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Quantum spectra of Raman photon pairs from a mesoscopic particle
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Quantum Langevin formalism with noise operators is used to provide quantum descriptions of photon pairs
(the Stokes and anti-Stokes fields) emitted by a mesoscopic spherical particle composed of quantum particles
in a double Raman configuration. The spectra of the fields obtained are sensitive to the dimension of the
microsphere and can be controlled by pump and control laser fields. Spectral peaks due to quantum coherence
are Stark shifted by the laser fields experiencing autofocusing inside the spherical particle, causing broadening
of peaks as the size of the microsphere increases. The antinormal-order spectrum is found to be identical to the
normal-order spectrum. The anti-Stokes spectrum is identical to the Stokes spectrum when the linear dispersion
is neglected. Frequency-dependent dielectric functions of the Stokes and anti-Stokes spectra corresponding
to the linear dispersions of the particle yield narrow morphology-dependent resonance gain peaks at certain
frequencies of the Stokes and anti-Stokes spectra that depend not only on the particle size but also on the angle of
observation.
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I. INTRODUCTION

Quantum properties of photon pairs in the double Raman
scheme [1] have been studied in various systems such as single
atoms [2], two atoms with dipole-dipole interaction [3], an
array of atoms [4], a single-atom two-photon laser [5], and a
one-dimensional amplifier [6]. These systems are relevant for
generation of nonclassical photons in quantum information
[7]. Recent progress in nanotechnology has stretched the
applicability of quantum entanglement to nanophotonics [8].
The studies of quantum effects now extend to nanoparticles as
well as microparticles [9].

Coherent Raman scattering of light by microparticles
composed of atoms with quantum coherence has been studied
using semiclassical theory [10] in the interest of enhancing
backscattered signal. Also, optical bistability in a similar
system has been investigated [11]. In particular, light scattered
from spherical microparticles has prompted many theoretical
studies that encompass areas such as stimulated emission
processes [12], electronic Raman scattering [13], Raman
coupling coefficients [14], and second-harmonic generation
[15].

In this work we use quantum Langevin formalism [16] to
describe the interactions of particles with pump and control
laser fields inside a small spherical particle with arbitrary
dimension (Fig. 1). This formalism correctly expresses the
scattered Stokes and anti-Stokes electric fields as quantum
operators in terms of the noise operators [17], which enables us
to compute the quantum-mechanical expressions for field-field
correlation functions in a transparent manner. In particular, we
obtain the spectra [18] for both normal and antinormal-order
expressions of the Stokes and anti-Stokes electric fields. The
normal-order spectrum, being the Fourier transform of the
first-order correlation function G(1)(r,t), plays an essential role
in the description of the experimentally observed quantities
such as photoelectron statistics.

The differences between the normal and antinormal-order
correlations can be understood as follows. Normal-order
correlation functions are utilized more frequently than the

antinormal-order ones in the photodetection theory due to
the ubiquity of the photon detection experiment based on
the photoelectric effect [19]. However, there exists another
possible photodetection method using the quantum counter
introduced by Mandel [20], which can only be described by
the antinormal-order correlation functions. Such a photon-
counting device functions by stimulated emission rather than
by absorption of photons and would be useful when the
average number of photons is not too small. Thus, it is
the creation operator instead of the annihilation operator
that plays the central role. A comparison between the two
distinct correlations is interesting in terms of the photodetected
spectrum.

II. QUANTUM LANGEVIN FORMALISM
FOR COHERENCES

The quantum Langevin formalism for quantum particles
with the double Raman scheme in four levels a–d gives 16
coupled equations. If the Stokes Ês and anti-Stokes fields Êa

are weak the populations and the coherences σ̂dc and σ̂ab can
be approximated as complex numbers. This enables us to solve
just the following four coupled equations

We have the closed coupled equations for the slowly varying
atomic envelope operators of the coherences p̂ac = σ̂ace

−iνa t ,
p̂ad = σ̂ade

−iνcs t , p̂bc = σ̂bce
−iνact , and p̂bd = σ̂bde

iνs t , where
νij = νi − νj and νi (i ∈ p,s,c,a) are the carrier frequen-
cies of the pump, Stokes, control, and anti-Stokes fields,
respectively, which satisfy νp + νc = νs + νa for the closed
(parametric four photons) transitions

d

dt
p̂ac = −Tacp̂ac − ig∗

a · Ẽ†
a(p̂cc − p̂aa)

− i(�∗
c p̂bc − �∗

pp̂ad ) + e−iνa t F̂ac, (1)

d

dt
p̂ad = −Tadp̂ad + i(p̂abgs · Ẽs − g∗

a · Ẽ†
ap̂cd )

+ i(�pp̂ac − �∗
c p̂bd ) + e−iνcs t F̂ad , (2)
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FIG. 1. (Color online) Illustration of a spherical particle com-
posed of four-level atoms interacting with pump �p and control
�p lasers (solid arrows) and emitting quantized Stokes Ês and
anti-Stokes Êa fields (wavy arrows) with their respective frequencies
νq (q = p,s,c,a).

d

dt
p̂bc = −Tbcp̂bc − i(p̂dcgs · Ẽs − g∗

a · Ẽ†
ap̂ba)

− i(�cp̂ac − �∗
pp̂bd ) + eiνca t F̂bc, (3)

d

dt
p̂bd = −T ∗

dbp̂bd + i(p̂bb − p̂dd )gs · Ẽs

+ i(�pp̂bc − �cp̂ad ) + eiνs t F̂
†
db, (4)

with F̂
†
db = F̂bd and the complex decoherences

Tac = i�a + γac, (5)

Tad = i(�c − �s) + γad, (6)

Tbc = i(�p − �s) + γbc, (7)

