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We theoretically analyze the Einstein-Podolsky-Rosen (EPR) correlation, the quadrature squeezing, and
the continuous-variable quantum teleportation when considering non-Gaussian entangled states generated by
applying multiple-photon subtraction and multiple-photon addition to a two-mode squeezed vacuum state
(TMSVs). Our results indicate that in the case of the multiple-photon-subtracted TMSVs with symmetric
operations, the corresponding EPR correlation, the two-mode squeezing degree, the sum squeezing, and the
fidelity of teleporting a coherent state or a squeezed vacuum state can be enhanced for any squeezing parameter
r and these enhancements increase with the number of subtracted photons in the low-squeezing regime, while
asymmetric multiple-photon subtractions will generally reduce these quantities. For the multiple-photon-added
TMSVs, although it holds stronger entanglement, its EPR correlation, two-mode squeezing, sum squeezing,
and the fidelity of a coherent state are always smaller than that of the TMSVs. Only when considering
the case of teleporting a squeezed vacuum state does the symmetric photon addition make somewhat of an
improvement in the fidelity for large-squeezing parameters. In addition, we analytically prove that a one-mode
multiple-photon-subtracted TMSVs is equivalent to that of the one-mode multiple-photon-added one. And
one-mode multiple-photon operations will diminish the above four quantities for any squeezing parameter r .
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I. INTRODUCTION

In recent years, non-Gaussian entangled states with con-
tinuous variables as communication resources have received
more attention in quantum information and communication
technologies. This is mainly because non-Gaussian states and
non-Gaussian operations are indispensable for performing
some certain continuous-variable quantum information tasks,
such as quantum entanglement distillation [1–13], quantum
error correction [14], and universal quantum computation [15].

Photon subtraction and addition are the typical non-
Gaussian operations used to generate non-Gaussian states
with highly nonclassical properties. Agarwal and Tara [16]
first studied the nonclassical properties of a photon-added
coherent state, which was implemented [17] via a nondegen-
erate parametric amplifier with small-coupling strength. The
photon-subtracted single-mode squeezed state which can be
used to conditionally produce the Schrödinger cat state [18]
was implemented by a beam splitter with high transmissiv-
ity [19]. Opatrný et al. proposed that the entanglement and
the fidelity of the quantum teleportation can be enhanced by
simultaneously subtracting one photon from both modes of a
two-mode squeezed vacuum state (TMSVs) [1], whereas in
Ref. [2], Cochrane et al. showed that the entanglement and the
fidelity of a coherent state with photon subtraction are indeed
increased for any nonzero initial squeezing. Considering the
transmissivity of a beam splitter and the quantum efficiency
of photon detectors, Olivares et al. [3] further proved that
the inconclusive photon subtraction is an effective method
to improve the fidelity of a coherent state when the initial
squeezing is below a certain value. Kitagawa et al. [5] provided
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a detailed numerical analysis of two-mode subtraction by on-
off detectors in terms of the explicit changes in entanglement
and the fidelity of a coherent state. For a given realistic scenario
with lossy transmission channels, Zhang and Loock [11]
showed that in order to improve the entanglement and the
fidelity, a constraint represented by a lower bound for the
beam splitter (used for symmetric photon subtraction) must
be satisfied. The more photons are symmetrically subtracted,
the higher the entanglement and the fidelity will be. However,
this improvement will disappear for large squeezing due to the
imperfections in this kind of system. Very recently, Bartley
et al. [20] extensively investigated different strategies for
enhancing quantum entanglement via symmetric multiple-
photon subtraction from a TMSVs in a realistic experimental
scenario. At present, it has been demonstrated in experi-
ments [6,10] that the TMSVs can be “degaussified” by photon
subtraction, resulting in a mixed non-Gaussian state whose
entanglement degree and teleportation fidelity are improved.
Very recently, Kurochkin et al. [21] also experimentally
demonstrated that by applying the photon-subtraction operator
to both modes of the TMSVs, they raised the fraction of the
two-photon component in the state, resulting in an increase
of both squeezing and entanglement by about 50%. For a
review of quantum-state engineering with photon addition and
subtraction, we refer to Refs. [22,23].

For an entangled Gaussian resource, it is known that
larger squeezing leads to larger entanglement and higher
teleportation fidelity. In addition, Adesso and Illuminati have
proven that the fidelity of teleportation and the entanglement of
the shared entangled Gaussian resource are in an exact one-to-
one correspondence [24]. In experiments, the teleportation of
Gaussian states in the standard continuous-variable Vaidman-
Braunstein-Kimble (VBK) teleportation protocol [25,26], in-
cluding the coherent state and the squeezed vacuum state,
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has been reported [27–31]. And the teleportation of a non-
Gaussian state was carried out recently [32]. In the ideal
and in the realistic VBK protocol, Dell’Anno et al. [7,8,33]
systematically studied the performance of squeezed Bell states
(generalized non-Gaussian entangled states), which coincides
with photon-subtracted states and photon-added states, where
subtraction and addition operations are referred to the case of
a single photon. They found that in the non-Gaussian case, the
teleportation fidelity depends not only on the entanglement,
but also on the degree of non-Gaussianity and the degree of
Gaussian affinity with the two-mode squeezed vacuum. In
particular, the Gaussian affinity is crucial. Therefore, stronger
entanglement does not mean higher teleportation fidelity when
non-Gaussian states are considered as entanglement resources,
although the entanglement is indispensable in the quantum
teleportation [7–9,33,34]. For implementing symmetric and
asymmetric multiple-photon subtraction and addition on
both modes of the TMSVs, Navarrete-Benlloch et al. [35]
demonstrated in a idealistic scenario that the entanglement
generally increases with the number of such operations. And
the multiple-photon addition typically provides a stronger en-
tanglement enhancement than the multiple-photon subtraction.
As mentioned above, stronger entanglement does not mean
higher teleportation fidelity when non-Gaussian states are
considered as entanglement resources. In this paper, we will
extend the work in Refs. [7,35] and theoretically investigate
the continuous-variable quantum teleportation in the standard
VBK protocol with non-Gaussian states generated by the
symmetric and asymmetric multiple-photon subtraction and
addition. In a idealistic scenario, we show how symmetric
or asymmetric multiple-photon operations affect the EPR
correlation and the teleportation fidelity, as well as the relations
among the Einstein-Podolsky-Rosen (EPR) correlation, the
two-mode squeezing, and the teleportation fidelity.

