens up to
10 nm (∼5000 comb teeth). As a general trend, the bandwidth
of off-phase-matched combs increases with the pump power
and with the mismatching temperature. Figure 4(a) shows the
power-calibrated optical spectrum of the IR comb emission
around the fundamental pump, for a crystal temperature
of 54.2 ◦C, corresponding to a mismatch ξSH0L � 8 π , thus

providing an estimate, for the emitted power per mode, of
the order of microwatts. Figures 4(b) and 4(c) show the beat
notes at 493 MHz for the IR and visible combs, confirming
the minimal teeth spacing of one FSR. Again, when the IR
comb emerges around the fundamental wave, a visible comb
is also present around its second harmonic. A comparison
can be made between the beat notes of Figs. 4(b) and 3(h):
both exhibit a linewidth limited by the detection resolution
bandwidth, however, the former clearly concentrates the power
in a narrower spectral range, corresponding to a lower level of
intermodal phase noise [13]. This suggests a higher degree of
correlation between comb teeth in Fig. 4(b), with respect to
those of Fig. 3(h), originated by multiple secondary processes.
The limited spectral coverage of our OSA prevents us from
estimating the spectral extension of the harmonic comb. For
negative mismatch conditions, at crystal temperatures T < T0

we are still able to see a multiple-FSR-spaced comb, however,
the threshold rapidly increases as the temperature decreases
and there is no clear evidence of stable closely spaced
combs.
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FIG. 4. (Color online) Experimental spectra for off-phase-
matched SHG. (a) Calibrated optical spectrum of the IR comb
emission around the fundamental pump frequency, at the crystal
temperature T = 54.2 ◦C. The integrated power is 50 mW. The scale
on the right represents the emitted power per mode. Beat notes around
493 MHz for the IR, (b), and visible, (c), combs (RBW = 10 kHz,
VBW = 1 kHz).

V. CONCLUSIONS

In conclusion, the emergence of χ (2) combs in a contin-
uously pumped external-cavity SHG has been demonstrated
and explained according to an elemental dynamical model
showing remarkable similarities to Kerr-comb generation in
χ (2) materials. Differently from other configurations where
χ (2) nonlinearity is used to replicate or extend an existing
frequency comb, our system creates entirely new frequency
combs starting from a single-frequency pump.

Our simple experimental configuration brings to the fore
the essential elements that produce the combs, leading to a
deeper understanding of the physics through a quantitative
and concise theoretical model, of fundamental importance to
predict new experiments and design new devices. The resulting
formal analogy with third-order comb generation offers a new
perspective, stimulating the search of new effects, difficult
to envisage on the basis of a purely χ (2) paradigm, as those
observed in Kerr-medium-filled cavities, such as temporal
solitons, FWM amplification, intermodal phase coherence and
mode locking, pulsed emission, etc. [14,16]. Furthermore, it
confirms a unified approach to frequency combs physics, in
whatever way they are generated, and a common theoretical
playground for people from different areas. We believe that
such a model also provides a comprehensive frame for possible
generation of OFCs in other χ (2)-nonlinear systems as well,
such as those reported in Refs. [38,39].

A χ (2) comb has several advantages with respect to Kerr
combs based on χ (3) materials, exploiting the intrinsically
higher efficiency of χ (2) processes, combined with the ability
of spectrally tailoring the nonlinear efficiency of the material
[55]. Phase matching plays a role similar to dispersion
in χ (3) resonators, allowing us to change from normal to
anomalous dispersive regimes by varying the phase-matching
condition. A thorough analysis of these new phenomena
and a generalization of the theoretical model are required
for optimal design of new, more efficient frequency comb
synthesizers, with lower threshold, larger bandwidth, as well as
full-frequency stabilization, possibly as small-size, integrated
photonic devices [17,35,56–59]. In principle, χ (2) combs can
be realized all over the transparency range of the nonlinear
material, a spectral versatility of great importance for the
expanding field of direct comb spectroscopy [5,60]. Further-
more, the simultaneous occurrence of octave-distant combs
provides a useful metrological link between two spectral
regions without the need for a full octave-wide comb. Finally,
investigation of quantum properties in χ (2)-based combs is
of great importance as well, in view of the emerging use
of multiple correlated photon pairs for multiplexed quantum
communication protocols [61].
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APPENDIX A: DERIVATION OF EFFECTIVE χ (3)