Tdb = i�s + γdb, (8)

with the detunings �p = νp − ωdc, �s = νs − ωdb, �c =
νc − ωab, and �a = νa − ωac of the pump, Stokes, control,
and anti-Stokes fields, respectively. As before, the subscripts
p, s, c, and a stand for pump, Stokes, control, and anti-Stokes
fields, respectively. Also, ωac simply means the transition
frequency between energy levels a and c and the same
method of definition applies for the other cases. Here we
may have the spatial dependence of the pump and control
laser fields but neglect the temporal dependence, i.e., �p

and �c are constant in time. Hence, the Rabi frequencies for
the lasers l = p,c are �l(r) = gl · Ẽl(r) = ∑

j=x,y,z gljElj (r),
where glj = ℘lj /� with ℘lj as the j th component transition
dipole moment. To solve for p̂ac(r,ω) and p̂bd (r,ω) we
assume p̂aa − p̂cc ≈ wst

cc = 〈p̂aa − p̂cc〉, p̂dd − p̂bb ≈ wst
bb =

〈p̂dd − p̂bb〉, p̂ab ≈ 〈p̂st
ab〉 = pst

ab, and p̂dc ≈ 〈p̂st
dc〉 = pst

cd to be
the expectation values (the populations and the coherences
at the laser transitions). After the Fourier transformation
F {· · · } = ∫ ∞

−∞{· · · }eiωtdt , the four coupled equations become

p̂ac(r,ω) = σ̂ac(ω − νa) = 1

Tac(ω)

[
iÃ†(ω)wst

cc − i�∗
c p̂bc(ω) + i�∗

pp̂ad (ω) + Ĝac(ω)
]
, (9)

p̂ad (r,ω) = σ̂ad (ω − νcs) = 1

Tad (ω)

[
iS̃(ω)pst

ab − iÃ†(ω)pst
cd + i�pp̂ac(ω) − i�∗

c p̂bd (ω) + Ĝad (ω)
]
, (10)

p̂bc(r,ω) = σ̂bc(ω − νac) = 1

Tbc(ω)

[−iS̃(ω)pst
dc + iÃ†(ω)pst

ba − i�cp̂ac(ω) + i�∗
pp̂bd (ω) + Ĝbc(ω)

]
, (11)

p̂bd (r,ω) = σ̂bd (ω + νs) = 1

T ∗
db(ω)

[−iS̃(ω)wst
bb + i�pp̂bc(ω) − i�cp̂ad (ω) + Ĝbd (ω)

]
, (12)

where

Q̃(r,ω) =
∫ ∞

−∞
Q̃(r,t)eiωtdt =

∫ ∞

−∞
Ô(r,t)eiωt e−iνx t dt = Ô(r,ω − νx),

with Q̃ ∈ Ẽs,Ẽ
†
a,p̂x,Ĝx (x ∈ ac,ad,bc,bd) the Fourier transforms of the original operators Ô ∈ Ês,Ê

†
a,σ̂x,F̂x with the rapidly

varying phases νxt . Therefore, the conjugates are Q̂†(r,ω) = Ô†[r, − (ω − νx)]. We define S̃ = gs · Ẽs = ∑
j=x,y,z gsj Ẽsj and

Ã = ga · Ẽa = ∑
j=x,y,z gaj Ẽaj , with gsj = 1

�
℘db,j and gaj = 1

�
℘ac,j , and the complex decoherences after Fourier transformation

are Tx(ω) = Tx − iω and T ∗
db(ω) = T ∗

db − iω.
Thus we have the solutions⎛

⎜⎝
p̂ac

p̂ad

p̂bc

p̂bd

⎞
⎟⎠ = −

⎛
⎜⎜⎝

−Tac(ω) i�∗
p −i�∗

c 0
i�p −Tad (ω) 0 −i�∗

c

−i�c 0 −Tbc(ω) i�∗
p

0 −i�c i�p −T ∗
db(ω)

⎞
⎟⎟⎠

−1⎛
⎜⎜⎝

iÂ†wst
cc + Ĝac

iŜpst
ab − iÂ†pst

cd + Ĝad

−iŜpst
dc + iÂ†pst

ba + Ĝbc

−iŜwst
bb + Ĝbd

⎞
⎟⎟⎠. (13)

At this point, we note that the pump and control laser fields
inside the microparticle depend on the spatial coordinates of
the particle. This is due to refraction and focusing by the

geometry of the particle and it is taken into account by the
Lorentz-Mie theory [10,21], assuming that the incident laser
fields are x polarized. In particular, the coherences associated
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with the Stokes and anti-Stokes fields are, respectively,

p̂bd (r,ω) = −
⎛
⎝ 4∑

j=1

M4j Ĝj + XsÂ
† + GsS̃

⎞
⎠, (14)

p̂ac(r,ω) = −
⎛
⎝ 4∑

j=1

M1j Ĝj + GaÂ
† + XaS̃

⎞
⎠, (15)

with the coefficients

Gs = i
(
pst

abM42 − pst
dcM43 − wst

bbM44
)
, (16)

Ga = i
(
wst

ccM11 − pst
cdM12 + pst

baM13
)
, (17)

Xs = i
(
wst

ccM41 − pst
cdM42 + pst

baM43
)
, (18)

Xa = i
(
pst

abM12 − pst
dcM13 − wst

bbM14
)
, (19)

where Ĝ1 = Ĝac, Ĝ2 = Ĝad , Ĝ3 = Ĝbc, Ĝ4 = Ĝbd , and M is
the inverse of the 4 × 4 matrix in Eq. (13) above that can be
obtained analytically.

III. STOKES AND ANTI-STOKES ELECTRIC FIELDS

We now couple the quantum coherence operators of the
quantum particles to the electric-field operators of the Stokes
and anti-Stokes quantum fields Êf (f ∈ s,a)(

∇2 + ω2

c2

)
Êf (r,ω) = − 1

εo

{
∇∇ · +ω2

c2

}
P̂f (r,ω) (20)

using the quantum-mechanical expression of the nonlinear
polarization P̂f (r,ω) = N 	℘f σ̂f (r,ω), where N 
 1027 m−3

is the number density, 	℘s = 	℘bd = 〈b|d|d〉 and 	℘a = 	℘ca =
〈c|d|a〉 are the dipole matrix elements, and σ̂s = σ̂bd = |b〉〈d|
and σ̂a = σ̂ca = |c〉〈a| are the coherence operators correspond-
ing to the Stokes and anti-Stokes transitions, respectively.
The far-field solution of a mesoscopic particle (assumed to
be spherical) is

Êf (R,ω) = ω2

c2

∫
V

{

̂P̂ NL


,f + �̂P̂ NL
�,f

}
eikf (ω)|R−r|

4πεo|R − r| d3r, (21)

where the dispersive wave vector kf (ω) is related to the
dielectric function εf (ω) by kf (ω) = √