The paper is organized as follows. In Sec. II, we provide
a brief review of the multiple-photon-subtracted TMSVs
(PS-TMSVs) and the multiple-photon-added TMSVs (PA-
TMSVs), as well as their entanglement entropy. In Sec. III,
we extend the work in Refs. [7,35] and further investigate the
EPR correlation and the quadrature squeezing of non-Gaussian
entangled states. In Sec. IV, considering these non-Gaussian
entangled states as entangled resources, we study the telepor-
tation fidelity of a coherent state and a squeezed vacuum state
in the standard VBK protocol. Our results indicate that only
the symmetric multiple-photon subtraction can effectively
improve the EPR correlation, the quadrature squeezing, and
the teleportation fidelity, and this improvement is obvious
in the low-initial-squeezing regime. Finally, we investigate
the performance of the PS-TMSVs for the coherent-state
teleportation at a fixed EPR correlation parameter, rather than
at a fixed squeezing parameter or the entanglement entropy.
Our main results are summarized in Sec. V.

II. MULTIPLE-PHOTON-ADDED AND
MULTIPLE-PHOTON-SUBTRACTED TWO-MODE

SQUEEZED VACUUM STATES

In this section, we first provide a brief review of the
PA-TMSVs and PS-TMSVs, as well as their entanglement
entropy. We consider a TMSVs as an input state, which is

a typical Gaussian entangled state produced in experiments.
Theoretically, the TMSVs can be obtained by adding the
two-mode squeezed operator S2(r) = exp [r(a†b† − ab)] with
squeezing parameter r to a vacuum state with modes A and B,
that is, |r〉 = S2(r)|0,0〉 = sechr

∑∞
n=0 tanhn r|n,n〉.

By performing the multiple-photon-added operation on the
TMSVs, one obtains the normalized output state as [35]

|r〉pa = C
−1/2
k,l a†kb†lS2(r)|0,0〉

=
∞∑

n=0

√
(n + k)!(n + l)!

(n!)2Ck,l cosh2 r
tanhn r|n + k,n + l〉, (1)

where Ck,l = Tr[a†kb†lS2(r)|0,0〉〈0,0|S2(−r)akbl] is the nor-
malization factor of the PA-TMSVs. Different from that
in Ref. [35], here, for our purpose, we first calculate the
expectation value of a general product of operators apa†qbhb†j

in the TMSVs. After straightforward calculation, we have (see
Appendix)

Cp,q,h,j = Tr(|r〉〈r|apa†qbhb†j )

=
min[p,h]∑

m

p!q!h!j ! cosh2p+2h r sinhj−h 2r

2j−hm!(p − m)!(h − m)!

× tanh2m rδp+j,q+h

(j − h + m)!
, (2)

where the Kronecker δ function δp+j,q+h means that all off-
antidiagonal elements are zero. Obviously, when p = q = k

and h = j = l, Cp,q,h,j reduces to the normalization factor
Ck,l . Note that the four quantities n, n + α, n + β, and n +
α + β are non-negative integers, and the Jacobi polynomial
can be written as

P (α,β)
n (x) = 1

2n

n∑
k=0

(
n + α

k

)(
n + β

n − k

)

×(x − 1)n−k(x + 1)k. (3)

Thus, the normalization factor Ck,l (without loss of generality,
assuming k � l) can be written as

Ck,l = k!l! cosh2k rP
(0,k−l)
l (cosh 2r). (4)

When only one of the modes undergoes photon addition while
the other is unchanged (for example, l = 0), Eq. (4) reduces to

Ck,0 = k! cosh2k r. (5)

Then, noting that the relation S2(−r)a†S2(r) = a† cosh r +
b sinh r , the normalized one-mode-added TMSVs can be
written as

1√
k! cosh2k r

a†kS2(ξ )|0,0〉 = S2(ξ )|k,0〉, (6)

which is a two-mode squeezed number state.
On the other hand, subtracting multiple photons from

two modes of the TMSVs, one obtains the PS-TMSVs.
Theoretically, the normalized PS-TMSVs can be written
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as [36]

|r〉ps = N
−1/2
k,l akblS2(r)|0,0〉

=
∞∑

n=max[k,l]

√
(n!)2sech2r tanh2n r

Nk,l(n − k)!(n − l)!
|n − k,n − l〉, (7)

where Nk,l is the normalization factor of the PS-TMSVs.
Similarly, we first derive the expectation value of a general
product of operators a†qapb†j bh in the TMSVs (also see
Appendix),

Np,q,h,j = Tr(|r〉〈r|a†qapb†j bh)

=
min[p,h]∑

m

p!q!h!j ! sinh2p+2h r sinhj−h 2r

2j−hm!(p − m)!(h − m)!

×coth2m rδp+j,q+h

(j − h + m)!
. (8)

Thus, in the case of p = q = k and h = j = l, Np,q,h,j reduces
to the normalization factor Nk,l , i.e.,

Nk,l = k!l! sinh2k rP
(k−l,0)
l (cosh 2r). (9)

For the case l = 0, we have

Nk,0 = k! sinh2k r.

Then, the normalized one-mode-subtracted TMSVs is

1√
k! sinh2k r

akS2(ξ )|00〉 = S2(ξ )|0,k〉, (10)

which is another two-mode squeezed number state. Due to
the symmetry of Eqs. (6) and (10), we can see that adding
k photons to the first mode is equivalent to subtracting them
from the same mode. In addition, adding k photons to the first
mode has the same effect as subtracting them from the second
mode [35]. Therefore, both the one-mode photon-subtracted
TMSVs and the one-mode photon-added TMSVs have same
quantum statistical effects.

In addition, it can be seen that Eq. (2) [or Eq. (4)] and
Eq. (8) [or Eq. (9)] substantially differ for the exchange
of the hyperbolic coefficients and are important for further
studying nonclassical properties of both the PA-TMSVs and
PS-TMSVs. Particularly, with the help of Eqs. (2), (4), (8),
and (9), it is convenient to explore some quantum optical
nonclassicalities that are characterized by the expectation
values of field operators, such as sub-Poissonian statistics,
the cross correlation, antibunching effects [37], quadrature
squeezing properties (including sum squeezing and difference
squeezing) [38], as well as the entanglement characterized by
some inseparability criteria [39–42].

For our purpose, let us review the von Neumann entropy
of both the PA-TMSVs and PS-TMSVs [35]. For a pure
state in Schmidt form, |ψ〉AB = ∑

n=1 cn|αn〉A|βn〉B (cn :
real positive) with the orthonormal states |αn〉A and |βn〉B ,
the quantum entanglement is quantified by the partial von
Neumann entropy of the reduced density operator [43],

E(|ψ〉AB) = −Tr(ρA ln ρA) = −
∑
n=1

c2
n log2 c2

n, (11)

where the local state is given by ρA = TrB(|ψ〉AB〈ψ |). Note
that Eqs. (1) and (7) are already in Schmidt form, and thus
the entanglement of the PA-TMSVs and the PS-TMSVs,
respectively, can be directly obtained [35],

Ek,l
pa = −

∞∑
n=0

(n + k)!(n + l)!