DYNAMIC EQUATIONS

Here we outline the derivation of the system of Eq. (1).
We consider collinear plane waves for the interacting modes,
whose electric fields propagate along z with slow varying
amplitude Ej (z,t),

Ej (z,t) = 1
2Ej (z,t) ei(ωj t−kj z) + c.c., (A1)

where ωj is the angular frequency, kj is the related wave
vector, explicitly defined in the following. The coupled mode
equations describing the field propagation through a crystal of
length L are displayed in Table I, where the interaction terms
are schematically grouped by processes. Field amplitudes at a
given frequency ωx , A for subharmonic and B for the harmonic
range, represent the slow varying electric field amplitudes Ej

normalized to
√

n(ωx)/ωx , where n is the refractive index
of the nonlinear crystal. For each process, a wave vector
mismatch must be considered, as

ξSH0 = k2ω0 − 2kω0

ξOPO = k2ω0 − kωs − kωi

ξSHs = k2ωs − 2kωs

ξs0 = kωs0 − kωs − kω0

ξSHi = k2ωi − 2kωi

ξi0 = kωi0 − kωi − kω0 .
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TABLE I. Coupled mode equations for the propagation through the nonlinear crystal, including all the possible χ (2) up-conversion processes
originating from the subharmonic fields, A0, As, and Ai, being B0 and Bs,i the pump and signal or idler second harmonic, respectively, and
Bs0,i0 the sum frequency of signal or idler and the fundamental mode.

ω0
SHG−−→ 2ω0 2ω0

OPO−−→ ωs,ωi ωs
SHG−−→ 2ωs ω0,ωs

SFG−−→ ωs0 ωi
SHG−−→ 2ωi ω0,ωi

SFG−−→ ωi0

dA0
dz

= −iκ A∗
0B0 e−iξSH0z −iκ A∗

s Bs0 e−iξs0z −iκ A∗
i Bi0 e−iξi0z

dB0
dz

= −i κ

2 A2
0 e+iξSH0z −iκ AsAi e

+iξOPOz

dAs
dz

= −iκ A∗
i B0 e−iξOPOz −iκ A∗

s Bs e−iξSHsz −iκ A∗
0Bs0 e−iξs0z

dBs
dz

= −i κ

2 A2
s e+iξSHsz

dBs0
dz

= −iκ A0As e+iξs0z

dAi
dz

= −iκ A∗
s B0 e−iξOPOz −iκ A∗

i Bi e
−iξSHiz −iκ A∗

0Bi0 e−iξi0z

dBi
dz

= −i κ

2 A2
i e+iξSHiz

dBi0
dz

= −iκ A0Ai e
+iξi0z

The coupling constant κ can be assumed to be the same
for all the processes, as far as the generated side modes are
nearly degenerate with the fundamental or its second harmonic,
i.e., ω0 � ωs � ωi, and 2ω0 � 2ωs � 2ωi � ωs0 � ωi0, hence
[62]

κ = d

c

√
2ω3

0

n2
1 n2

,

with d the effective nonlinear coefficient of the material, c the
speed of light, n1 = n(ω0), and n2 = n(2ω0).

We perturbatively solve the coupled mode equations ac-
cording to the same procedure adopted in Ref. [46]. For weakly
interacting fields, the equation set of Table I can be easily inte-
grated at the first order, neglecting the spatial variation of the
field amplitudes, considering that the nonresonant harmonic
fields B’s at the crystal input facet, z = 0, are null, obtaining

A0(z) = A0(0) (A2a)

B0(z) = −iκ

[
1

2
A2

0(0) G(ξSH0,z)

+Ai(0) As(0) G(ξOPO,z)

]
(A2b)

As,i(z) = As,i(0) (A2c)

Bs,i(z) = − iκ

2
A2

s,i(0) G(ξSHs,SHi,z) (A2d)

Bs0,i0(z) = −iκ A0(0) As,i(0) G(ξs0,i0,z), (A2e)

with

G(α,z) =
∫ z

0
eiαζ dζ . (A3)

