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Lossless Kerr-phase gate in a quantum-well system via tunneling interference effect for weak fields
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We examine a lossless Kerr-phase gate in a semiconductor quantum-well system via the tunneling interference
effect for weak fields. We show that there exists a magic detuning for the signal field, at which the absorption or
amplification for the probe field can be eliminated by increasing the tunneling interference effect. Simultaneously,
the probe field will acquire a −π phase shift at the exit of the medium. We demonstrate with numerical simulations
that a lossless Kerr-phase gate is achieved, which may result in many applications in information science and
telecommunication.
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Highly efficient optical-field manipulation protocols
are critically important to quantum computers which
hold the promise of revolutionizing the information science
[1–7]. The operation of controlling qubits with qubits is the key
technique of the protocols. To this end, many proposals have
come up in recent years for efficiently implementing all-optical
quantum computation. One of the preferred and also widely
discussed schemes to achieve such control of qubits with qubits
is the phase gate at the single-photon or few-photon level
[8–13]. There are many proposals [14–18] based on various
phenomena such as magnetic fields, light-field-induced shifts,
nonlinear effects such as Kerr cross-phase modulations, and
so on. The phase gate based on Kerr cross-phase modulations,
i.e., the Kerr-phase gate, brings the real possibility of achieving
a true manipulation of a polarization-encoded light field at
the single- or few-photon level in a confined hollow-core
optical fiber, which has been demonstrated experimentally and
discussed theoretically in atomic systems [19–21].

As we all know, the Kerr nonlinearity is important not
only for most nonlinear optical processes [22] but also
for many applications in quantum information processing,
including quantum nondemolition measurements, quantum
state teleportation, quantum logic gates, and others [1]. Under
normal circumstances the Kerr nonlinearity is produced in
passive optical media such as glass-based optical fibers,
in which far-off-resonance excitation schemes are used to
avoid optical absorption. As a result, the Kerr nonlinearity
is too small to enhance the photon-photon interaction, so
optical quantum phase-gate operation cannot be efficiently
implemented. With the advent of electromagnetically induced
transparency (EIT) [23], Kerr nonlinearity can be greatly
enhanced in atomic systems in the presence of quantum
interference if the system works near resonance. Up to now,
many schemes based on EIT such as the N scheme [24], the
four-level inverted-Y scheme [25], and other variations have
been used in theoretical studies of the enhancement of the
Kerr nonlinearity, which are predicted to be good candidates
to realize quantum entanglement of ultraslow photons [24],
single-photon switching [26], nonlinear phase gates [27], and
single-photon propagation controls [17].
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However, an EIT-based Kerr nonlinearity scheme has
some drawbacks that are difficult to overcome. The primary
problem of the weakly driven EIT-based scheme is that
the probe field undergoes a significant attenuation even if
it works in the transparency window. Although the Kerr
nonlinearity can be greatly enhanced when the system works
near resonance, the third-order attenuation is also significantly
boosted because of the ultraslow propagation [28]. For this
reason, it was generally recognized that EIT-based schemes are
unrealistic for taking advantage of such resonantly enhanced
Kerr nonlinearity. Several experimental studies based on EIT
schemes using cold atomic gases have shown small nonlinear
Kerr-phase shifts [29]. To overcome these drawbacks, an
active Raman gain (ARG) scheme was proposed to realize
large and rapidly responding Kerr nonlinearity enhancement at
room temperature [28], which eliminates the significant probe
field attenuation or distortion associated with weakly driven
EIT-based schemes. Recently, a fast-response Kerr-phase gate
and polarization gate have been demonstrated experimentally
in an ARG-based atomic system [19,20].

In this work, we examine a lossless Kerr-phase shift via
the tunneling interference effect in an asymmetric double-
quantum-well (QW) structure. The QW system (see Fig. 1)
interacts with a weak continuous-wave (cw) signal field, which
is used as a phase-control field, and a probe pulse at the
single- or few-photon level simultaneously. We show that the
attenuation of the signal field can be greatly reduced because of
the tunneling interference effect, which is known as tunneling-
induced transparency (TIT). We point out that the physical
mechanism of TIT is based on destructive interference. Prior
to this theoretical study, it was widely believed that the TIT
results from the Autler-Townes splitting. We further show that
there exists a magic detuning for the signal field, at which the
absorption or amplification of the probe field will be eliminated
with increase of the tunneling interference. Simultaneously,
the probe field will acquire a −π Kerr-phase shift at the exit
of the medium. We demonstrate with numerical simulations
that a lossless Kerr-phase gate is achieved via the tunneling
interference effect.