(n!)2Ck,l cosh2 r
tanh2n r

× log2
(n + k)!(n + l)!

(n!)2Ck,l cosh2 r
tanh2n r (12)

and

Ek,l
ps = −

∞∑
n=max[k,l]

(n!)2N−1
k,l cosh−2 r

(n − k)!(n − l)!
tanh2n r

× log2

(n!)2N−1
k,l cosh−2 r

(n − k)!(n − l)!
tanh2n r. (13)

The amount of the entanglement of the TMSVs (in
the case of k = l = 0) is analytically given by E =
cosh2 r log2 (cosh2 r) − sinh2 r log2 (sinh2 r), and for other
states it can be evaluated numerically by their Schmidt
coefficients. When k = l (symmetric operation), one can
analytically prove that Epa = Eps. Actually, Eq. (7) can be

 

 

nE

r

r

nE

(a)

(b)

FIG. 1. (Color online) Entanglement entropy as a function of
the squeezing parameter r for a PS-TMSVs (or PA-TMSVs) with
different values of (k,l). (a) PS-TMSVs or PA-TMSVs: from top to
bottom, lines correspond to (3,3), (2,2), and (1,1). (b) PS-TMSVs:
from top to bottom, lines correspond to (3,3), (3,2), (3,1), and (3,0).
The black dashed curve corresponds to the TMSVs.
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rewritten as

|ξ 〉ps =
∞∑

n=0

√
(n + k)!(n + k)!

(n!)2Nk,k tanh−2k r cosh2 r
tanhn+k r|n,n〉.

(14)

From Eq. (8), we can derive

Nk,k tanh−2k r =
k∑

m=0

(k!)4(cosh r sinh r)2k

[m!(k − m)!]2 coth2m r. (15)

If setting k − m = m′, one can immediately obtain

Nk,k tanh−2k r = Ck,k =
k∑

m=0

(k!)4 cosh4k r tanh2m r

[m!(k − m)!]2 . (16)

Therefore, for a symmetric operation, both the PA-TMSVs
and PS-TMSVs hold the same set of Schmidt coefficients
which leads to the exact same quantum entanglement, a
result noted in Ref. [7] (k = l = 1). For multiple-photon-added
and multiple-photon-subtracted operations, as pointed out in
Ref. [35], the optimal entanglement enhancement is obtained
when the same number of operations is applied to both modes,
as shown in Fig. 1, where addition and subtraction give
the same entanglement enhancement. And the entanglement
increases with the number of operations. For an asymmetric
operation, their numerical analysis shows that it is always
better to perform addition rather than subtraction in order
to increase the entanglement, i.e., Ek,l

pa > Ek,l
ps . For a detailed

discussion of the entanglement of these non-Gaussian states,
please see Ref. [35].

III. EPR CORRELATION AND SQUEEZING PROPERTIES

In this section, we will further investigate the EPR cor-
relation and the quadrature squeezing effects (including the
two-mode squeezing and the sum squeezing) of non-Gaussian
entangled states generated by multiple-photon addition and
multiple-photon subtraction.

A. Einstein-Podolsky-Rosen correlation

Besides the degree of entanglement, non-Gaussian states
expressed by Eqs. (1) and (7) can be characterized by
the second-order EPR correlations between quadrature-phase
components of the two modes. As counterparts of position and
momentum operators of a massive particle, the quadrature-
phase operators of each mode are defined as Xj = (aj +
a
†
j )/

√
2 and Pj = (aj − a

†
j )/(i

√
2) (j = A,B). Historically,

continuous-variable entanglement originated in the paper of
Einstein et al., arguing on the incompleteness of quantum
mechanics [44]. They proposed an ideal state which is the
common eigenstate of a pair of EPR-like operators, XA − XB

(the relative position) and PA + PB (the total momentum). Its
explicit form is given by [45,46]

|η〉 = exp
[− 1

2 |η|2 + ηa† − η∗b† + a†b†
]|00〉, (17)

where η = η1 + iη2 is a complex number. In order to quantify
how well two-mode states approximate the EPR state of
Eq. (17), one can define the EPR correlation parameter for

a generic state ρ as [47,48]

ϒ(ρ) = 
2(XA − XB) + 
2(PA + PB)

= 2(〈a†a〉 + 〈b†b〉 − 〈ab〉 − 〈a†b†〉 + 1)

−2(〈a〉 − 〈b†〉)(〈a†〉 − 〈b〉), (18)

which is the total variance of EPR-like operations XA − XB

and PA + PB . In the EPR state [44–46] expressed by Eq. (17),
one can easily prove that the EPR correlation ϒ(ρ) equals
zero. For separable two-mode states or any classical two-mode
states, the total variance is larger than or equal to 2. The
condition

ϒ(ρ) < 2 (19)

indicates quantum entanglement, which is a crucial resource
for quantum protocols using continuous variables [25,26].

Based on Eqs. (2) and (8), we can prove that 〈a〉 =
〈a†〉 = 〈b〉 = 〈b†〉 = 0 and 〈âb̂〉 = 〈â†b̂†〉, as well as 〈a2b2〉 =
〈a†2b†2〉. As a matter of convenience, we derive the expectation
values of operators a†a,b†b,ab,a2b2 in the PS-TMSVs as
follows:

〈a†a〉ps = Nk+1,l

Nk,l

, 〈b†b〉ps = Nk,l+1

Nk,l

,

〈ab〉ps = Nk+1,k,l+1,l

Nk,l

, 〈a2b2〉ps = Nk+2,k,l+2,l

Nk,l

, (20)

and

〈a†ab†b〉ps = Nk+1,l+1

Nk,l

. (21)

For the PA-TMSVs, we have

〈a†a〉pa = Ck+1,l

Ck,l

− 1, 〈b†b〉pa = Ck,l+1

Ck,l

− 1,

〈ab〉pa = Ck+1,k,l+1,l

Ck,l

, 〈a2b2〉pa = Ck+2,k,l+2,l

Ck,l

, (22)

and

〈a†ab†b〉pa = Ck+1,l+1 − Ck+1,l − Ck,l+1

Ck,l

+ 1. (23)

Thus, the EPR correlation of the PS-TMSVs reads

ϒ(ρps) = 2
Nk+1,l + Nk,l+1 − 2Nk+1,k,l+1,l + Nk,l

Nk,l

. (24)

In the case of the PA-TMSVs, the EPR correlation is described
in the following form:

