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Controlling photon transport in the single-photon weak-coupling regime of cavity optomechanics
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We study the photon statistics properties of few-photon transport in an optomechanical system where an
optomechanical cavity couples to two empty cavities. By analytically deriving the one- and two-photon currents
in terms of a zero-time-delayed two-order correlation function, we show that a photon blockade can be achieved in
both the single-photon strong-coupling regime and the single-photon weak-coupling regime due to the nonlinear
interacting and multipath interference. Furthermore, our systems can be applied as a quantum optical diode,
a single-photon source, and a quantum optical capacitor. It is shown that this the photon transport controlling
devices based on photon antibunching does not require the stringent single-photon strong-coupling condition.
Our results provide a promising platform for the coherent manipulation of optomechanics, which has potential
applications for quantum information processing and quantum circuit realization.
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I. INTRODUCTION

The nonlinear effect is a potential resource for quantum
information processing [1]. For example, the photon block-
ade resulting from the nonlinearity is employed in single-
photon (few-photon) transmission control [2] and optical state
truncation [3]. Similarly, the photon blockade is also an
important feature in many quantum device designs such as the
fast two-qubit controlled-NOT gate [4], efficient quantum re-
peaters [5], single-photon transistors [6], and optical quantum
computers [7]. The rectifying device related to nonlinearity
is the key device to information processing in integrated
circuits [8]. Considerable effort has been made to investigate
optical diodes [9]. Various possible solid-state optical diodes
have been proposed, for example, the diodes from standard
bulk Faraday rotators [10], integrated on a chip [11], realized
in an optoacoustic fiber [12], and from a moving photonic
crystal [13]. A kind of optical diode based on the photon
blockade effect also has been proposed, including a photonic
diode by a nonlinear-linear junction of coupled resonators [14]
and an optical diode of two semiconductor microcavities
coupled via χ (2) nonlinearities [15].

The nonlinear interaction between optical and mechanical
modes arising from the radiation pressure force in optome-
chanical (OM) systems exhibits many interesting nonlin-
ear effects such as a photon (phonon) blockade [16,17],
optomechanical-induced transparency [18,19], and Kerr non-
linearity [20,21]. Cavity optomechanics has received sig-
nificant attention in both fundamental experiments [22,23]
and sensing applications [24,25]. Currently, experimental
techniques of cavity optomechanics are still in the single-
photon weak-coupling regime [26] (g2 < κωm), however it
draws relatively few works on control devices in quantum
information processing because a prerequisite of strong non-
linearity is required [27,28]. In order to utilize the nonlinearity
of the OM system in quantum information control, much
attention has been paid to the photon blockade in OM
systems, including quadratically coupled OM systems [29],
hybrid electro-optomechanical systems [30], and ultrastrong
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optomechanics [31], where the single-photon strong-coupling
condition is required. Reference [32] has shown that strong
photon antibunching can be achieved in two coupled cavities
with weak Kerr nonlinearity, which motivate us try to achieve
a strong nonlinear effect in an OM system in the single-photon
weak-coupling regime. In this paper we propose a scheme
to realize an optical diode with the optomechanical cavity
coupled to two cavities. This scheme does not require the
stringent condition that the single-photon optomechanical
coupling strength g is on the order of the mechanical resonance
frequency ωm [16] or the coupling strength g is larger than
the cavity decay rate κ [29]. Our results show that a photon
blockade can be achieved in both the single-photon strong-
coupling regime and the single-photon weak-coupling regime
because of the nonlinearity and multipath interference. By
examining the second-order correlation function, rectifying
factor R, and transport efficiency T , we exhibit the char-
acteristics of our system as a photonic diode. Meanwhile,
the single-photon transport can be controlled by tuning the
frequency of the cavities in the single-photon strong-coupling
regime. Surprisingly, by pumping two sides of the system
(cavity L and R), the device will embody some characteristics
like the capacitor: photon storage and release (charge and
discharge) and filtering of the photon frequency.

The paper is organized as follows. In Sec. II we introduce
the system and eigensystem of Hamiltonian. We discuss
photon transport control in the cavity optomechanical system,
such as a diode and a capacitor, in Sec. III. A summary given
in Sec. IV.