As shown in Fig. 1, we consider a multiple-quantum-well
structure which consists of 100 periods of a GaAs/Al0.5Ga0.5As
double quantum well. Each double quantum well starts with
(from left to right) [30–32] a thick Al0.5Ga0.5As barrier layer
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FIG. 1. (Color online) The geometry of 100 periods of asymmet-
ric double quantum wells and the configuration of the light field. Each
asymmetric double quantum well consists of a narrow well and a wide
well separated by a small tunneling barrier. |1〉 and |4〉 are localized
hole states of the valence band. |2〉 and |3〉 are delocalized bonding
and antibonding states, which are coupled by a thin tunneling barrier.
Es(p) is the electric field of the signal (probe) field with the angular
frequency ωs(p). �j (j = 2–4) are the detunings of state |j〉.

that is followed by a GaAs layer of thickness of 25 monolayers
(MLs). This narrow well is separated from a 60 ML GaAs layer
(a wide well) by a 9 ML Al0.5Ga0.5As potential barrier layer.
Finally, a thick Al0.5Ga0.5As barrier layer is added on the right
of the wide well to separate it from other double quantum wells.
Each ML in the region between the narrow and wide wells is
made of the GaAs material with two-dimensional electronic
density Ne = 3 × 1011 cm−2 [31,32] and has a thickness of
0.28 nm (see Fig. 1). In this structure, the first electron state in
the conduction band of the wide well is energetically aligned
with that of the narrow well, whereas the first hole states
in the valence bands of the two wells are not aligned with
each other. Because of the small tunneling barrier, electrons
delocalize and the corresponding states split into a bonding
and an antibonding state (labeled as |2〉 and |3〉, respectively).
The holes remain localized and the corresponding states are
labeled as |1〉 and |4〉, respectively.

To achieve a lossless Kerr-phase gate operation at a weak
light level, a weak signal field Es with angular frequency
ωs couples the fully occupied ground state |1〉 and the upper
states |2〉 and |3〉 simultaneously. The half Rabi frequencies
of the signal field are defined as �21 = (p21 · Es)/(2�) and
�31 = (p31 · Es)/(2�) with p21(31) being the dipole transition
operator for the signal field Es . Another weak probe field
Ep with angular frequency ωp then drives the transitions
|2〉 ↔ |4〉 and |3〉 ↔ |4〉 simultaneously. Correspondingly,
the half Rabi frequencies of the probe field are defined
as �24 = (p24 · Ep)/(2�) and �34 = (p34 · Ep)/(2�), with
p24(34) being the dipole transition operator for the probe
field Ep. Detunings are defined by �2 = ωs − (E2 − E1)/�,
�3 = ωs − (E3 − E1)/�, and �4 = ωs − ωp − (E4 − E1)/�,
respectively. Here, Ej (j = 1–4) is the eigenenergy of state
|j 〉. Defining the energy splitting � = (E3 − E2)/�, we can

express the detunings as �2 = �/2 + δ and �3 = δ − �/2
with δ = ωs − (E2 + E3 − 2E1)/(2�).

Under the rotating-wave approximation (RWA), the equa-
tions of motion for the density-matrix operator σij in the
interaction picture are given by

iσ̇21 = −d21σ21 − �21(σ11 − σ22) − iκσ31

−�24σ41 + �31σ23 (1a)

iσ̇31 = −d31σ31 − �31(σ11 − σ33) − iκσ21

−�34σ41 + �21σ32 (1b)

iσ̇41 = −d41σ41 − �∗
24σ21 − �∗

34σ31 + �21σ42

+�31σ43 (1c)

iσ̇32 = −d32σ32 − iκ(σ22 − σ33) − �31σ12

−�34σ42 + �∗
21σ31 + �∗

24σ34 (1d)

iσ̇42 = −d42σ42 − �∗
24(σ22 − σ44) − �∗

34σ32

+�∗
21σ41 + iκσ43 (1e)

iσ̇43 = −d43σ43 − �∗
34(σ33 − σ44) − �∗

24σ23

+�∗
31σ41 + iκσ42 (1f)

where dot above σij denotes the time derivation, dij = �i −
�j + iγij with �j being the detuning of state |j 〉 and γij =
(
i + 
j )/2 + γ

dph
ij respectively. 
j is the total population

decay rate of state |j 〉, and 

dph
ij is the dephasing rate of

coherence σij , which may originate not only from electron-
electron scattering and electron-photon scattering, but also
from inhomogeneous broadening due to scattering on interface
roughness. κ = η

√

2
3 is the tunneling interference, which

represents the cross coupling of states |2〉 and |3〉 contributed
by the process in which a phonon is emitted from state |2〉
and recaptured by state |3〉. Here, parameter η represents the
coupling strength of the tunneling interference [33–36].