ϒ(ρpa) = 2
Ck+1,l + Ck,l+1 − 2Ck+1,k,l+1,l − Ck,l

Ck,l

. (25)

Particularly, when l = 0 (or k = 0 ), the PS-TMSVs and the
PA-TMSVs have the same EPR correlation; then, Eqs. (24)
and (25) reduce to a simple form,

ϒ(ρps)|l=0 = ϒ(ρpa)|l=0 = (2k + 2)e−2r . (26)

This is not surprising, since adding k photons to the first mode
has the same effect as subtracting them from the same mode. In
the case of k = l = 0, Eq. (26) reduces to the EPR correlation
of the TMSVs,

ϒ(ρ0) = 2e−2r , (27)
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 r

FIG. 2. (Color online) EPR correlation as a function of the
squeezing parameter r for different non-Gaussian entangled states
with k = l. The three upper lines correspond to the PA-TMSVs with
(1,1) (green dotted line), (2,2) (purple dashed line), and (3,3) (blue
dot-dashed line). The three lower lines correspond to the PS-TMSVs
with (1,1) (green dotted line), (2,2) (purple dashed line), and (3,3)
(blue dot-dashed line). The intermediate black curve corresponds to
the TMSVs.

which tends to zero (the ideal EPR value) asymptotically
for the squeezing parameter r → ∞. From Eq. (26), it
clearly shows that non-Gaussian entangled states generated
by one-mode operations have a lower EPR correlation than
that of the TMSVs. Therefore, one-mode photon-addition
and photon-subtraction operations will diminish the EPR
correlation. In the experiment, Takahashi et al. [10] have
shown that subtracting one photon simultaneously from both
modes of the TMSVs can improve the entanglement and the
EPR correlation. And subtracting a single photon from one
mode of the TMSVs enhances the entanglement, while it
diminishes the EPR correlation.

In order to clearly see the EPR correlation of both the
PS-TMSVs and PA-TMSVs with different values of (k,l),
Fig. 2 shows the symmetric operations (k = l). From Fig. 2,
it can be seen that the EPR correlation of the PS-TMSVs is
always lower than that of the TMSVs in the whole range of the
initial squeezing. And the EPR correlation decreases with the
number of subtracted photons in the regime of low-squeezing
parameter r . For larger squeezing, this decrease becomes
negligible. However, the EPR correlation of the PA-TMSVs
is always larger than that of the input state for any values of
(k,l). For asymmetric operations, both photon addition and
subtraction generally reduce the EPR correlation, as shown
in Fig. 3, which is different from that of the entanglement
entropy (asymmetric subtraction and addition can also be
used to improve the entanglement). In addition, our results
indicate that the EPR correlation of both the PS-TMSVs and
PA-TMSVs is optimized at symmetric operations (k = l). For
large-squeezing parameter r , the EPR correlation approaches
zero, and photon addition or subtraction cannot improve much
on this. This is because when r → ∞, the EPR correlation is
already closely approaching the ideal EPR value. In a realistic
scenario, the photon subtraction will indeed degrade the EPR
correlation for large initial squeezing due to the imperfections
in the systems [11].

r

r

(a)

(b)

FIG. 3. (Color online) EPR correlation as a function of the
squeezing parameter for the states with different values of (k,l): (a)
PS-TMSVs, (b) PA-TMSVs. The black dashed line corresponds to
the TMSVs.

Some works have pointed out that the larger amount of
entanglement does not always means stronger EPR correla-
tions [7–9,33]. And those states holding large entanglement
may not be useful to improve quantum information processing.
In the VBK protocol of quantum teleportation [25,26], the
quantum channel is based on the EPR correlations and the
fidelity of teleported states depends on the EPR correlations.
Hence, we expect that the quality of quantum teleportation
of continuous variables can be improved by the symmetric
multiple-photon subtraction, and the fidelity can increase with
the number of subtracted photons.

B. Two-mode squeezing

In quantum optics, squeezing is one of the earliest studied
nonclassical phenomena. There are various types of squeezing,
including single-mode squeezing, two-mode squeezing, sum
squeezing and difference squeezing [49,50]. Here, we study
the two-mode squeezing level in which the correlation between
modes starts to play a role. For a two-mode system, the
quadrature-phase amplitudes can be expressed by X = (XA +
XB)/

√
2 and P = (PA + PB)/

√
2 ([X,P ] = 1), respectively.

Based on Eqs. (2) and (8), it is easy to see that 〈a〉 = 〈a†〉 =
〈b〉 = 〈b†〉 = 0 and 〈a2〉 = 〈a†2〉 = 〈b2〉 = 〈b†2〉 = 0 as well
as 〈ab†〉 = 〈a†b〉 = 0, which lead to 〈X〉 = 0 and 〈P 〉 = 0 .
Thus, the covariances of operators X and P in the PA-TMSVs
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or PS-TMSVs can be written, respectively, as

(
X)2 = 〈a†a〉 + 〈b†b〉 + 2〈ab〉 + 1

2
(28)

and

(
P )2 = 〈a†a〉 + 〈b†b〉 − 2〈ab〉 + 1

2
. (29)

According to quantum mechanics, operators X and P satisfy
the uncertainty relation (
X)2(
P )2 ≥ 1/4. When (
X)2 <

1/2 or (
P )2 < 1/2, we can say there exists squeezing in the
X or P direction. Compared with Eqs. (18), (24), and (25), we
see that the EPR correlation of non-Gaussian entangled states
is four times as much as that of the corresponding covariance
of operator P , i.e.,

ϒ(ρ) = 4(
P )2, (30)

which indicates that the conditions of squeezing and en-
tanglement become identical, which is an interesting result.
Therefore, the variations of the two-mode squeezing level for
both non-Gaussian states with different values of (k,l ) yield
the same law, as shown in Figs. 2 and 3. The subtraction
operation can enhance the degree of the two-mode squeezing,
particularly in the case of the symmetric operation. However,
photon additions always weaken the squeezing level of the
TMSVs. According to Eqs. (19) and (26), one can see that
one-mode photon-addition and photon-subtraction operations
will diminish the two-mode squeezing level and the EPR
correlation of the TMSVs.

C. Sum squeezing

Sum and difference squeezing are both higher-order, two-
mode squeezing effects [38,51]. For two arbitrary modes A and
B, the sum squeezing is associated with a so-called two-mode
quadrature operator Vϕ of the form [38]

Vϕ = 1
2 (eiϕa†b† + e−iϕab), (31)

where ϕ is an angle made by Vϕ with the real axis in the
complex plane. A state is said to be sum squeezed for a ϕ if

〈(
Vϕ)2〉 < 1
4 〈a†a + b†b + 1〉. (32)

From Eq. (32), one can define the degree of sum squeezing S

in the form of normally ordered operators as follows:

S = 4〈(
Vϕ)2〉 − 〈a†a + b†b + 1〉
〈a†a + b†b + 1〉 . (33)

Substituting Eq. (31) into Eq. (33), we obtain S as

S = 2〈a†ab†b〉 + 2Re(e−2iϕ〈a2b2〉) − 4Re2(e−iϕ〈ab〉)
〈a†a + b†b + 1〉 .