II. MODEL AND HAMILTONIAN

We consider a compound optomechanical system in which
a cavity with a movable mirror is coupled with two cavities (L
and R) with the coupling constant JL and JR (see Fig. 1). The
system described by the Hamiltonian H = Hsys + Hpump. By
setting � = 1, the Hamiltonian Hsys reads

Hsys =
∑

j=L,C,R

ωla
†
j aj + ωmb†b + g(b† + b)a†

CaC

+ (JLa
†
LaC + JRa

†
RaC + H.c.), (1)
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FIG. 1. (Color online) Schematic of the cavity optomechanical
system coupled with two cavities. Cavities L, R, and C all can be
driven by the laser field with the same frequency.

where aC , aL, and aR are the annihilation operators for
the photon mode of cavities C, L, and R with frequencies
ωC , ωL, and ωR , respectively; b is the phonon annihilation
operator of the mechanical mode for the mirror with frequency
ωm; and g denotes the coupling strength of the radiation
pressure. The cavity modes are driven by the laser with the
same frequency ωD , which can be described by Hpump =
i
∑

j=L,C,R εj (a†
j e

−iωDt − H.c.). In the rotating frame with

H0 = ∑
j=L,C,R ωDa

†
j aj , we obtain

HS =
∑

j=L,C,R

�ja
†
j aj + ωmb†b + g(b† + b)a†

CaC

+ (JLa
†
LaC + JRa

†
RaC + H.c.)

+
∑

j=L,C,R

εj (a†
j + aj ), (2)

where �j = ωj − ωD (j = L,C,R) is the detuning between
the driving field and the j th cavity frequency, respectively.
For this cascade configuration, cavities L and R are used as
input and output ports on the sides L and R. In this case,
the optomechanical cavity, as an assisted cavity, provides an
intrinsically nonlinear interaction.

We assume that the cavities (L and R) incoherently dissipate
at rates κl (l = L,R) determined by the openness of the
output channels and only classical driving fields are added
to the quantum vacuum of the system. Then, according to the
standard input-output relation [33], the average output current
(or photon stream) as the number of quanta emitted at time t

from each cavity can be formally given by

Ql(t) = κlTr[a†
l alρ(t)] (l = L,R), (3)

where ρ is the density operator of system. The evolution of the
density operator ρ for the Hamiltonian HS can be described
by the master equation

ρ̇ = −i[HS,ρ] +
∑

j=L,C,R

κj

2
D[aj ]ρ + γ

2
(nth + 1)D[b]ρ

+ γ

2
nthD[b†]ρ, (4)

where κj and γ are the cavity and mechanical energy
decay rates, respectively, nth = [exp(ωm/kBTM − 1)]−1 is
the average thermal occupancy number of the oscillator,
and D[o] = 2oρo† − o†oρ − ρo†o is the Lindblad dissipation
superoperator.

FIG. 2. (Color online) Eigensystem of the Hamiltonian HS in the
zero-, one-, and two-photon cases. Subareas A, B, and C denote
multipath interference in the system.

The eigenequation of the Hamiltonian Hom = ωmb†b +
�Ca†a + g(b† + b)a†a can be expressed as

Hom|s〉C |ñ(s)〉m = Es,n|s〉C |ñ(s)〉m,

where the eigenvalues are

Es,n = s�C + nωm − s2δ,

with δ = g2

ωm
, and the eigenstate

|ñ(s)〉 = eg(b−b†)/ωm |n〉 (5)

is the displaced number state. The eigensystem of the Hamil-
tonian HS in the zero-, one-, and two-photon cases is shown in
Fig. 2. We noticed that the energy levels for the optomechanical
cavity (middle green line) will obtain a shift s2δ caused by the
nonlinearity interacting with a frequency red (blue) detuning
from the resonator resonance. This nonlinear shift can lead to
bunched or antibunched photons in the OM cavity (details are
given in Sec. III C). This nonlinear effects also can appear in
other cavities because of the couplings JL and JR . Especially in
the single-photon strong-coupling regime g/κ � 1, a photon
blockade appears in the system, i.e., the probability of two
photons inside the cavity is largely suppressed due to the
energy restriction.