εf (ω)ω/c. The obser-
vation point is at R =R(sin 
 cos �, sin 
 sin �, cos 
) and
the position of a dipole is r = r(sin θ cos φ, sin θ sin φ, cos θ ).
The distance is |R − r| =

√
�2

x + �2
y + �2

z , where �x =
X − x, etc. The P̂ NL


,f and P̂ NL
�,f are the 
 and � components

of the nonlinear polarization P̂NL
f and can be written as

P̂ NL

,f = 
̂ · P̂NL

f and P̂ NL
�,f = �̂ · P̂NL

f , respectively. Given the

transformation unit vectors 
̂ = (cos 
 cos �, cos 
 sin �, −
sin 
) and �̂ = (− sin �, cos �,0), the electric-field vector
can be decomposed into the Cartesian components Êf =
[Êf x,Êfy,Êf z]. To couple the Stokes and anti-Stokes quantum
fields to the atomic operators, Eq. (21) is written as(

Ês(ω)

Ê†
a(ω)

)
=

∫
V

(
Ks(r,ω) 	℘⊥

bd σ̂
NL
bd (r,ω)

K∗
a (r,ω) 	℘⊥

acσ̂
NL
ac (r,ω)

)
d3r, (22)

where Kf (r,ω) = ω2

c2
N

4πεo|R−r|e
ikf (ω)|R−r| with the dispersive

wave vector kf (ω) = √
εf (ω)ω/c and εf (ω) the dielectric

function. The transverse dipole moment vector is

	℘⊥
g = 
̂℘
,g + �̂℘�,g (23)

with the angular components ℘
,g = 
̂ · 	℘g,℘�,g = �̂ · 	℘g

where g ∈ bd,ac.
Noting that the slowly varying envelope of the field

is defined by Êf q(R,t) = Ẽf q(R,t)e−iνf t (q ∈ x,y,z), the
Fourier transforms of the envelope operators are related as

(
σ̂bd (ω)

Ês(ω)

)
=

∫
ei(ω−νs )t

(
p̂bd (t)

Ẽs(t)

)
dt =

(
p̂bd (ω−

s )

Ẽs(ω−
s )

)
, (24)(

σ̂ac(ω)

Ê†
a(ω)

)
=

∫
ei(ω+νa )t

(
p̂ac(t)

Ẽ†
a(t)

)
dt =

(
p̂ac(ω+

a )

Ẽ†
a(ω+

a )

)
, (25)

where ω − νs = ω−
s and ω + νa = ω+

a give Ẽs(ω) = Ês(ω +
νs) and Ẽ†

a(ω) = Ê†
a(ω − νa). Hence, the quantum fields

become(
Ês(ω)

Ê†
a(ω)

)
=

∫
V

(
Ks(r,ω) 	℘⊥

bd p̂
NL
bd (r,ω−

s )

K∗
a (r,ω) 	℘⊥

acp̂
NL
ac (r,ω+

a )

)
d3r. (26)

However, we have to compute p̂NL
bd (r,ω) and p̂NL

ac (r,ω),
which are the solutions of the coupled equations [instead
of p̂NL

bd (r,ω−
s ) and p̂NL

ac (r,ω+
a )], which give the Fourier

transforms of the envelope field operators(
Ẽs(ω)

Ẽ†
a(ω)

)
= N

∫
V

(
Cs(r,ω) 	℘⊥

bd p̂
NL
bd (r,ω)

C∗
a (r,ω) 	℘⊥

acp̂
NL
ac (r,ω)

)
d3r, (27)

where Cs(r,ω) = (ω+νs )2

c2
eiks (ω+νs )|R−r|
4πεo|R−r| and Ca(r,ω) =

(ω−νa )2

c2
eika (ω−νa )|R−r|

4πεo|R−r| . The wave vectors that include
linear dispersion in the dielectric functions are
ks(ω + νs) = √

εs(r,ω + νs)(ω + νs)/c and ka(ω − νa) =√
εs(r,ω − νa)(ω − νa)/c with the dispersive dielectric

functions(
εs(r,ω + νs)

ε∗
a(r,ω − νa)

)
= 1 + N

�εo

(
Gs(r,ω)|℘db|2
Ga(r,ω)|℘ca|2

)
. (28)

The superscript NL excludes the term proportional to the
respective quantum fields, thus

p̂NL
bd (ω) = −

⎛
⎝ 4∑

j=1

M4j Ĝj + XsÂ
†

⎞
⎠,

p̂NL
ac (ω) = −

⎛
⎝ 4∑

j=1

M1j Ĝj + XaŜ

⎞
⎠.

(29)

.

IV. STOKES SPECTRUM

From the electric-field operators we obtain the power
spectrum (from Appendix A) for the Stokes and anti-Stokes
signals after applying the diffusion coefficients obtained from
the noise correlations in Appendix B and the solutions of the
matrix elements given in Appendix C.
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A. Normal-order Stokes spectrum

For weak fields, only the first terms in Eqs. (14) and (15)
are significant. The electric-field vector of the Stokes signal
follows from Eq. (27),

Ẽs(ω) = −N 	℘⊥
bd

∫
V

Cs(r,ω)
4∑

j=1

M4j (r,ω)Ĝj (r,ω)d3r.

(30)
Consider first the q component of the electric field. The
normal-order correlation is

〈Ẽ†
sq (−ω′)Ẽsq(ω)〉 = N2|℘⊥

bd,q |2
∫

V

[Cs(r′,ω′)]∗Cs(r,ω)

×
4∑

,j,l=1

[M4j (r′,ω′)]∗M4l(r,ω)

×〈[Ĝj (r′,ω′)]†Ĝl(r,ω)〉d3r ′d3r.