(34)
Then its negative value in the range [−1,0] indicates sum
squeezing (or higher-order nonclassicality). It is clear that S

has a lower bound equal to −1. Hence, the closer the value of S

to −1, the higher the degree of sum squeezing is. When l = 0
(or k = 0 ), the optimal degree of the sum squeezing of both
the PS-TMSVs and PA-TMSVs reduces to that of the TMSVs

 

S

r

FIG. 4. (Color online) The sum squeezing degree S as a function
of the squeezing parameter r for different states. The three upper
lines correspond to the PA-TMSVs with (1,1) (green dotted line),
(2,2) (purple dashed line), and (5,5) (blue dot-dashed line). The three
lower lines correspond to the PS-TMSVs with (1,1) (green dotted
line), (2,2) (purple dashed line), and (5,5) (blue dot-dashed line).
The intermediate black curve corresponds to the TMSVs.

at ϕ = π/2,

Sopt = − (e2r − 1)2

(e4r + 1)
, (35)

which is another interesting result. Thus, one-mode photon
subtraction or addition does not change the sum squeezing of
the TMSVs.

The sum squeezing of the PS-TMSVs is also optimized
at ϕ = π/2. Our numerical analysis shows that the sum
squeezing of the PS-TMSVs is always larger than that of
the TMSVs, and the optimal sum squeezing is obtained for
symmetric operations, as shown in Fig. 4. Thus, the degree of
the sum squeezing can be improved by the photon subtraction,
particularly in the case of symmetric operations. On the other
hand, the photon addition weakens the sum squeezing.

In this section, we demonstrate that symmetric photon
subtractions can enhance EPR correlation, the two-mode
squeezing, and the sum squeezing of the TMSVs. And these
quantities can be better improved with a large number of
symmetric photon subtractions in the low-initial-squeezing
regime. However, photon addition does not enhance these
quantities at all, excluding the entanglement entropy.

IV. QUANTUM TELEPORTATION USING NON-GAUSSIAN
ENTANGLED STATES

Bennet et al. [52] first proposed the idea of quantum
teleportation in the discrete variable regime. After that,
Vaidman [25] put forward the idea of continuous-variable
quantum teleportation. Later, the quantum-optical protocol for
the continuous-variable teleportation of the phase-quadrature
components of a light was proposed by Braunstein and
Kimble [26]. The best possible fidelity in teleporting a coherent
state without entangled resources is 1/2 [53], so the fidelity
over the classical bound 1/2 may be considered as a success for
continuous-variable quantum teleportation. Based on the VBK
protocol, the perfect teleportation can occur with an infinitely
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entangled resource that exhibits an ideal EPR correlation [i.e.,

2(XA − XB) + 
2(PA + PB) → 0].

The success probability to teleport a pure quantum state
can be described through the teleportation fidelity, F =
Tr[ρinρout], which is a measure of how close it is between
the initial input state and the final (mixed) output quantum
state. In the formalism of the characteristic functions of the
continuous variable, the fidelity can be written as [54]

F =
∫

d2α

π
χin(−α)χout(α), (36)

where χout(α) = χin(α)χE(α∗,α) [55] is the characteristic
function of the output teleported state. Here, χE(α∗,α) =
Tr[D1(α)D2(β)ρE] is the characteristic function of an en-
tangled resource, and χ in(α) = Tr[D(α)ρin] is that of the
input state. In the following, we consider the non-Gaussian
entangled states as entangled resources to teleport a coherent
state and a squeezed vacuum state in the standard VBK
teleportation protocol, respectively.

A. Teleporting a coherent state

Let us first consider the behavior of the fidelity for input of
a coherent state |β〉, whose characteristic function is

χcoh(α) = exp
[− 1

2 |α|2 + 2iIm[αβ∗]
]
. (37)

Using the same approach as that used to derive Eq. (2), the
characteristic functions of the PS-TMSVs and the PA-TMSVs
read, respectively,

χps(α,β) = χ (α,β)∂2k+2l

Nk,l∂f k∂sk∂t l∂τ l
e(f s+tτ ) sinh2 r+(f t+sτ ) sinh 2r

2

×ef (α sinh2 r−β∗ sinh 2r
2 )−s(α∗ sinh2 r−β sinh 2r

2 )

×et(β sinh2 r−α∗ sinh 2r
2 )

×e−τ (β∗ sinh2 r−α sinh 2r
2 )|f,s,t,τ=0 (38)

and

χpa(α,β) = χ (α,β)∂2k+2l

Ck,l∂f k∂sk∂t l∂τ l
e(f s+tτ ) cosh2 r+(f t+sτ ) sinh 2r

2

×ef (α cosh2 r−β∗ sinh 2r
2 )−s(α∗ cosh2 r−β sinh 2r

2 )

×et(β cosh2 r−α∗ sinh 2r
2 )

×e−τ (β∗ cosh2 r−α sinh 2r
2 )|f,s,t,τ=0, (39)

where χ (α,β) is the characteristic function of the TMSVs,

χ (α,β) = e− cosh 2r
2 (|α|2+|β|2)+(αβ+α∗β∗) sinh 2r

2 . (40)

It can be seen that Eqs. (38) and (39) substantially differ for
the exchange of the hyperbolic coefficients. Upon substituting
these characteristic functions into Eq. (36), we can work out the
fidelities for teleporting a coherent state. For the PS-TMSVs,
we have the teleportation fidelity of a coherent state,

Fps = N−1
k,l 2kk!l!

e−2r + 1

[
(e2r − 1)2

4e2r + 4

]l

P
l−k,0
k

(
e4r + 2e2r + 5

4e2r + 4

)
,

(41)

where P
(α,β)
n (x) is the Jacobi polynomial. Different from that

work of Ref. [56], here we obtain the general expression of the

fidelity for teleporting a coherent state. For the PA-TMSVs,
the teleportation fidelity of a coherent state can be written in a
simple form,

Fpa = (k + l)!