The interference between multiple paths for two-photon
excitation in cavities is partially responsible for the photon
antibunching effect shown in the subareas A, B, and C of the
eigensystem diagram. For area A, the two photons in cavity
L with the state |2,0,0〉|n〉m have two excitation paths: One
is direct excitation from a low level in cavity L with the state
|1,0,0〉|n〉m and the other is the tunneling from the OM cavity
to the left cavity with the state |1,1,0〉|ñ〉m. The destructive
interference between the two paths reduces the probability of
two-photon excitation in the cavity as well as in areas B and
C. When the probability is equal to zero, an unconventional
photon blockade [32,34,35] appears in the cavity with no
requirement of a strong nonlinear coupling coefficient g

(even g/κ < 1). Therefore, the compound optomechanical
system can work as a single-photon control device in OM
single-photon weak- and strong-coupling regimes, which will
be discussed in detail in the next section.
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III. PHOTONS TRANSPORT CONTROL IN THE CAVITY
OPTOMECHANICAL SYSTEM

A. Optomechanical optical diode

When the nonlinear effect for the right-going k waves
is different from that for the left-going −k waves, i.e.,
the nonlinearity of the composite system is asymmetric,
the rectification of one-dimensional photon transport can be
controlled. The one-way transport is called an optical diode [9].
In this section we show that our compound system can work
as a photonic diode.

We are interested in the statistical property of photons and
its control. Usually, the frequency of the mechanical oscillator
is larger than the strength of coupling of the radiation pressure,
i.e., ωm � g. For simplicity, we can adiabatically eliminate
the degree of the oscillators. Including the decay rate of the
cavities, we have a non-Hermitian effective Hamiltonian

Heff =
∑

j=L,C,R

[(�j − iκj /2)a†
j aj + εj (a†

j + aj )]

− i
∑

j=L,C,R

κj

2
a
†
j aj − δa

†
CaC − δa

†
Ca

†
CaCaC

+ (JLa
†
LaC + JRa

†
RaC + H.c.). (6)

We assume that the general state is

|ψ(t)〉 = C0(t)|ø〉 +
∑

j=L,C,R

Cj (t)a†
j |ø〉

+
∑

i,j=L,C,R

1

2
Cij (t)a†

i a
†
j |ø〉. (7)

Under weak pumping conditions, we have [32]

C0 � Cj � Cij .

Under this condition, one can obtain the steady-state solution
of the probability amplitudes (see the Appendix).

The effect of quantum nonlinear features can be character-
ized by the second-order correlation function with zero-time
delay

g
(2)
j (0) =

〈
a
†2
j a2

j

〉

〈a†
j aj 〉2

, j = L,R,C. (8)

We notice that g
(2)
j (0) < 1 indicates photon antibunching

and g
(2)
j (0) > 1 indicates photon bunching. Antibunching

corresponds to a reduced probability of two photons in the
cavity at a given time, which is the opposite of bunching.
The probability of two photons in the cavity will equal zero if
g

(2)
j (0) ≈ 0 (photon blockade). For simplify, we set κL = κR =

κC = κ and αj = �j − iκ/2 (j = L,C,R). If αL = αR = α,
εL = ε, and εC,εR = 0, i.e., the system is only pumped on
the left cavity with the magnitude ε, the photon second-order
correlation function with no time delay in the left cavity can
be obtained

g
(2)
L (0) =

∣∣∣∣
J 4

RK2 + (
J 2

L − J 2
R

)
K1F2(

J 2
L + J 2

R

)
K2 − K1F2

− F1

∣∣∣∣
2∣∣∣∣

J 2
L + J 2

R − F1(
J 2

R − F1
)

2

∣∣∣∣
2

,

(9)

FIG. 3. (Color online) (a) Zero-time second-order correlation
g

(2)
L (0) as a function of the coupling strength g and the driving

detuning � (on a logarithmic scale). Other parameters are JL/ωm =
0.5, JR/ωm = 0.01, and κ/ωm = 0.036. (b) Eigensystem of two-
excitation path interference in cavity L.

where Kn = α + αC + nδ and Fn = α(αC + nδ) (n = 1,2).
Setting �L = �R = �C = �, we plot logarithmic g

(2)
L (0) as

a function of � and g in Fig. 3(a). Here g
(2)
L (0) ≈ 0 represents

a photon blockade, corresponding to the dark areas, which
appears in two areas. One is achieved in the bottom right area
in Fig. 3(a) with large values of the coupling rate g, which
means that the photon blockade results from the nonlinear
effects of radiation pressure. We call it a conventional photon
blockade (CPB). The other appears in the top left area with
small values of g but strict limitations on other parameters,
which means that it results from the two-path interference. The
interference between the two excitation paths (one exciton is
from its own exciton and the other is the jumping from its
neighbor) is illustrated in Fig. 3(b). Because of the destructive
interference, the photon blockade phenomenon also occurs,
called an unconventional photon blockade (UPB).