(31)

From [6], the normal-order noise correlation products in the
frequency domain are

〈[Ĝj (r′,ω′)]†Ĝl(r,ω)〉 = 〈Ĝj†(r′, − ω′)Ĝl(r,ω)〉

= (2π )3

N
2D̃j†,l(r,ω′ − ω)δ(r′ − r)

= (2π )3

N
2D̃n

j,l(r,ω
′ − ω)δ(r′ − r),

(32)

where the diffusion coefficient in the frequency domain
2D̃n

j,l(w) = ∫
eiwt2D̃j†,l(t)dt is related to that in time domain

D̃j†,l(t) = ei(νj −νl )tDj†,l(t) as defined in Appendix B, while
j,l ∈ {ac,ad,bc,bd} and j ∗,l∗ ∈ {ca,da,cb,db}. We have
used 〈F †

j (r′,t ′)Fl(r,t)〉 = 2Dj†,l(r′,t ′)δ(t − t ′) (2π)3

N
δ(r′ − r)

and evaluated 〈[Ĝj (r′,ω′)]†Ĝl(r,ω)〉 through the steps〈∫
e−iω′t ′eiνj t

′
F

†
j (r′,t ′)dt ′

∫
eiωt e−iνl tFl(r,t)dt

〉

=
∫

e−iω′t ′dt ′
∫

eiωtdteiνj t
′
e−iνl t 〈F †

j (r′,t ′)Fl(r,t)〉

=
∫

ei(ω−ω′+νj −νl )t2Dj†,l(r′,t)dt
(2π )3

N
δ(r′ − r). (33)

In spherical polar coordinates d3r = r2 sin θdθdφdr . In the
far field

|R − r| ≈ R − R̂ · r =R − R
R

· r

= R − r[sin 
 sin θ cos(� − φ) + cos 
 cos θ ].

(34)

Since

R2 � |−2Rr[sin 
 sin θ cos(� − φ) + cos 
 cos θ ]

+ r2[sin 
 sin θ cos(� − φ) + cos 
 cos θ ]2|
in the denominator we have |R − r|2 ≈ R2. From
Eqs. (A1), (31), and (32) we have the Stokes spectrum

Sn
sq (ω) = Re〈Ẽ†

sq (ω′)Ẽsq(ω)〉,
Sn

sq(ω) = AN |℘⊥
sq |2(ω + νs)

4

×
4∑

j,l=1

∫ ρ

r=0

∫ π

θ=0

∫ 2π

φ=0
e2 Imks (ω+νs )R̂·r

×M∗
4j (r,ω)M4l(r,ω)2D̃n

j,l(r,0)d3r, (35)

where A = ( 1
4πεoc2R

)2(2π )3, d3r = r2 sin θdθdφdr , and ρ is
the radius of the spherical particle. Note that the spectrum is
independent of the observation angles 
 and � since angular
dependence is entirely in the term ℘⊥∗

sq ℘⊥
sq that is uncorrelated

to any frequency-dependent term.
If the laser fields are homogeneous across the microparticle,

the M matrix elements would be independent of position,
hence the spectra would be essentially the same as a single
atom. The second line becomes

∑4
,j,l=1 M∗

4jM4lD̃
n
j,l . Thus,

in the far-field approximation and assuming homogeneous
excitations,

Sn
sq(ω) = AN |℘⊥

bd,q |2
4π

3
ρ3(ω + νs)

4

×
4∑

j,l=1

M∗
4j (ω)M4l(ω)2D̃n

j,l(0). (36)

B. Antinormal-order Stokes spectrum

To obtain the antinormal-order field correlation, we use the
antinormal-order noise correlation

〈Ĝj (r′,ω′)Ĝ†
l (r,ω)〉 = (2π )3

N
2D̃an

j,l(ω
′ − ω)δ(r′ − r). (37)

The q component of the electric-field correlation is the same as
above except the diffusion coefficient D̃n

j,l is replaced by D̃an
j,l .

Similarly, the antinormal-order power spectrum San
sq (ω) =

Re〈Ẽsq(ω)Ẽ†
sq(ω)〉 due to the q component of the Stokes signal

is

San
sq (ω) = AN |℘⊥

bd,q |2(ω + νs)
4

4∑
j,l=1

∫
V

e2 Imks (ω+νs )R̂·r

×M4j (r,ω)M∗
4l(r,ω)2D̃an

j,l(r,0)d3r. (38)

V. ANTI-STOKES SPECTRUM

The electric-field vector of the anti-Stokes signal is given
by

Ẽ†
a(ω) = −N 	℘⊥

ac

∫
V

Ca(r,ω)
4∑

j=1

M1j (r,ω)Ĝj (r,ω)d3r.

(39)

The q component of normal-order power spectrum of the anti-
Stokes signal is

Sn
aq(ω) = AN |℘⊥

ac,q |2(ω − νa)4
4∑

j,l=1

∫
V

e2 Imka (ω−νa )R̂·r

×M1j (r,ω)M∗
1l(r,ω)2D̃an

j,l(r,0)d3r. (40)
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FIG. 2. (Color online) The x-component spectra of the Stokes spectra (same as the anti-Stokes spectra) versus particle radii ρ without
linear dispersion for cases of resonant (�p = �s = �c = �a = 0) and symmetric laser fields (a) �p = �c = γac and (b) �p = �c = 10γac;
resonant and asymmetric laser fields (c) �p = 3γac and �c = 7γac and (d) �p = 7γac and �c = 3γac; (e) Raman-EIT �p = �s = −20γac,
�c = �a = 0, �p = 1γac, and �c = 10γac; and (f) off-resonance configurations �p = �s = �c = �a = −20γac, �p = γac, and �c = 3γac.
Other parameters used (defined in Appendix C) are �x = � = 5 × 107 s−1 with x = ac,ab,db,dc; n̄x = [exp(θx) − 1]−1; and θx = �ωx/kBT

at temperature T = 300 K.

The q-component antinormal-order power spectrum of the
anti-Stokes signal

San
aq (ω) = AN |℘⊥

ac,q |2(ω − νa)4
4∑

j,l=1

∫
V

e2 Imka (ω−νa )R̂·r

×M∗
1j (r,ω)M1l(r,ω)2D̃n

j,l(r,0)d3r. (41)

We note that the anti-Stokes spectrum would be identical to
the Stokes spectrum, not only when the pump and control laser
parameters are the same, i.e., �p = �c, but for any parameters,
due to symmetry from the small separation between levels b

and c. Also, the spectra would not depend on the dispersion
of the wave vector if the dielectric functions εs(ω) and εa(ω)
were real. The imaginary part would be responsible for the
damping (or amplification) of the fields inside the particle, as
well as the directional dependence [22] of the spectra.

VI. RESULTS AND DISCUSSION

The Stokes and anti-Stokes spectra are plotted in Figs. 2–7,
showing the change in the spectra with particle radius ρ for four
cases of laser parameters at resonance: (i) small and same laser
strengths �p = �c = γac, (ii) large and same laser strengths
�p = �c = 10γac, (iii) different laser strengths �p = 3γac

and �c = 7γac, and (iv) the opposite �p = 7γac and �c=3γac.