4k+lCk,l

(e2r + 1)k+l

e−2r + 1
, (42)

which is a special case of that in Ref. [57]. It can be seen that the
fidelities depend on the squeezing parameter r and the number
of operations (k,l). Note that the fidelity is independent of the
amplitudes of the coherent state; thus Eqs. (41) and (42) are
just the fidelity for teleporting a vacuum state. In the case of
one-mode operations (for example l = 0), Eqs. (41) and (42)
reduce to

F ′ =
(

1

e−2r + 1

)k+1

, (43)

which is always smaller than that of the TMSVs, for any values
of the squeezing parameter r . Therefore, one-mode operations
will also diminish the fidelity of teleporting a coherent state.

Now, we can numerically study the behavior of the fidelity
for teleporting a coherent state by making use of the PS-
TMSVs and the PA-TMSVs. In Fig. 5(a), we plot the fidelity

F

r

F

r

(a)

(b)

FIG. 5. (Color online) Fidelity as a function of the squeezing
parameter for different states. The three upper lines correspond to the
PS-TMSVs with (1,1) (green dotted line), (2,2) (purple dashed line),
and (3,3) (blue dot-dashed line). The three lower lines correspond to
the PA-TMSVs with (1,1) (green dotted line), (2,2) (purple dashed
line), and (3,3) (blue dot-dashed line). The intermediate solid curve
corresponds to the TMSVs. (a) The single-mode squeezing parameter
ε = 0.0; (b) ε = 0.6.
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FIG. 6. (Color online) Fidelity as a function of the squeezing
parameter for different states: (a) PS-TMSVs and (b) PA-TMSVs.

for input of a coherent state in the case of k = l, i.e., the
symmetric operation. From Fig. 5(a), we can see that the
fidelity for the PS-TMSVs is always larger than that of
the TMSVs, while the fidelity for the PA-TMSVs is always
smaller than that of the TMSVs, even smaller than 1/2 in the
low-squeezing regime. For the asymmetric operation (k 
= l),
our numerical analysis shows that both photon subtraction and
addition generally weaken the fidelity, as shown in Fig. 6. Thus,
the optimal fidelity is arrived at for symmetric operations.

In the VBK protocol of quantum teleportation of continuous
variables, the fidelity of teleported states depends on the EPR
correlations. Thus, for teleporting a coherent state, the higher
EPR correlation means the higher fidelity. Comparing the
teleportation fidelity with the EPR correlation in Figs. 2 and 4,
one can observe that the EPR correlation and the fidelity can
be enhanced by the symmetric photon-subtraction operation in
the whole region of the squeezing parameter r . In addition, the
teleportation fidelity for both the PS-TMSVs and PA-TMSVs
could be beyond the classical limit of 1/2 without the EPR
correlation, as shown in Figs. 2 and 4. Thus, the teleportation
fidelity, which is larger than 1/2, does not guarantee the
existence of the EPR correlation.

B. Teleporting a squeezed vacuum state

The characteristic function of the squeezed Gaussian input
state, |ε〉 = S(ε)|0〉 with the single-mode squeezing operator
S(ε) = exp[ε(a†2 − a2)/2] (ε is the single-mode squeezing

parameter), reads

χin(α) = exp

[
−cosh 2ε

2
|α|2 + (α2 + α∗2)

sinh 2ε

4

]
. (44)

With the help of the integral formula∫
d2z

π
eζ |z|2+ξz+ηz∗+f z2+gz∗2 = 1√

ζ 2 − 4fg
e

−ζ ξη+ξ2g+η2f

ζ2−4fg ,

(45)

whose convergent condition is Re(ζ ± f ± g) <

0 and Re( ζ 2−4fg

ζ±f ±g
) < 0, we can work out the fidelity for

teleporting a squeezed state by using the PS-TMSVs

Fps = F0

Nk,l

∂2k+2l

∂f k∂sk∂t l∂τ l

× exp

{
(f s + tτ ) sinh2 r + (f t + sτ )

sinh 2r

2

+ (f − τ )(t − s)(e−2r − 1)2(e−2r + cosh 2ε)

4(2e−2r cosh 2ε + e−4r + 1)

+ [(f − τ )2 + (t − s)2](e−2r − 1)2 sinh 2ε

8(2e−2r cosh 2ε + e−4r + 1)

}∣∣∣∣
f,s,t,τ=0

,

(46)

where F0 is the fidelity for the TMSVs,

F0 =
√

1

2e−2r cosh 2ε + e−4r + 1
. (47)

It can be seen that the fidelity is not only dependent on the
squeezing parameter r and the number of subtracted photons
(k,l), but also on the single-mode squeezing parameter ε.
Because of the arbitrary order partial derivatives in Eq. (46),
finding a general expression presents challenges. When the
squeezing parameter ε = 0, Eq. (46) reduces to Eq. (41), i.e.,
the fidelity of a coherent state. For the PA-TMSVs, we obtain
the fidelity of teleportation of a squeezed vacuum state as

Fpa = F0

Ck,l

∂2k+2l

∂f k∂sk∂t l∂τ l

× exp

{
(f s + tτ ) cosh2 r + (f t + sτ )

sinh 2r

2

+ (f − τ )(t − s)(e−2r + 1)2(e−2r + cosh 2ε)

4(2e−2r cosh 2ε + e−4r + 1)

+ [(f − τ )2 + (t − s)2](e−2r + 1)2 sinh 2ε

8(2e−2r cosh 2ε + e−4r + 1)

}∣∣∣∣
f,s,t,τ=0

.

(48)

In the case of ε = 0, Eq. (48) reduces to a simple form
expressed by Eq. (42).

For the one-mode operation, Eqs. (46) and (48) reduce to

F ′ = F 2k+1
0

(e−2r cosh 2ε + 1)−k

[k/2]∑
m

k!
[

sinh 2ε
(cosh 2ε+e2r )

]2m

22m(m!)2(k − 2m)!
. (49)
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F

FIG. 7. (Color online) Fidelity as a function of the single-mode
squeezing parameter ε with the two-mode squeezing r = 0.3 for
different states. The three upper lines correspond to the PS-TMSVs
with (1,1) (green dotted line), (2,2) (purple dashed line), and (3,3)
(blue dot-dashed line). The three lower lines correspond to the PA-
TMSVs with (1,1) (green dotted line), (2,2) purple dashed line),
and (3,3) (blue dot-dashed line). The intermediate black solid curve
corresponds to the TMSVs.

Noting that the new expression of Legendre polynomials [58]
is

Pk(x) = xk

[k/2]∑
m=0

k!
(
1 − 1

x2

)m

22m(m!)2(k − 2m)!
, (50)

Eq. (49) can be written as

F ′ = Fk+1
0 Pk

[
(e−2r cosh 2ε + 1)√

2e−2r cosh 2ε + e−4r + 1

]
. (51)

Because the factor Fk
0 Pk(x) in Eq. (51) is always smaller than

1 for any values of both squeezing parameter r and ε, one-
mode photon subtraction and photon addition also diminish the
teleportation fidelity of a squeezed vacuum state. Obviously,
when ε = 0, Eq. (51) reduces to Eq. (43), which is the fidelity
of teleporting a coherent state.