We now show the photon statistics properties and control
of the photon transport by comparing the analytical solution
with the numerical results via solving the master equation (4).
For the conventional photon blockade, the larger the ratio of
g/κ , the stronger the effect of the blockade, shown in Fig. 4(a).
The corresponding detuning frequency can be derived from
Eq. (9). As shown in Fig. 4(b), the strong photon antibunching
can be obtained even if g/κ < 1.

In order to describe the characteristics of unidirectional
energy transport we define the rectifying factorR and transport
efficiency T as the normalized difference between the output
currents when the system is pumped through the left and
right resonators (indicated by the wave vectors k and −k,
respectively) [14]

R = QR[k] − QL[−k]

QR[k] + QL[−k]
, (10)

TL = QR[k]

QR[k] + QL[k]
, (11)

TR = QL[−k]

QR[−k] + QL[−k]
, (12)

where R = −1 indicates maximal rectification with enhanced
transport to the left (left rectification), R = 0 indicates no
rectification because QR[k] = QL[−k], and R = 1 indicates
maximal rectification with transport to the right (right rectifi-
cation). In our system, cavity L and cavity R are both linear
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FIG. 4. (Color online) Equal-time second-order correlation
g

(2)
L (0) as a function of the coupling strength g and the driving

detuning � with �L = �C = � and �R = � + �LR . Other
parameters are (a) JL/ωm = 0.5, JR/ωm = 0.1, and �LR = 0 and
(b) JL/ωm = 0.1, JR/ωm = 0.01, g/ωm = 0.01, κ/g = 1.3, and
�LR = 0.1 (other groups of parameters can be obtained by solving
g

(2)
L (0) = 0 in the single-photon weak-coupling regime).

cavities. Therefore, there is no rectification (R = 0) when only
driving the left or right cavity (no asymmetric nonlinear effect).

We discuss the rectification effect in the conventional
blockade regime (ωm > g > κ) shown in Fig. 5. When �

ωm

is around −0.02, R ≈ 1, which indicates that the system
allows photon transfer from left to right L → R only and
the transfer is prohibited from right to left R → L, the
photon number from the left-going −k field is equal to zero
on side L. Similarly, when �

ωm
is around 0.005, R = −1,

which only allows the transport from right to left R → L and
NR(k) = 0. For �

ωm
around −0.005,R = 0, the photon number

from the left-going −k field is equal to the photon number
from the right-going k field NL(−k) = NR(k). If g < κ < ωm
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FIG. 5. (Color online) Rectifying factor, transport efficiency, and
excitation number in the cavity as a function of the driving detuning
� with �L = �C = � and �R = � + �LR . Other parameters are
g/ωm = 5×10−3, JL/ωm = 5×10−3, JR/ωm = 5×10−3, κ/g = 0.2,
and �LR/ωm = 2×10−2.

−0.04 0.003 0.015 0.022 0.04
−1

0

1

R

−0.04 0.003 0.015 0.022 0.04
0

0.5

1

T
L, T

R

−0.04 0.003 0.015 0.022 0.04
0

0.5

1

Δ/ω
m

N
L, N

R

analytical
numerical

T
L

T
R

N
R
(k)

N
L
(−k)

FIG. 6. (Color online) Rectifying factor, transport efficiency, and
excitation number in the cavity as a function of the driving detuning
� with �L = �C = � and �R = � + �LR . Other parameters are
g/ωm = 5×10−3, κ/g = 2, JL/ωm = 5×10−3, JR/ωm = 5×10−3,
and �LR/ωm = −2×10−2.

(unconventional blockade regime), shown in Fig. 6, one can
obtain R ≈ 1 when �

ωm
= 0.022. We also can see R = 0

for �
ωm

= 0.015 and R ≈ −1 for �
ωm

= 0.003. Therefore, we
can conclude that whether ωm > g > κ or g < κ < ωm, by
tuning the frequencies of the cavities R and L, one can adjust
(or switch) rectification and two-way transport.