The dimensionless spectrum (noted with an overbar)

S̄s(a)q (ω) = Ss(a)q(ω)
�db(ac)

ANV |℘db(ac)|2ν4
s(a)

(42)

for the Stokes s or anti-Stokes a fields with the component
q (for x,y,z ) is plotted by multiplying Sn

f q(ω) by a factor

shown above with V = 4π
3 ρ3. The focusing effect of the

spherical particle gives rise to spatially inhomogeneous pump
and control fields inside the particle. This effect is included
using the Mie theory (see the Appendix of Ref. [15]) with
refractive indices np = 1.5 and nc = 1.4.

Resonant peaks. When both pump and control laser fields
have the same value, the triple (Mollow) peaks [Fig. 2(b)]
are clearly visible for the small-particle case (which describes
well the single-atom scenario) and their separation increases
with higher laser fields. When the fields have different values
�p �= �c, there are four strong resonant peaks at −(�p +
�c), −|�p − �c|, |�p − �c|, and �p + �c, which can all be
explained as due to Autler-Townes splittings.

Normal vs antinormal order. The antinormal order cor-
responds to the opposite process, i.e., stimulated emission
instead of absorption [20]. Mathematically, the difference
between Eqs. (35) and (40) and Eqs. (38) and (41) is in
the diffusion coefficients, but the coefficients are frequency
independent. For the small-particle regime, any differences
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FIG. 3. (Color online) Normalized field intensity distributions |Epx |2/E2
po and |Epz|2/E2

po for the pump laser for the five different radii ρ.
Note that |Epz|2 is smaller than |Epx |2.

FIG. 4. (Color online) Normal-order x component of Stokes spectra (upper panels) and anti-Stokes spectra (lower panels) with linear
dispersion for particle radii ρ arranged in increasing size. The lasers are resonant and equal strength (symmetric resonant) for (a) weak
fields �p = �c = γac and (b) strong fields �p = �c = 10γac. The observation direction is 
 = � = 0. Other parameters used are �x = 0,
�x = �(n̄x + 1), and � = 5 × 107s−1 with x = ac,ab,db,dc; n̄x = (eθx − 1)−1; θx = �ωx/kBT ; and T = 300 K.
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FIG. 5. (Color online) Stokes and anti-Stokes spectra with linear dispersion for different resonant fields (nonsymmetric resonant) (a)
�p = 3γac and �c = 7γac and (b) �p = 7γac and �c = 3γac with several particle radii ρ indicated.

would actually yield the quantum nature of the spectra since
classically there would be no distinctions between the two
orderings.

Stokes vs anti-Stokes spectra. We find that the Stokes and
anti-Stokes spectra look identical in the absence of dispersion
(so it is trivial to show both), not only for the resonant
cases [Figs. 2(a)–2(d)] but also for the Raman-electromagnetic
induced transparency (EIT) [Fig. 2(e)] case when the pump and
Stokes fields are far detuned and all the four transitions are off
resonance as shown in Fig. 2(f). There are minor differences
that are immaterial as they are not the main features.

Unexpected shift. The spectra for mesoscopic particles with
finite sizes are significantly different from the spectrum of an
isolated quantum particle or single atom. A closer look reveals
that the side peaks in Figs. 2(b)–2(e) are shifted slightly less
than �p + �c from the center. This can be understood by
looking at the pump-field distributions inside the particle in
Fig. 3 for |Epx |2 and |Epz|2. Note the presence of regions
with normalized intensity (|Epx |2 + |Epz|2)/E2

po below unity
(|Epy | = 0) corresponding to an effective Rabi frequency
smaller than the input value �p.

Unresolved peaks. The side peaks become unresolved as the
particle size ρ increases due to spectral broadening. The three
(Mollow) peaks in the case of a weak field �p = �c = γac

can no longer be resolved at around ρ = 0.1 μm. For larger

fields �p = �c = 10γac, the Mollow peaks are clearly visible
and they can still be resolved when the particles are larger. The
two side peaks for �p �= �c coalesce into a single peak and
become unresolved. However, the broadening does not affect
the central peak in the case �p = �c = 10γac, which remains
narrow. For different values �p �= �c, there is no central peak.

Broadening mechanism. As the particle size increases, the
central peak is essentially unaffected, but the side peaks
undergo significant broadening and are shifted away from
the center. This is due to the collective effect of spatially
inhomogeneous laser fields inside the particle that causes a
position-dependent ac Stark shift in the resonance frequencies.
The focusing effect of the spherical particle creates a large ac
Stark shift around a small spatial region. Most volumes of the
spherical particle experience a range of ac Stark shift. Thus,
the shift and broadening of resonance lines are due to the
superpositions of a range of ac Stark shifted peaks. Note that
the nature of this spectral broadening is due to a spatial factor
or mesoscopic particle, an entirely different mechanism from
other known broadenings, due to atomic collision, Doppler
effect, or high laser fields.

Dispersion effect. When the frequency dependence of the
wave vector is included through εf (ω) in Eq. (28), the spectra
show a significant difference at a certain particle size. This
is due to the presence of morphology-dependent resonant
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FIG. 6. (Color online) Angular-dependent Stokes and the anti-Stokes spectra with linear dispersion for the same resonant fields: (a) weak
fields �p = �c = γac and (b) strong fields �p = �c = 10γac.

(MDR) peaks near the center. In Fig. 4(a) for �p = �c = γac

it can be clearly seen that the narrow MDR peak in the Stokes
spectra is at around −γac and the slightly broader peak in the
anti-Stokes spectra is at 2γac for ρ 
 0.01 μm. For stronger
fields, as shown in Fig. 4(b) with �p = �c = 10γac, the MDR
peaks are not seen until ρ 
 0.1 μm. The MDR peaks grow
with the particle radius. Their positions do not change with
laser parameters but remain the same. These features hold
for different laser fields (nonsymmetric resonant) as shown in
Fig. 5. Thus, we may say that the strong fields can reduce the
effect of particle size on the spectra.