Substituting the first-order solution in the equation set of
Table I and integrating again over the length L of the nonlinear
crystal, we finally obtain the second-order expression of the
variations of the subharmonic fields across the crystal,

A0(L) − A0(0) = −κ2L2

4
η00 |A0(0)|2A0(0) − κ2L2

2
η0s |As(0)|2A0(0) − κ2L2

2
η0i |Ai(0)|2A0(0) − κ2L2

2
η0si A

∗
0(0)As(0)Ai(0)

(A4a)

As(L) − As(0) = −κ2L2

2
ηs0 |A0(0)|2As(0) − κ2L2

4
ηss |As(0)|2As(0) − κ2L2

2
ηsi |Ai(0)|2As(0) − κ2L2

4
η00i A

2
0(0)A∗

i (0)

(A4b)

Ai(L) − Ai(0) = −κ2L2

2
ηi0 |A0(0)|2Ai(0) − κ2L2

2
ηis |As(0)|2Ai(0) − κ2L2

4
ηii |Ai(0)|2Ai(0) − κ2L2

4
η00s A2

0(0)A∗
s (0),

(A4c)

where

ηjj = I (ξSHj ,ξSHj ,L) (A5a)

η0l = ηl0 = I (ξl0,ξl0,L) (A5b)

ηsi = ηis = I (ξOPO,ξOPO,L) (A5c)

η00s = η00i = I (ξOPO,ξSH0,L) (A5d)

η0si = I (ξSH0,ξOPO,L), (A5e)

with j ∈ {0,s,i}, l ∈ {s,i}, and

I (α,β,L) = 2

L2

∫ L

0
e−iαζ G(β,ζ ) dζ . (A6)

Equation (A4) can be used for deriving the rate equations
for the cavity dynamics. For the sake of simplicity, we consider
a lossless single-ended cavity with a nonlinear medium inside,
as showed in Fig. 5. Assuming a slow variation of the resonant
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FIG. 5. (Color online) Schematic view of a single-ended cavity
with a nonlinear medium inside. ain and aout are the external input and
output fields, ac and a′

c are the cavity fields leaving and impinging on
the input mirror, respectively. ac,0 and ac,L are the field at the facets
of the nonlinear medium.

cavity field ac in a round-trip time τ , τ ȧc � ac(t + τ ) − ac(t),
the following equation of motion is obtained:

ȧc = −(γ + i�)ac + 1

τ
[ac,L − ac,0] +

√
2γ /τ ain,

where γ is the power decay rate, � the frequency detuning of
the oscillating field with respect to a cavity eigenfrequency,
ain is a possible input field, and the overdot represents a time
derivative. The term in square brackets is the variation of the
cavity field due to nonlinear interaction. We assume that all
the subharmonic fields experience the same γ and τ . Inserting
the corresponding expression given by Eq. (A4), we finally
get the Eq. (1) describing the dynamics of the three resonating
fields.

As far as the second harmonic and sum frequency fields
B are concerned, their dynamics is slaved to the subharmonic
fields, i.e., their amplitudes instantaneously follow the subhar-
monic amplitudes, on the time scale of τ , according to

B0(t) = −iκ

[
1

2
A2

0(t) G(ξSH0,L)

+Ai(t) As(t) G(ξOPO,L)

]
(A7a)

Bs,i(t) = − iκ

2
A2

s,i(t) G(ξSHs,SHi,L) (A7b)

Bs0,i0(t) = −iκ A0(0) As,i(t) G(ξs0,i0,L), (A7c)

where A0(t), As(t), and Ai(t), are the cavity field amplitudes
given by Eq. (A4). We notice that the first-order solutions for
the B fields, Eqs. (A2b), (A2d), and (A2e), are valid regardless
of the iteration order of the perturbative solution.

APPENDIX B: NONLINEAR LOSSES AT
THE THRESHOLD

At the threshold of the cascaded OPO, where Eq. (1) can
be linearized with respect to the parametric fields, the real
part of the terms 2g0ηs0|A0|2As and 2g0ηi0|A0|2Ai represents
a relevant nonlinear loss for signal and idler, respectively.
Actually, these terms stem from the sum-frequency generation

(a) (b)

FIG. 6. (Color online) Efficiency for SFG of a reference pump
mode at λ0 with a side mode at λs when (a) the pump mode is phase
matched for SHG (T = 39.5 ◦C) and (b) the pump mode is off-phase
matched for SHG (T = 45 ◦C).