B. Single-photon source

The photon blockade effect allows only single-photon
transmission through the system. Now we show that our device
can work as a single-photon source. The system is only driven
from the left or right cavity, i.e., εL = ε, εR = εC = 0 or
εR = ε, εL = εC = 0. The mean occupation photon numbers

NR(k) = NL(−k)

=
∣∣∣∣∣

JLJRε

J 2
RαL + αR

[
J 2

L − αL(αC + δ)
]
∣∣∣∣∣

2

. (13)

As shown in Fig. 7, the system only allows single-photon
transport whether the light is from the left or right when
g

(2)
R (k) ≈ g

(2)
L (−k) ≈ 0. The transport efficiency TL = TR ≈

0.5, which means that the output of the system is in a single-
photon state if the input is in a two-photon state. Under this
condition, the device can control the single-photon transport
in the channel or work as a single-photon source. This kind
of device can only work in the single-photon strong-coupling
regime (g/κ > 1) because there is no multipath interference
in output ports. We also notice that R ≡ 0 even if αL �= αR

and JL �= JR . Achieving rectification requires εC �= 0.

C. Optomechanical optical capacitor

As we have shown in Fig. 4, the photons in the left
cavity exhibit antibunching, although the directly nonlinear
interaction only appears in the OM cavity. Similar to the
nonlinear shift 3δ in the OM cavity, the effective nonlinearity in
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FIG. 7. (Color online) Transport efficiency and second-order cor-
relation of output ports as a function of the driving detuning � with
�L = �R = � and �C = � + �LC . Other parameters are g/ωm =
0.2, JL/ωm = 0.1, JR/ωm = 0.1, κ/g = 0.1, and �LC/ωm = −1.

cavity L (R) can be equivalent to the resonance energy shift δL

(δR). If cavities L and R both exhibit the photon antibunching
effect due to the nonlinear shift and interference and the OM
cavity exhibits the photon bunching effect, when we drive the
cavities L and R, the photons can be stored in the OM cavity.
Reversing the process, one can release the photons.

As shown in Figs. 8(a) and 8(c), the system is a symmetric
structure. The field from the left and right cavities can be
regarded as input k of the OM cavity, while the field from the
OM cavity can be regarded as output −k of the OM cavity.
In Fig. 8(b), when {ωL,ωR} > ωD and {ωL,ωR} > ωC , i.e.,
{�LC,�RC} < 0 and {�L,�R} > 0, the nonlinear frequency
shift in the left (right) cavity δL (δR) will increase the
transition energy of the two-photon excitation, which means
that the probability of the two-photon state will be suppressed
and the photon exhibits antibunching in the cavity L (R).
At the same time, the nonlinear shift in the OM cavity 3δ

will diminish the detuning between the tunneling field ωL

(ωR) and resonance frequency ωC and the photon will exhibit
bunching in the OM cavity. Especially for ωD ≈ ωC + 3δ,
the OM cavity exhibits strong bunching due to the resonance
absorption. Under this condition, the probability amplitude

FIG. 8. (Color online) Pictorial representation and eigensystem
of the photon storage and release process.
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FIG. 9. (Color online) Storage factor, storage-release efficiency,
and excitation number in the cavity as a function of the driving
detuning � with �L = �R = � and �C = � + �LC . Other parame-
ters are g/ωm = 5×10−3, κ/g = 1, JL/ωm = JR/ωm = 1×10−3, and
�LC/ωm = −2×10−2.

of photons in the OM cavity will be much larger than in
the cavities L and R and photons can be stored in the
OM cavity. Reversing the process, as shown in Fig. 8(d),
when ωC > ωD and ωC > {ωL,ωR}, i.e., {�LC,�RC} > 0
and �C > 0, the nonlinear frequency shift 3δ will increase
the transition energy of the two-photon excitation and the
photon exhibits antibunching in the OM cavity. Meanwhile,
the nonlinear shift in the left and right cavities δL and δR

will diminish the detuning between the tunneling field ωC

and resonance frequency {ωL,ωR} and the photon exhibits
bunching in the left and right cavities. Under this condition,
the photons can be released from the OM cavity.
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FIG. 10. (Color online) Storage factor, storage-release effi-
ciency, and excitation number in the cavity as a function of the driving
detuning � with �L = �R = � and �C = � + �LC . Other parame-
ters are g/ωm = 1×10−3, κ/g = 2, JL/ωm = JR/ωm = 1×10−2, and
�LC/ωm = 2×10−2.
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mechanical frequency ωm = 0.1 GHz and dissipation rate γ = 1 KHz. Other parameters are (a) �L = �R = �C , g/ωm = 0.2, JL = JR =
ωm/10, and κ/ωm = 10−2 and (b) �L = �C , �LR/ωm = 0.1, g/ωm = 10−2, JL/ωm = 0.1, JR/ωm = 0.01, and κ/g = 1.3.