Angular dependence. In the absence of dispersion (εs,a is
constant) the spectra do not vary with the angle of observation


 and field components (x,y,z), although their absolute
values change. We found the variation of the spectra with
the observation angle 
 through Eq. (34) and the presence
of dispersive loss or gain through the terms e2 Imks (ω)R̂·r and
e2 Imka (ω)R̂·r in the integrals of Ss,q (ω) and Sa,q(ω). For ρ =
1 nm, the spectra do not depend on the angle, although the
magnitude of the peaks changes with the angle. For ρ = 10 nm
or larger, the spectra begin to change with 
, as shown in
Figs. 6 and 7 for nonsymmetric resonant fields and the Raman
EIT scheme. The variation of the spectra with 
 can be clearly
seen, especially in the case of the same weak resonant fields.
Fano-like dips appear for weak symmetric resonant fields,
while the side peaks of the Mollow triplet is comparable to
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FIG. 7. (Color online) Angular-dependent Stokes and the anti-Stokes spectra with linear dispersion for nonsymmetric fields: (a) �p = 3γac

and �c = 7γac, (b) �p = 7γac and �c = 3γac, and (c) the Raman EIT scheme �p = −20γac, �c = 0, �p = γac, and �c = 10γac.

or higher than the central peak for high fields (in Fig. 6). For
nonsymmetric resonant fields, the four peaks are not clearly
shown (in Fig. 7). The Stokes peaks in the Raman EIT scheme
are displaced from zero due to detuning, while the anti-Stokes
spectrum has a narrow peak at certain angles. The scattered

Stokes and anti-Stokes electric fields acquire the y-component
fields after scattering, which has spectra similar to that of the
x component but quite different from the spectra of the z com-
ponent that vanishes at 
 = 0,π due to transversality of the
waves.
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In summary, the mesoscopic nature of the microparticle
hides or modifies the spectral peaks originally formed due to
quantum coherence and laser interaction effects. The narrow
side peaks can no longer be resolved. We expect the results of
this mechanism of spectral broadening to have implications on
spectroscopy of mesoscopic materials composed of quantum
particles.
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APPENDIX A: POWER SPECTRUM AND FIRST-ORDER
CORRELATION FUNCTION

The Fourier transform for a convolution reads∫ ∞
−∞ eiωt [

∫ ∞
−∞ A(t ′)B(t − t ′)dt ′]dt = Ã(ω)B̃(ω). However, it

should be realized that this expression is not readily usable
here. To connect the spectrum to the correlation function
C(τ ) = ∫ ∞

−∞ Ẽ∗(t)Ẽ(t + τ )dt , we may not use the convolu-
tion theorem directly. Instead, by definition of the Fourier
transform of the electric field Ẽ(ω) = 1√

2π

∫ ∞
−∞ Ẽ(t)eiωtdt we

have

S(ω) = |Ẽ(ω)|2 = Ẽ∗(−ω)Ẽ(ω)

= 1

2π

∫ ∞

−∞
e−iωt Ẽ∗(t)dt

∫ ∞

−∞
eiωt ′Ẽ(t ′)dt ′

= 1

2π

∫ ∞

−∞
eiω(t ′−t)

∫ ∞

−∞
Ẽ∗(t)Ẽ(t ′)dt ′dt. (A1)

Defining τ = t ′ − t , we recover the spectrum as the Fourier
transform of the correlation function

S(ω) = 1

2π

∫ ∞

−∞
eiωτC(τ )dτ. (A2)

For quantum fields, the normal- and antinormal-order spectra
are defined, respectively, as Sn(ω) = 〈Ẽ†(−ω)Ẽ(ω)〉 =
1
π

Re
∫ ∞
−∞ eiωτ 〈Ẽ†(t)Ẽ(t + τ )〉dτ and San(ω) = 〈Ẽ(ω)Ẽ†

(−ω)〉 = 1
π

Re
∫ ∞
−∞ eiωτ 〈Ẽ(t + τ )Ẽ†(t)〉dτ . For unpolarized

detection we may also compute the spectrum due to all q

components

Sn
f (ω) = Re〈Ẽ†

f (−ω) · Ẽf (ω)〉 =
∑

q=x,y,z

Sn
f q(ω), (A3)

San
f (ω) = Re〈Ẽf (ω) · Ẽ†

f (−ω)〉 =
∑

q=x,y,z

San
f q(ω). (A4)

The spectrum of an unpolarized signal is unaffected and
remains the same as the spectrum of any polarized signal
since the summation only involves the transition dipole
matrix elements and the observation angles 
,� through∑

q=x,y,z |℘⊥
sq |2 that are frequency independent.

APPENDIX B: DIFFUSION COEFFICIENTS

Using the 16 coupled Heisenberg-Langevin equations of
motion for the atomic operators (corresponding to coherences
and populations) for the double Raman scheme, we obtain the

diffusion coefficients 2D̃
n(an)
j,l in a frequency domain, given in

Eqs. (32) and (37). First, we use the Einstein relation

2DA,B =
〈
d(AB)

dt
− A

(
dB

dt
− Fb

)
−

(
dA

dt
− Fa

)
B

〉
,

(B1)

where A = σ̂j and B = σ̂l are atomic operators, with j,l ∈
1,2,3,4 (1 = ac, 2 = ad, 3 = bc, and 4 = bd). Then we
transform to a frequency domain and eliminate the rapid
time-varying exponential.

1. Normal-order diffusion coefficients

Normal-order diffusion coefficients 2Dan
j,l are given here,

where j,l ∈ 1,2,3,4 (1 = ac, 2 = ad, 3 = bc, and 4 =
bd). For example, 2Dn

1,1 is evaluated as 2Dn
1,1 = 2Dca,ac =

d
dt

〈σ̂caσ̂ac〉 − 〈σ̂ca[ d
dt

σ̂ac − F̂ac]〉 − 〈[ d
dt

σ̂ca − F̂ca]σ̂ac〉. Using
a similar method, other normal-order diffusion coefficients are
found. All the nonzero normal-order diffusion coefficients are

2D̃n
1,1 = 2D̃ca,ac = �ac〈σ̂aa〉 + �dc〈σ̂dd〉 + 2γac〈σ̂cc〉,

2D̃n
1,2 = 2D̃ca,ad = (−γdc + γac + γad )〈p̂cd〉,

2D̃n
2,1 = 2D̃da,ac = (−γdc + γac + γad )〈p̂dc〉,

2D̃n
2,2 = 2D̃da.ad = [2γad − (�db + �dc)]〈σ̂dd〉,

2D̃n
3,3 = 2D̃cb,bc = �ac〈σ̂aa〉 + �dc〈σ̂dd〉 + 2γbc〈σ̂cc〉,

2D̃n
3,4 = 2D̃cb,bd = (−γdc + γbc + γdb)〈p̂cd〉,

2D̃n
4,3 = 2D̃db,bc = (−γdc + γbc + γdb)〈p̂dc〉,

2D̃n
4,4 = 2D̃db,bd = [2γdb − (�db + �dc)]〈σ̂dd〉.