In general, Eqs. (1) can be solved analytically in the
weak-filed limit. To this end, we assume that the population
is initially occupied in the ground state |1〉, and the state |1〉
will not be depleted during the time evolution because the
signal field is weak and off-resonant in our system. In this
situation, Eqs. (1) can be solved perturbatively by introducing
the asymptotic expansion σij = ∑∞

n=0 εnσ
(n)
ij , �j1 = ε�

(1)
j1

and �j4 = ε�
(1)
j4 with σ

(0)
11 = 1 and σ

(0)
jj = 0 (j �= 1). Here,

ε is a small parameter characterizing the small depletion of the
ground state. Substituting these expansions into Eqs. (1) one
obtains a set of linear but inhomogeneous equations of σ

(n)
ij ,

which can be solved order by order.
Using the standard differential Fourier transform technique

as shown in Ref. [31] one can easily obtain the leading order
(n = 1) solution, which are given by

R
(1)
21 = −

(1)
21 (ω + d31) + iκ

(1)
31

(ω + d21)(ω + d31) + κ2
(2a)

R
(1)
31 = −

(1)
31 (ω + d21) + iκ

(1)
21

(ω + d21)(ω + d31) + κ2
, (2b)

063838-2



LOSSLESS KERR-PHASE GATE IN A QUANTUM-WELL . . . PHYSICAL REVIEW A 91, 063838 (2015)

and R
(1)
41 = R

(1)
32 = R

(1)
42 = R

(1)
43 = 0. Here, R

(n)
ij and 

(1)
ij are

the Fourier transforms of σ
(n)
ij and �

(1)
ij , respectively. ω is the

Fourier transformation variable.
Taking 

(1)
21(31) = p21(31)

(1)
s /(2�) with (1)

s being the
Fourier transform of Es , one can express the dispersion relation
for the signal field as

Ws(ω) = ω

c
+ Neωs

2ε0c

p12R
(1)
21 + p13R

(1)
31


(1)
s

, (3)

where c is the light speed in vacuum and ε0 is the vacuum
electrical conductivity. In most cases, Ws(ω) can be expanded
in a McLaurin series around the center frequency of the probe
field (i.e., ω = 0)

Ws(ω) = W (0)
s + W (1)

s ω + 1
2W (2)

s ω2 + O(ω3), (4)

where W
(j )
s = (∂jWs/∂ωj )|ω=0. Here, W (0)

s = φ + iα/2 with
φ being the phase shift per unit length and α being the
linear absorption coefficient for the signal field. W (1)

s = 1/Vg

describes the propagation velocity, and W (2)
s represents the

group velocity dispersion which contributes to both the pulse
shape change and additional loss of the signal-field intensity.

Figure 2 shows contour plots of the absorption coefficient
α of the signal field as functions of the detuning δ and
the energy splitting � [see Fig. 2(a)], as well as of the
detuning δ and parameter η [see Fig. 2(b)]. Here, η = 0
denotes no tunneling interference and η = 1 corresponds to
perfect tunneling interference. In Fig. 2(a), we take �4 = 0,
η = 0, 
2 = 
3 = 0.68 meV, 
4 = 0.01
2, and γ

dph
ij = 1.2

meV except for γ
dph
14 ≈ 0 meV because of the high interwell

barrier between states |1〉 and |4〉 [32] (1 meV is equivalent
to 0.24 THz). The electric-dipole moment is |pj1| = |pj4| =
8.5 × 10−28 C m (j = 2,3). It is evident that for small energy
splitting between states |2〉 and |3〉 the absorption profile has
only a single peak, which results in a significant attenuation
of the signal field at δ = 0. However, when the energy
splitting between upper states is increased, we can see that
the absorption profile exhibits a large EIT-like absorption
doublet, which is known as tunneling-induced transparency.
In Fig. 2(b), we take � = 6.5 meV and choose the parameter

FIG. 2. (Color online) Contour plots of the absorption coefficient
α of the signal field: (a) as a function of detuning δ and energy splitting
�; (b) as a function of detuning δ and the parameter η. Bright areas
correspond to large absorption, dark to low absorption. Other system
parameters are given in the text.