Compared with the coherent state, the fidelity of teleporting
a squeezed vacuum state decreases with its squeezing param-
eter ε, as shown in Figs. 5(b) and 7. For symmetric operation
(k = l), the fidelity for the PS-TMSVs is always larger than
that of the TMSVs when teleporting a squeezed vacuum state,
while the fidelity for the PA-TMSVs is generally smaller than
that of the TMSVs, even smaller than 1/2 in the low-squeezing
regime. Only in the large-squeezing regime can the fidelity for
the PA-TMSVs be larger than that of the TMSVs, as shown in
Fig. 5(b). For the asymmetric operation (k 
= l), both photon
addition and subtraction generally weaken the fidelity, which is
similar to that behavior of teleporting a coherent state as shown
in Fig. 6. Thus, the optimal fidelity of teleporting a squeezed
vacuum state is also arrived at for symmetric operations.

Although the numerical analysis shows that it is always
better to perform addition rather than subtraction in order
to increase the entanglement, only non-Gaussian entangled
states generated by symmetric photon subtraction can result
in the advantage in the teleportation fidelity of a coherent
or a squeezed vacuum state, compared to just using the

TABLE I. The fidelity varies for some different PS-TMSVs
given the EPR correlation parameter ϒ(ρ) = 1.0. The required
initial-squeezing parameter r and the corresponding von Neumann
entropies are also presented.

(k,l) (2,2) (1,1) (0,0) (1,0) (2,1) (2,0)

r 0.1226 0.1798 0.3462 0.6931 0.5000 0.8959
Fps 0.6632 0.6637 0.6665 0.6400 0.6379 0.6300
Ek,l

ps 0.5841 0.5755 0.5662 2.094 2.0925 3.1624

corresponding Gaussian TMSVs with the same initial-
squeezing parameter r . It has been known that in the non-
Gaussian case, the teleportation fidelity becomes a highly
complicated function of three variables: the entanglement,
the degree of non-Gaussianity, and the degree of Gaussian
affinity [7,8,33]. Thus the optimal teleportation fidelity does
not, in general, correspond to the maximal entanglement. In
the following, we consider the PS-TMSVs as an entangled
resource to teleport a coherent state. In Table I, we fix
the EPR correlation parameter ϒ(ρ) = 1.0, and then we
can obtain the corresponding initial-squeezing parameter and
the teleportation fidelity for different (k,l), as well as the
von Neumann entropy. From Table I, we can see that the
non-Gaussian entangled states generated by the symmetric
subtraction almost hold the same fidelity as the fixed EPR
correlation. The fidelity for the TMSVs is just a little higher
than that for the PS-TMSVs. Although the optimal entangled
resource for the teleportation of a coherent state via the ideal
VBK scheme actually reduces to the TMSVs, it is at a price,
i.e., the need of the higher-initial-squeezing parameter. In
addition, Table I clearly shows again that stronger entangle-
ment does not mean higher teleportation fidelity even in the
multiple-photon-subtraction scheme, which is an important
illustration of the general results for the squeezed Bell states
that coincides with photon-subtracted states [7]. In the limit
of infinite squeezing, since the TMSVs tends to become the
ideal EPR state with perfect EPR correlations, the fidelity
of teleportation also approaches unity. Up to the present, the
largest achievable two-mode squeezing in a stable optical
configuration is about r ≈ 1.15 (i.e., about 10 dB) [59]. Hence,
techniques that improve the performance of the teleportation
without demanding higher initial squeezing are still useful in
quantum information. In this regard, for a given two-mode
squeezing parameter r , the TMSVs which is engineered by
non-Gaussian operation, such as symmetric multiple-photon
subtraction, contains more of the two-mode squeezing or holds
a higher EPR correlation. Thus non-Gaussian entangled states
may still be advantageous for the quantum teleportation.

On the other hand, it may be interesting to investigate
the performance of different non-Gaussian entangled states
for teleporting a Gaussian state at the fixed entanglement
entropy, rather than at the fixed squeezing parameter. When
making the comparison at the fixed entanglement entropy,
Kogias et al. [60] found in all considered cases that within the
general squeezed Bell-like class, the optimal resource state
for teleportation of input ensembles of Gaussian states via
the gain-optimized VBK scheme actually does always reduce
to the TMSVs. In Fig. 8, we draw the teleportation fidelity
of coherent states as a function of the EPR correlation and

063832-9



SHUAI WANG, LI-LI HOU, XIAN-FENG CHEN, AND XUE-FEN XU PHYSICAL REVIEW A 91, 063832 (2015)

     

0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

 

F

EPR

nE

F

(a)

(b)

FIG. 8. (Color online) Fidelity of coherent teleportation with the
PS-TMSVs entangled resource (a) at the fixed EPR parameter and
(b) at the fixed entanglement entropy. These lines correspond to the
PS-TMSVs with (0,0) (black line), (1,1) (green dotted line), (2,2)
(purple dashed line), and (3,3) (blue dot-dashed line).

the von Neumann entropy, respectively. Figure 8(a) shows
that if the EPR correlation parameter ϒ(ρ) is smaller than a
threshold value (about 0.8), the optimal entangled resource
for the teleportation of a coherent state via the ideal VBK
scheme reduces to the PS-TMSVs generated by symmetric
operation. When ϒ(ρ) > 0.8, the optimal entangled resource
reduces to the TMSVs, for example, ϒ(ρ) = 1.0 in Table I. On
the contrary, at fixed the von Neumann entropy, the optimal
entangled resource does always reduce to the TMSVs, as
shown in Fig. 8(b), which is consistent with that in Ref. [60].
From those results in Refs. [7,8,33,60] and our results in the
present work, it is clearly seen that such conclusion is strongly
dependent on the terms of comparison. This is mainly because
in the non-Gaussian case the teleportation fidelity depends
not only on the entanglement, but also on the degree of
non-Gaussianity and the degree of Gaussian affinity [7,8,33].
For an entangled Gaussian resource, the teleportation fidelity
depends only on the entanglement, and both quantities are in
an exact one-to-one correspondence [24].