(B2)

2. Antinormal-order diffusion coefficients

In a similar manner, the antinormal-order diffusion coeffi-
cients 2Dan

j,l with nonzero values are obtained

2D̃an
1,1 = 2D̃ac,ca = [−(�ab + �ac) + 2γac]〈σ̂aa〉,

2D̃an
1,3 = 2D̃ac,cb = (−γab + γbc + γac)〈p̂ab〉,

2D̃an
2,2 = 2D̃ad.da = [−(�ab + �ac) + 2γad ]〈σ̂aa〉,

2D̃an
2,4 = 2D̃ad,db = (−γab + γdb + γad )〈p̂ab〉,

2D̃an
3,1 = 2D̃bc,ca = (−γab + γac + γbc)〈p̂ba〉,

2D̃an
3,3 = 2D̃bc,cb = �ab〈σ̂aa〉 + �db〈σ̂dd〉 + 2γbc〈σ̂bb〉,

2D̃an
4,2 = 2D̃bd,da = (−γab + γad + γdb)〈p̂ba〉,

2D̃an
4,4 = 2D̃bd,db = �ab〈σ̂aa〉 + �db〈σ̂dd〉 + 2γdb〈σ̂bb〉,

(B3)

where �x is the spontaneous emission rate and γx the
decoherence rate, with x = ac,ab,db,dc.

APPENDIX C: MATRIX ELEMENTS IN
DIFFUSION COEFFICIENTS

In order to compute the diffusion coefficients we have to
solve the following coupled equations for the populations.
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Taking the Fourier transform, we have the equations for
populations in the frequency domain

0 = i(�cp̂ab − �∗
c p̂ba) − Taa(ω)σ̂aa

+�abn̄abσ̂bb + �acn̄acσ̂cc + F̂aa, (C1)

0 = i(�∗
c p̂ba − �cp̂ab) − Tbb(ω)σ̂bb

+�ab(n̄ab + 1)σ̂aa + �db(n̄db + 1)σ̂dd + F̂bb, (C2)

0 = i(�∗
pp̂cd − �pp̂dc) − Tcc(ω)σ̂cc

+�ac(n̄ac + 1)σ̂aa + �dc(n̄dc + 1)σ̂dd + F̂cc, (C3)

0 = i(�pp̂dc − �∗
pp̂cd ) − Tdd (ω)σ̂dd

+�dbn̄dbσ̂bb + �dcn̄dcσ̂cc + F̂dd , (C4)

where p̂ab(z,ω) = e−iνq t σ̂ab and p̂dc(z,ω) = e−iνpt σ̂dc, with
�x and γx (x = ac,ab,db,dc) defined in Appendix B, and
n̄x = [exp(θx) − 1]−1 represents the thermal photon numbers
θx = �ωx/kBT ,

Taa(ω) = �ab(n̄ab + 1) + �ac(n̄ac + 1) − iω,

Tbb(ω) = �abn̄ab + �dbn̄db − iω,

Tcc(ω) = �acn̄ac + �dcn̄dc − iω,

Tdd (ω) = �db(n̄db + 1) + �dc(n̄dc + 1) − iω.

(C5)

Note that these equations for the populations are decoupled
from Eqs. (1)–(4) for p̂ac(z,ω), p̂ad (z,ω), p̂bc(z,ω), and
p̂bd (z,ω). The equations for coherences at laser transitions
are

p̂ab(ω) = −i�∗
c (σ̂bb − σ̂aa) + F̂abe

−iνq t

Tab(ω)
, (C6)

p̂dc(ω) = −i�∗
p(σ̂cc − σ̂dd ) + F̂dce

−iνpt

Tdc(ω)
, (C7)

where Tab(ω) = i�ab + γab − iω and Tdc(ω) = i�dc + γdc −
iω. Since p̂jk(−ω) = [p̂kj (ω)]†, actually

p̂ba(−ω) = [p̂ab(ω)]† = i�c(σ̂bb − σ̂aa) + F̂
†
abe

iνq t

−i�ab + γab + iω

= i�c(σ̂bb − σ̂aa) + F̂
†
abe

iνq t

T ∗
ab(ω)

and not p̂ba(ω). Eliminating p̂ab and p̂dc in Eqs. (C1)–(C4)
and using I − σ̂aa − σ̂bb − σ̂cc = σ̂dd , we have the solutions
needed in the diffusion coefficients

〈p̂aa〉 = 1

D
(N2N1bN3c + N3N1cN2b),

〈p̂bb〉 = 1

D
(N1aN2N3c − N3aN1cN2 + N2aN1cN3),

〈p̂cc〉 = 1

D
(N3aN1bN2 + N1aN2bN3 − N2aN1bN3),

(C8)

where

D = N1aN2bN3c + N1aN2bN3 + N1aN2N3c + N2aN1cN3

+N2N1bN3c + N3aN1bN2 + N3N1cN2b − N2aN1bN3c

−N2aN1bN3 − N3aN1cN2b − N3aN1cN2; (C9)

N1a = δc + Taa(ω),

N1b = δc + �abn̄ab,

N1c = �acn̄ac;

(C10)

N2a = δc + �ab(n̄ab + 1),

N2b = δc + Tbb(ω),

N2 = �db(n̄db + 1);

(C11)

N3a = �ac(n̄ac + 1),

N3c = δp + Tcc(ω),

N3 = δp + �dc(n̄dc + 1),

(C12)

with the power broadenings δc = |�c|2
Tab(ω) + |�c|2

T ∗
ab(ω) and δp =

|�p |2
T ∗

dc(ω) + |�p |2
Tdc(ω) .
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[15] Y. Pavlyukh and W. Hübner, Phys. Rev. B 70, 245434

(2004).
[16] M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics

(Addison-Wesley, London, 1974).