η as a variable. Clearly, the absorption of the signal field at
δ = 0 is significantly reduced with increase of the parameter η.
To show the physical mechanism of the reduction of the signal-
field absorption, we now use the spectrum-decomposition
method [37] to analyze the characteristics of the signal-field
absorption α explicitly.

Assuming p21 = p31 = p0 for simplicity, one can obtain

α = Im

{
κ0

iκ − [δ + i(γ21 + γ31)/2]

(δ + �/2 + iγ21)(δ − �/2 + iγ31) + κ2

}

= κ0

2

{[



(δ + δ0)2 + 
2
+ 


(δ − δ0)2 + 
2

]

+ g

δ0

[
δ − δ0

(δ − δ0)2 + 
2
− δ + δ0

(δ + δ0)2 + 
2

]}
, (5)

where κ0 = Neωs |p0|2/(cε0�), δ0 =
√

(�/2)2 − 
2, 
 =
(γ21 + γ31)/2, and g = κ . Obviously, the terms in the first
square bracket on the right-hand side of Eq. (5) are two
Lorentzians, which are the net contribution to the signal-field
absorption from two different channels corresponding to the
two excited states, with 
 being the width (also strength) of the
two Lorentzians and δ0 being the real part of the spectral poles.
The following terms in the second square bracket are clearly
quantum interference terms. It is apparent that the magnitude
of the interference is controlled by the parameter g. If g > 0
(g < 0), the interference is destructive (constructive). In our
system, the reduction of the signal-field absorption at δ = 0
originates from the destructive interference for κ > 0. Only in
the case of κ = 0 is the transparency window in the absorption
profile caused by the Autler-Townes splitting.

In the following, we study the dynamical evolution of the
probe field. First, we find the second-order (n = 2) solutions,
which are given by

R
(2)
41 = −

(1)∗
24 R

(1)
21 − 

(1)∗
34 R

(1)
31

ω + d41
, (6a)

R
(2)
32 = −

(1)
31 R

(1)
12 + 

(1)∗
21 R

(1)
31

ω + d32
, (6b)

and R
(2)
21 = R

(2)
31 = R

(2)
24 = R

(2)
34 = 0.

At the third order (n = 3), we can easily obtain the solutions
for σ42 and σ43, respectively, which read

R
(3)
24 = 1

D

[
(ω + d34)

(


(1)
34 R

(2)
23 − 

(1)
21 R

(2)
14

)

− iκ
(


(1)
24 R

(2)
32 − 

(1)
31 R

(2)
14

)]
, (7a)

R
(3)
34 = 1

D

[
(ω + d24)

(


(1)
24 R

(2)
32 − 

(1)
31 R

(2)
14

)

− iκ
(


(1)
34 R

(2)
23 − 

(1)
21 R

(2)
14

)]
, (7b)

where D = (ω + d24)(ω + d34) + κ2 and R
(n)
ij = R

(n)∗
ji .

The dynamical evolution of the probe field is governed by
the Maxwell equation, i.e.,

∇2Ep − 1

c2

∂2Ep

∂t2
= 1

ε0c2

∂2P
∂t2

, (8)

where Ep = epEp exp [i(kpz − ωpt)] with P =
epNe(p24σ42 + p34σ43) exp [i(kpz − ωpt)]. Here, ep is
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the polarization vector of the electric field. Under the
slowly-varying-envelope approximation (SVEA), the
Maxwell equation is reduced to

i

(
∂

∂z
+ 1

c

∂

∂t

)
Ep + Neωp

2ε0c
(p42σ24 + p43σ34) = 0. (9)

Here we have assumed that the probe field is homogeneous in
the transverse direction (i.e., x and y) for simplicity because
the quantum-well system is confined in the z direction [38].
Taking the time-Fourier transform and inserting the solutions
of Eqs. (1), we can obtain

∂

∂z
(1)

p − i
ω

c
(1)

p = i
Neωp

2ε0c

(
p24R

(3)
42 + p34R

(3)
43

)
, (10)

where (1)
p is the Fourier transform of Ep. The right-hand side

of the above equation is known as the nonlinear term (NLT),
which can be expressed as

nonlinear term = Neωp

2ε0c

(
p24R

(3)
42 + p34R

(3)
43

)

= (φXPM + iαNL)(1)
p , (11)

where we have defined the nonlinear phase shift φXPM (i.e.,
Kerr cross-phase modulation) per unit length and the third-
order nonlinear absorption coefficient αNL, respectively.