In order to describe the characteristics of energy storage
and release we define the storage factor S and storage-release
efficiency M,

S = QC[k] − QL[−k] − QR[−k]

QC[k] + QL[−k] + QR[−k]
, (14)

MS = QC[k]

QC[k] + QL[k] + QR[k]
, (15)

MR = QL[−k] + QR[−k]

QC[−k] + QL[−k] + QR[−k]
, (16)

where S = 1 indicates maximal storage with the enhanced
transport to the OM cavity, S = 0 indicates no storage and
release, and S = −1 indicates maximal release with enhanced
transport to the left and right cavities; MS = 1 or MR = 1
indicates that the photons are totally stored in or released
from the OM cavity, respectively. For simplicity, we assume
that all parameters of the cavities L and R are exactly the
same in the following discussion. The photon numbers of
the two cavities QL[k] = QR[k] and QL[−k] = QR[−k].
We discuss the storage effect shown in Fig. 9. When �

ωm
is

around 0.02, S ≈ 1, which indicates that the system allows
photon transfer into the OM cavity L → C ← R only. When
the transfer is prohibited from the OM cavity L ← C → R,
the photon number in the cavities L and R from the OM
cavity is approximately equal to zero. When the second-order
correlation g

(2)
C (0) > 1, photons exhibit a bunching effect

in the OM cavity and when g
(2)
R (0) = g

(2)
L (0) < 1, photons

exhibit an antibunching effect in the left and right cavities.
When the convergence field k is bounded in the OM cavity,
the system exhibits a storage characteristic. As shown in
Fig. 10, the system exhibits a release characteristic. When
�
ωm

is around 0.007, S ≈ −1, which indicates that the system
allows photon transfer out of the OM cavity L ← C → R

only. When the second-order correlation g
(2)
C (0) < 1, photons

exhibit an antibunching effect in the OM cavity and when
g

(2)
R (0) = g

(2)
L (0) > 1, photons exhibit a bunching effect in

the left and right cavities. That is, the divergent field −k is
released from the OM cavity. We also notice that when S = 1
and MS = 1, complete storage is indicated, whether the field

from the left or the right cavity can be stored in the OM
cavity, which is similar to the capacitor charge process. When
S = −1 and MR = 1, complete release is indicated and the
field in the OM cavity can be released through the left and right
cavities completely, which is similar to the capacitor discharge
process. The two processes can be controlled by the detuning
of the driving field �. In contrast, like the filter effect, there is
no photon in the channel at the frequency that let S = 1 and
MS = 1 (complete absorption), but this has no effect on the
frequency that let S = −1 and MR = 1 (complete release).

In the previous discussion we ignored the effects of the
mechanical thermal bath. Now, to investigate the influence
of the mechanical thermal temperature on the correlation
function, we include the mechanical thermal reservoir. Using
the master equation (4), in Fig. 11 we plot the minimum values
of g2

L(0) as a function of the reservoir temperature; the g2
L(0)

versus �
ωm

affected by the thermal reservoir is also displayed in
the inset. When the temperature is below 1 mK (marked with
the shadow area), the thermal heating has nearly no effect in
Fig. 11(a), because when the influence of the mechanical bath
is far below the single-photon coupling rate, i.e., γ nth 
 g,
the bath effect can be ignored. With current experimental
techniques, one can easily set g/γ � 1 [36,37], which means
that a small value of the phonon number nth can be tolerated
with little effect. Also, we can clearly see that the antibunching
effect becomes weaker with increasing temperature. In the
UPB regime, as shown in Fig. 11(b), the antibunching effect
is more sensitive to the bath temperature. This quantum
effect will disappear when the temperature is over 5 mK
(nth = 0.62). Fortunately, the current experimental conditions
of ground-state cooling can achieve nth = 0.34 ± 0.05 [22].
This provides some resistance to the quantum decoherence of
our system. Even so, to maintain the antibunching effect, the
mechanical thermal noise still needs to be suppressed.