(SFG) processes between the signal (idler) at ωs (ωi) and the
pump at ω0. More in detail, considering the explicit form of
the coupling constant ηs0 (analogously for ηi0), by substituting
Eqs. (A3) and (A6) in Eq. (A5b), we obtain the real part,

Re[ηs0] = sinc2

(
ξs0L

2

)
, (B1)

which is, in fact, the normalized efficiency of the SFG as
a function of the wave-vector mismatch ξs0. In Fig. 6(a),
Eq. (B1) is plotted for (a) phase-matched and (b) off-phase-
matched pump SHG. In the former case, highest nonlinear
losses occur for signal-idler pairs around the pump frequency,
preventing parametric oscillation from starting close to the
pump. Conversely, for an off-phase-matched pump mode,
signal-idler pairs are more likely to oscillate close to the pump,
where nonlinear losses can now reach a minimum. The latter
case also applies to secondary comb generation around the
teeth of a primary comb, as observed for quasi-phase-matched
pump SHG.

Numerical solutions of Eq. (1) give a more detailed
picture of the final contribution of all the nonlinear losses
in determining the power threshold for parametric oscillation
and the frequency distance from the pump frequency at which
signal and idler appear. Given a set of values for the input
power Fin, pump detuning �0, and the crystal temperature,
Eq. (1) have been numerically integrated as a function of
time until a steady state for parametric oscillation is reached.
The procedure has been repeated for each possible frequency-
symmetric, nearly resonant, parametric pair. Figure 7 shows a
few examples of numerically calculated steady-state solutions
in the vicinity of the quasi-phase-matching temperature and
for small detunings �0 of the pump. For a given input power
of 110 mW the parametric power has been calculated as a
function of the distance of the parametric mode from the pump
frequency, expressed as an integer multiple of the cavity FSR.
The parametric power is directly related to the parametric
gain, hence, the highest parametric power indicates the mode
number, which is preferred to oscillate. For perfectly phase
matching (T = 39.50 ◦C) the highest gain is in correspondence
with the mode number N = 170. Small deviations from the
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 Δ =  γ

 Δ =  γ

 Δ =  γ

FIG. 7. (Color online) Numerical solution of dynamic equations. Parametric growth as a function of the distance of the parametric mode
from the pump-resonant mode: (a) for three different crystal temperatures, with a perfectly resonant pump (�0 = 0); (b) for three different
pump detunings, at the phase-matching temperature of 39.5 ◦C. The distance is expressed as an integer multiple (mode number) of the cavity
FSR and the input power is 110 mW. [The upper curves in (a) and (b) are identical].

phase-matching temperature rapidly move the highest gain to
the second (T = 39.55 ◦C, N = 340) and third (T = 39.60 ◦C,
N = 510) lobe, as shown in Fig. 7(a). The lobes, with periodic
local maxima at multiples of N = 170, correspond to the
first side minima of the SFG curve of Fig. 6(a), in good
agreement with the previous qualitative discussion. In Fig. 7(b)
the temperature is kept at 39.5 ◦C, and the pump detuning is
changed. Even in this case, as the detuning increases, the lowest
threshold parametric oscillation quickly moves to higher mode
numbers. The measured teeth spacing agrees within 15% with
the nearest local maxima at N = 510 of the simulations.
Our model is limited to three modes; as a matter of fact,

additional parametric sidebands start to oscillate as soon as the
threshold is surpassed, as in Fig. 3(b). Spurious effects, such as
etaloning from crystal facets and poling grating could slightly
reshape the loss frequency dependence of the ideal model and
can explain why in the experiment the parametric sidebands
preferentially oscillate at spacings larger than the first side
minima. Furthermore, our model does not include thermal
effects, which can play a significant role in determining
the whole evolution of parametric oscillations. More reliable
predictions, including the full evolution of the comb, require
a generalization of our model to a large number of oscillating
modes.
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