In Fig. 3, we plot the Kerr-phase shift φXPM and the
third-order gain or loss coefficient αNL as functions of the
detuning δ and the parameter η, respectively. Here, we choose
� = 6.5 meV and �21 = �31 = 0.35 meV. Other system
parameters are the same as those used in Fig. 2. In Fig. 3(a),
we show that in the absence of the tunneling interference
(i.e., η = 0), the nonlinear loss or gain coefficient αNL is
negative, which corresponds to a large amplification for the
probe field. However, if the tunneling interference is increased,
one can see that the third-order gain decreases dramatically
and changes to become positive, which results in a third-order
absorption for the probe field. Therefore, there exists a specific
signal-field detuning defined as a “magic” detuning δmagic,
at which the probe field will not be amplified or absorbed
(i.e., αNL = 0). Simultaneously, φXPM = −π is achieved with

FIG. 3. (Color online) Contour plots of the third-order gain or
loss coefficient αNL (a) and the cross-phase modulation φXPM (b)
of the probe field as functions of the detuning δ and the parameter
η. The equal-altitude lines (zero for αNL and −π for φXPM) guide
the selection of a magic detuning δmagic (the horizontal dashed line).
The vertical line indicates that η ≈ 0.7 is required to achieve the
Kerr-phase-gate operation. Here, we choose � = 6.5 meV and �21 =
�31 = 0.35 meV. Other system parameters are given in the text.

FIG. 4. (Color online) The layout of the experimental setup (a)
and plots of Ip(z,δ) as functions of δ and the normalized propagation
distance z/L. The dashed line indicates a magic signal-field detuning
with which a lossless Kerr-phase-gate operation can be achieved. Left
plot: The signal field is turned off, Iin = 1 and Iout = 1 at the exit of the
medium z/L = 1 (b). Right plot: The signal field is turned on, Iin = 1
and Iout = 0 at the exit of the medium z/L = 1 (c). Mach-Zehnder
interferometers, controlled by PZT, are used to observe the nonlinear
phase shift for the probe field.

a specific parameter η [see Fig. 3(b)]; then at the exit of the
medium, the phase of the probe field will have undergone a
perfect 180◦ rotation.

To verify the above analysis, we suggest an experimental
scheme [see Fig. 4(a)] to realize a lossless Kerr-phase-gate
operation with a −π phase shift by using a Mach-Zehnder
interferometer. As shown in Fig. 4(a), the probe field is split
by a beam splitter (BS); one beam is used as the probe field
while the other is a reference. They are combined together
using another BS to build the Mach-Zehnder interferometer.
The signal light is overlapped with the probe field coming in
the opposite direction [see Fig. 4(a)]. Before the detector, a
Glan-Taylor prism (GL) is used to filter the signal field. By
performing full numerical simulations using Eq. (10), we show
that a lossless Kerr-phase-gate operation with −π phase shift
can be achieved in our system. Figures 4(b) and 4(c) display
two contour plots that show the intensity of the probe field as
functions of the detuning δ and the normalized propagation
distance z/L in the medium when the signal light is turn on
or off. The white dashed line indicates the magic detuning
δmagic at which the third-order gain or loss is eliminated due
to the tunneling interference effect, and simultaneously a −π

cross-phase modulation is achieved. Both contour plots are
normalized with respect to the probe-field amplitude at the
entrance of the medium, i.e., Iin(z = 0) = 1. Correspondingly,
we have Iout = 1 (the probe field and reference field have the
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same phase shift) at the exit z/L = 1 when the signal light is
turned off [see Fig. 4(b)]. However, if the signal field is added,
we have Iout = 0 [see Fig. 4(c)]. Here, we have to point out that
the populations of the upper states are much smaller than that
of the ground state |1〉 when the probe pulse passes through the
medium. According to our numerical calculation, we find that
σ11 = 0.87, σ22 = 0.07, σ33 = 0.04, and σ44 = 0.02, which
agrees with the assumption used in our theoretical calculation.

In conclusion, we have demonstrated theoretically a weak-
light, lossless nonlinear Kerr-phase gate with −π phase
shift in a semiconductor quantum-well structure. We show
that an Autler-Townes-like splitting in the linear absorption
spectrum appears due to the tunneling interference. Using the
spectrum-decomposition method, we show that the tunneling
effect is attributed to a destructive interference, which results in
a deeper tunneling-induced transparency window. We further
show that it is possible to find a magic detuning for a signal

field so that the probe field acquires a −π phase rotation
due to the tunneling interference in the quantum-well system.
Our numerical calculations have shown that the schemes and
methods studied can indeed lead to a lossless Kerr-phase-
gate operation, which may find many applications in optical
telecommunications.
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