IV. CONCLUSION

In this paper we employed radiation pressure and de-
structive interference effects to construct the controller of
photon transport. By coupling the cavity of an optomechanical
system to two cavities, we show that the photon blockade
can be achieved in the single-photon strong-coupling regime
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and the single-photon weak-coupling regime. In the single-
photon strong-coupling regime, the photon blockade effect
mainly results from the nonlinearity of the radiation pressure
in the optomechanical cavity, while in the single-photon
weak-coupling regime, the photon blockade effect is mainly
because of the interference between multiple paths for two-
photon excitation in cavities. For few-photon control of
one-dimensional transmission, the system can work as an
optical diode without the requirement of the strength of the
radiation pressure strong coupling and the rectification of
photons can be controlled by the detuning of the driving
field �. If we just drive the cavity from the left or right

cavity only, the system can function as a single-photon source.
Furthermore, when two fields are transported into the OM
cavity through the cavities L and R, the device can store and
release photons as a capacitor in an appropriate parameter
regime. These properties provide a promising application of
the optomechanical system in quantum information processing
and quantum circuit realization.
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APPENDIX: SOLUTION OF THE PROBABILITY AMPLITUDES

If we set κL = κR = κC = κ and ωm � g and adiabatically eliminate the degree of the oscillators, we can obtain the equations
of motion of the probability amplitudes under the weak-pumping regime C0 � Cs1 � Cs1s2. We drop higher-order terms in the
zero- and one-photon probability amplitudes

iĊL = αLCL + εLC0 + JLCC,

iĊC = (αC + δ)CC + εCC0 + JLCL + JRCR,

iĊR = αRCR + εRC0 + JRCC,

iĊLC = (αL + αC + δ)CLC + εLCC + εCCL +
√

2JL(CLL + CCC) + JRCLR,

iĊLR = (αL + αR)CLR + εLCR + εRCL + JLCCR + JRCLC,

iĊCR = (αR + αC + δ)CCR + εCCR + εRCC +
√

2JR(CRR + CCC) + JLCLR,

iĊLL = 2αLCLL +
√

2εLCL +
√

2JLCLC,

iĊCC = (2αC + 4δ)CCC +
√

2εCCC +
√

2JLCLC +
√

2JRCCR,

iĊRR = 2αRCRR +
√

2εRCR +
√

2JRCCR, (A1)

where αL = �L − iκ/2, αR = �R − iκ/2, and αC = �C − κ/2 + δ. If we set the initial state as a vacuum state, i.e., C0(0) = 1,
Cs1(0) = Cs1s2(0) = 0, where {s1,s2} ∈ {L,C,R}. In the weak-driving regime {εC/κC,εL/κL,εR/κR} 
 1, the photon number
is small, so we have C0(∞) ≈ C0(0) and then the long-time solution of equations can be approximately obtained as

CL =
[−J 2

R + αR(αC + δ)
]
εL + JL( − αRεC + JRεR)

D1
, (A2)

CC = αLαRεC − JLαRεL − JRαLεR

D1
, (A3)

CR =
[−J 2

L + αL(αC + δ)
]
εR + JR(−αLεC + JLεL)

D1
, (A4)

CLL = CL

∑
j=(L,C,R) lL,j εj + JLCC

∑
j=(L,C,R) lC,j εj + JLJRCR

∑
j=(L,C,R) lR,j εj√

2D2

, (A5)

CCC = JLCL

∑
j=(L,C,R) cL,j εj + CC

∑
j=(L,C,R) cC,j εj + JRCR

∑
j=(L,C,R) cR,j εj√

2D2

, (A6)

CRR = JLJRCL

∑
j=(L,C,R) rL,j εj + JRCC

∑
j=(L,C,R) rC,j εj + CR

∑
j=(L,C,R) rR,j εj√

2D2

, (A7)

where the first term in Eq. (A5) describes two-photon state generated by the driving field in the cavity L, the second term
describes two-photon excitation due to photon tunneling between the OM cavity and the left cavity with coupling rate JL, and
the third term describes two-photon excitation due to photon tunneling between the right cavity and left cavity through the OM
cavity. When the collective effect of the three processes let CLL ≈ 0, photons exhibit the blockade effect in cavity L. In addition
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to Eqs. (A6) and (A7) we have

D1 = J 2
LαL + J 2

RαR − αLαR(αC + δ),

D2 =
∑

s=L,R

αs

[
J 2

s − αs(αs + αC + δ)
][

2J 2
s (αs + αC + 2δ) − αs(αs + αC + δ)(αC + 2δ)