V. CONCLUSIONS

In summary, we have shown that the symmetric
multiple-photon subtraction (k = l) can enhance the EPR

correlation, the quadrature squeezing, and the teleportation
fidelity of a two-mode squeezed vacuum state (TMSVs) in
the whole region of the initial-squeezing parameter r . Those
enhancements are more distinct in the low-initial-squeezing
regime and increase with the number of subtracted photons.
The asymmetric operation generally diminishes the EPR
correlation, the two-mode squeezing, the sum squeezing,
and the teleportation fidelity, although it can enhance the
entanglement. For any values of (k,l), the multiple-photon
addition can better increase the degree of entanglement while
it diminishes the EPR correlation, the two-mode squeezing,
the sum squeezing, and the fidelity for teleporting a coherent
state at the same time. Thus, in the multiple-photon-subtraction
or multiple-photon-addition schemes, our results clearly show
again that the entanglement enhancement does not imply that
the teleportation fidelity must be improved. The reason is
that the improvement of the fidelity is due to a balancing
of three different features: the entanglement content of the
resources, their amount of non-Gaussianity, and the degree of
Gaussian affinity [7]. When considering the case of teleporting
a squeezed vacuum state |ε〉, the symmetric photon addition
makes somewhat of an improvement on the fidelity for large-
squeezing parameters r and ε. For both the PS-TMSVs and
PA-TMSVs, the four quantities, including the optimal entan-
glement, the optimal EPR correlation, the optimal quadrature
squeezing, and the optimal teleportation fidelity, always prefer
symmetrical arrangements of photon addition or subtraction
on the two modes. Our results indicate that the symmetric
multiple-photon subtraction may be more useful than the
photon addition in continuous-variable quantum information
processing.

At present, the best experimentally realized non-Gaussian
entangled resource for continuous-variable teleportation is the
photon-subtracted squeezed states [6,19]. In a realistic photon-
subtraction scenario, the finite transmission coefficient of the
beam splitter and the losses in the bosonic channels, as well
as the imperfection in photon-detection techniques, have a de-
grading effect on the output entanglement and the fidelity of the
coherent teleportation [3,5,10,11]. Due to these imperfections
in these kinds of systems, only when the initial squeezing is
below a certain value can the symmetric subtraction be used to
improve the entanglement, the EPR correlation, and the fidelity
of the coherent teleportation. In the large-initial-squeezing
regime, those imperfections in the photon-subtraction scheme
can make idealistic models qualitatively wrong: for example,
entanglement may decrease instead of increasing and EPR
correlations may degrade instead of improving (as shown in
Refs. [3,5,10,11]). On the other hand, with the development
of the techniques of quantum-state engineering, it can be
possible to minimize those imperfections, particularly those
imperfections in the lossy transmission channels and the
photon-detection techniques. Recently, Dell’Anno et al. [61]
introduced and discussed a novel set of tunable non-Gaussian
entangled resources which contains the theoretical squeezed
Bell state, as well as an efficient scheme for their experimental
generation. They find that optimized tunable non-Gaussian
resources can continue to outperform the corresponding
Gaussian resources in the realistic scenario, and even extend to
the large-initial-squeezing regime. Therefore, our theoretical
results derived in terms of the idealistic multiple-photon-
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subtraction and multiple-photon-addition schemes are still
meaningful.

In addition, we have analytically proved that the one-
mode multiple-photon-subtracted TMSVs is equivalent to
that of the one-mode multiple-photon-added one. For the
one-mode operation, we have derived analytical expressions
of the EPR correlation, two-mode squeezing, sum squeezing,
and the teleportation fidelity, respectively. These analytical
expressions clearly represent that one-mode multiple-photon
operations do not enhance them at all, and even diminish
them. Finally, we have proved that the EPR correlation of
the PA-TMSVs and PS-TMSVs is four times as much as
that of the corresponding quantum fluctuation (
P )2, which
indicates that the conditions of the two-mode squeezing and
the entanglement become identical, which is an interesting
result.
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APPENDIX: DERIVATION OF EQS. (2) AND (8)

In the Fock space, the TMSVs can be written as

S2(ξ )|00〉 = 1

cosh r
exp[a†b† tanh r]|00〉. (A1)

The expectation value of a general product of operators
apa†qbhb†j in the TMSVs reads

Cp,q,h,j = T r(a†qb†j S2(ξ )|00〉〈00|S†
2(ξ )apbh). (A2)

Substituting Eq. (A1) into (A2) and inserting the completeness
relation of the two-mode coherent state, as well as using the
integral formulas∫

d2z

π
exp[ζ |z|2 + ξz + ηz∗] = − 1

ζ
exp

[
−ξη

ζ

]
, (A3)

whose convergent condition is Re(ζ ) < 0, after doing straight-
forward calculation, we obtain

Cp,q,h,j = 1

cosh2 r

∫
d2z1d

2z2

π2
z
p

1 zh
2z

∗q

1 z
∗j

2 exp[tanh r(z∗
1z

∗
2 + z1z2) − (|z1|2 + |z2|2)]

= 1

cosh2 r

∫
d2z1d

2z2

π2

∂p+q+h+j

∂f p∂sq∂th∂τ j
exp[−(|z1|2 + |z2|2) + f z1 + sz∗

1 + tz2 + τz∗
2 + tanh r(z∗

1z
∗
2 + z1z2)]|f,s,t,τ=0

= ∂p+q+h+j

∂f p∂sq∂th∂τ j
exp

[
(f s + tτ ) cosh2 r + (f t + sτ )

sinh 2r

2

]∣∣∣∣
f,s,t,τ=0

. (A4)

By the binomial theorem, we further obtain Eq. (2),

Cp,q,h,j = ∂q+h

∂sq∂th

(
s cosh2 r + t

sinh 2r

2

)p(
s

sinh 2r

2
+ t cosh2 r

)j ∣∣∣∣
s,t=0

=
min[p,h]∑

m

p!q!h!j !(cosh2 r)p+h−2m

m!(p − m)!(h − m)!

(
sinh 2r

2

)j−h+2m
δp+j,q+h

(j − h + m)!
. (A5)

Next, the expectation value of a general product of operators a†qapb†j bh in the TMSVs reads

Np,q,h,j = Tr[apbhS2(ξ )|00〉〈00|S†
2(ξ )a†qb†j ]. (A6)

By using the same approach as that to derive Eq. (A5), substituting Eq. (A1) into (A6), and inserting the completeness relation
of the two-mode coherent state for two times, we have

Np,q,h,j = ∂p+q+h+j

∂f p∂sq∂th∂τ j
exp

[
(f s + tτ ) sinh2 r + (f t + sτ )

sinh 2r

2

]∣∣∣∣
f,s,t,τ=0

. (A7)

Similarly, we finally obtain Eq. (6),

Np,q,h,j =
min[p,h]∑

m

p!q!h!j !(sinh2 r)p+h−2m

m!(p − m)!(h − m)!

(
sinh 2r

2

)j−h+2m
δp+j,q+h

(j − h + m)!
. (A8)
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