063826-11

http://dx.doi.org/10.1088/1464-4266/6/8/030
http://dx.doi.org/10.1088/1464-4266/6/8/030
http://dx.doi.org/10.1088/1464-4266/6/8/030
http://dx.doi.org/10.1088/1464-4266/6/8/030
http://dx.doi.org/10.1103/PhysRevA.72.043811
http://dx.doi.org/10.1103/PhysRevA.72.043811
http://dx.doi.org/10.1103/PhysRevA.72.043811
http://dx.doi.org/10.1103/PhysRevA.72.043811
http://dx.doi.org/10.1103/PhysRevA.75.043817
http://dx.doi.org/10.1103/PhysRevA.75.043817
http://dx.doi.org/10.1103/PhysRevA.75.043817
http://dx.doi.org/10.1103/PhysRevA.75.043817
http://dx.doi.org/10.1103/PhysRevA.75.063801
http://dx.doi.org/10.1103/PhysRevA.75.063801
http://dx.doi.org/10.1103/PhysRevA.75.063801
http://dx.doi.org/10.1103/PhysRevA.75.063801
http://dx.doi.org/10.1103/PhysRevA.81.063832
http://dx.doi.org/10.1103/PhysRevA.81.063832
http://dx.doi.org/10.1103/PhysRevA.81.063832
http://dx.doi.org/10.1103/PhysRevA.81.063832
http://dx.doi.org/10.1103/PhysRevA.76.013809
http://dx.doi.org/10.1103/PhysRevA.76.013809
http://dx.doi.org/10.1103/PhysRevA.76.013809
http://dx.doi.org/10.1103/PhysRevA.76.013809
http://dx.doi.org/10.1103/PhysRevA.41.2756
http://dx.doi.org/10.1103/PhysRevA.41.2756
http://dx.doi.org/10.1103/PhysRevA.41.2756
http://dx.doi.org/10.1103/PhysRevA.41.2756
http://dx.doi.org/10.1103/PhysRevA.75.013820
http://dx.doi.org/10.1103/PhysRevA.75.013820
http://dx.doi.org/10.1103/PhysRevA.75.013820
http://dx.doi.org/10.1103/PhysRevA.75.013820
http://dx.doi.org/10.1109/18.720553
http://dx.doi.org/10.1109/18.720553
http://dx.doi.org/10.1109/18.720553
http://dx.doi.org/10.1109/18.720553
http://dx.doi.org/10.1038/nphoton.2014.192
http://dx.doi.org/10.1038/nphoton.2014.192
http://dx.doi.org/10.1038/nphoton.2014.192
http://dx.doi.org/10.1038/nphoton.2014.192
http://dx.doi.org/10.1103/PhysRevLett.111.247401
http://dx.doi.org/10.1103/PhysRevLett.111.247401
http://dx.doi.org/10.1103/PhysRevLett.111.247401
http://dx.doi.org/10.1103/PhysRevLett.111.247401
http://dx.doi.org/10.1038/483417a
http://dx.doi.org/10.1038/483417a
http://dx.doi.org/10.1038/483417a
http://dx.doi.org/10.1038/483417a
http://dx.doi.org/10.1103/PhysRevA.72.023807
http://dx.doi.org/10.1103/PhysRevA.72.023807
http://dx.doi.org/10.1103/PhysRevA.72.023807
http://dx.doi.org/10.1103/PhysRevA.72.023807
http://dx.doi.org/10.1103/PhysRevA.33.2461
http://dx.doi.org/10.1103/PhysRevA.33.2461
http://dx.doi.org/10.1103/PhysRevA.33.2461
http://dx.doi.org/10.1103/PhysRevA.33.2461
http://dx.doi.org/10.1103/PhysRevA.38.267
http://dx.doi.org/10.1103/PhysRevA.38.267
http://dx.doi.org/10.1103/PhysRevA.38.267
http://dx.doi.org/10.1103/PhysRevA.38.267
http://dx.doi.org/10.1103/PhysRevB.37.6063
http://dx.doi.org/10.1103/PhysRevB.37.6063
http://dx.doi.org/10.1103/PhysRevB.37.6063
http://dx.doi.org/10.1103/PhysRevB.37.6063
http://dx.doi.org/10.1103/PhysRevB.52.10080
http://dx.doi.org/10.1103/PhysRevB.52.10080
http://dx.doi.org/10.1103/PhysRevB.52.10080
http://dx.doi.org/10.1103/PhysRevB.52.10080
http://dx.doi.org/10.1103/PhysRevB.70.245434
http://dx.doi.org/10.1103/PhysRevB.70.245434
http://dx.doi.org/10.1103/PhysRevB.70.245434
http://dx.doi.org/10.1103/PhysRevB.70.245434


C. H. RAYMOND OOI, W. M. EDMUND LOH, AND C. H. KAM PHYSICAL REVIEW A 91, 063826 (2015)

[17] C. H. R. Ooi and M. S. Zubairy, Phys. Rev. A 75, 053822
(2007); C. H. R. Ooi and M. O. Scully, ibid. 76, 043822
(2007).

[18] R. R. Puri, Mathematical Methods of Quantum Optics (Springer,
Berlin, 2001).

[19] R. J. Glauber, Phys. Rev. 130, 2529 (1963).
[20] L. Mandel, Phys. Rev. 152, 438 (1966).
[21] C. F. Bohren and D. R. Huffman, Absorption and Scattering of

Light by Small Particles (Wiley, New York, 1983).
[22] C. H. R. Ooi, J. Raman Spectrosc. 40, 714 (2009).

063826-12

http://dx.doi.org/10.1103/PhysRevA.75.053822
http://dx.doi.org/10.1103/PhysRevA.75.053822
http://dx.doi.org/10.1103/PhysRevA.75.053822
http://dx.doi.org/10.1103/PhysRevA.75.053822
http://dx.doi.org/10.1103/PhysRevA.76.043822
http://dx.doi.org/10.1103/PhysRevA.76.043822
http://dx.doi.org/10.1103/PhysRevA.76.043822
http://dx.doi.org/10.1103/PhysRevA.76.043822
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1103/PhysRev.152.438
http://dx.doi.org/10.1103/PhysRev.152.438
http://dx.doi.org/10.1103/PhysRev.152.438
http://dx.doi.org/10.1103/PhysRev.152.438
http://dx.doi.org/10.1002/jrs.2215
http://dx.doi.org/10.1002/jrs.2215
http://dx.doi.org/10.1002/jrs.2215
http://dx.doi.org/10.1002/jrs.2215