]
,

lL,L = J 4
LαR + [

J 2
R − (αL + αR)(αC + αL + δ)

][−αR(αC + αR + δ)(αC + 2δ) + J 2
R(αC + αR + 2δ)

]

+ J 2
L

{
J 2

R(αL − αR) − αR

[
α2

C + αR(αL + αR) + (3αL + αR)δ + 2δ2 + αC(2αL + αR + 3δ)
]}

,

lL,C = JL

{
J 2

R(αL + αR)(αC + αR + 2δ) − αR(αC + 2δ)
[−J 2

L + (αL + αR)(αC + αR + δ)
]}

,

lL,R = JLJR

{−J 2
R(αC + αR + 2δ) + αR

(
J 2

L + (αC + αR + δ
)
(αC + 2δ)

]}
,

lC,L = −J 2
R(αL + αR)(αC + αR + 2δ) + αR(αC + 2δ)

[−J 2
L + (αL + αR)(αC + αR + δ)

]
,

lC,C = JL

[
J 2

RαL + J 2
LαR − αR(αL + αR)(αC + αR + δ)

]
,

lC,R = JLJRαR(αC + αL + αR + 2δ),

lR,L = J 2
R(αC + αR + 2δ) − αR

[
J 2

L + (αC + αR + δ)(αC + 2δ)
]
,

lR,C = JLαR(αC + αL + αR + 2δ),

lR,R = −JLJR(αC + αL + αR + 2δ), (A8)

cL,L = JL

[
J 2

RαL + J 2
LαR − αR(αL + αR)(αC + αR + δ)

]
,

cL,C = αL

[−J 2
RαL − J 2

LαR + αR(αL + αR)(αC + αR + δ)
]
,

cL,R = JR

{
J 2

RαL − αR[−J 2
L + αL(2αC + αL + αR + 2δ)]

}
,

cC,L = JLαL

[−J 2
RαL − J 2

LαR + αR(αL + αR)(αC + αR + δ)
]
,

cC,C = −J 4
LαR − αL

[
J 2

R − (αL + αR)(αC + αL + δ)
][

J 2
R − αR(αC + αR + δ)

]

+ J 2
L

{ − J 2
R(αL + αR) + αR

[
α2

L + αC(2αL + αR) + αR(αR + δ) + αL(αR + 2δ)
]}

,

cC,R = JRαR

[−J 2
RαL − J 2

LαR + αL(αL + αR)(αC + αL + δ)
]
,

cR,L = JL

{
J 2

RαL − αR

[−J 2
L + αL(2αC + αL + αR + 2δ)

]}
,

cR,C = αR

[−J 2
RαL − J 2

LαR + αL(αL + αR)(αC + αL + δ)
]
,

cR,R = JR

[
J 2

RαL + J 2
LαR − αL(αL + αR)(αC + αL + δ)

]
,

ri,j = li,j (JL ↔ JR,αL ↔ αR) (i,j = {L,C,R}).
The second-order correlation functions with zero time delay are

g
(2)
L (0) = 2|CLL|2

(|CL|2 + |CLC |2 + |CLR|2 + 2|CLL|2)2
≈ 2|CLL|2

|CL|4 ,

g
(2)
C (0) = 2|CCC |2

(|CC |2 + |CLC |2 + |CCR|2 + 2|CCC |2)2
≈ 2|CCC |2

|CC |4 , (A9)

g
(2)
R (0) = 2|CRR|2

(|CR|2 + |CCR|2 + |CLR|2 + 2|CRR|2)2
≈ 2|CRR|2

|CR|4 .

The mean occupation numbers of the three cavities are

NL = (|CL|2 + |CLC |2 + |CLR|2 + 2|CLL|2)N0 ≈ |CL|2N0,

NC = (|CC |2 + |CLC |2 + |CCR|2 + 2|CCC |2)N0 ≈ |CC |2N0, (A10)

NR = (|CR|2 + |CCR|2 + |CLR|2 + 2|CRR|2)N0 ≈ |CR|2N0,

where N0 = (εL/κL)2 + (εC/κC)2 + (εR/κR)2.
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[30] X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, and F. Nori,
Sci. Rep. 3, 2943 (2013).

[31] D. Hu, S.-Y. Huang, J.-Q. Liao, L. Tian, and H.-S. Goan,
Phys. Rev. A 91, 013812 (2015).
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