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Localization-length calculations in alternating metamaterial-birefringent disordered layered stacks
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A detailed theoretical and numerical analysis of the localization length in alternating metamaterial-birefringent
random layered stacks, under uncorrelated thickness disorder, has been performed. Similar structures have
recently been reported to suppress the Brewster delocalization for p-polarized light when “standard” isotropic
layers (with a positive index of refraction) are considered instead of metamaterial layers, providing a generic
means to produce polarization-insensitive, broadband reflections. However, this enhancement of localization is
valid for short wavelengths A compared to the mean layer thickness ay. At higher wavelengths, we recover
the Brewster anomalies for p-polarized states impeding a remarkable localization of light. To achieve a better
localization for a wider range of wavelengths, we replaced the conventional isotropic layers by negative-index
metamaterials presenting low losses and constant index of refraction over the near-infrared range. As a result, our
numerical calculations exhibit a linear dependence of the localization length on X (in the region 5 < X /ay < 60),
reducing the Brewster anomalies by more than two orders of magnitude with respect to the standard isotropic
scheme at oblique incidence. This enhancement of localization is practically independent of the thickness disorder

kind and is also held under weak refractive-index disorder.
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I. INTRODUCTION

Broadband reflections from a disordered dielectric medium
are a physical manifestation of the localization of light [1].
The design of such high-performance broadband mirrors with
a broader reflection band than periodic systems with the same
refractive indices has been reported [2,3]. If a stack system
could be devised to effectively localize both s- and p-polarized
light over all angles of incidence, it would provide a means to
obtain polarization-insensitive, broadband reflections with po-
tential applications that include waveguides and thermoelectric
devices, among others [4]. However, a fundamental problem
arises due to the so-called Brewster delocalization [5-7], that
is, the impossibility of achieving a total localization of light at
certain oblique incidences for p polarization. The main reason
is that the depth of penetration for p states is several orders of
magnitude larger than the depth of penetration of s states [8].
This is an important issue to take into account for potential
polarization-insensitive broadband mirrors.

Recently, Jordan et al. [9] reported a suppression of
Brewster delocalization in stacks of alternating isotropic-
birefringent random layers under uncorrelated thickness disor-
der. Stacks containing a mixture of positive uniaxial and nega-
tive uniaxial birefringent layers have been claimed as effective
media to inhibit the Brewster delocalization over all angles of
incidence. This work was motivated by a previous analysis of
the nonpolarizing reflections from birefringent guanine and the
isotropic cytoplasm multilayer structure found in some species
of silvery fish [10]. These authors mimicked the guanine-
cytoplasm structure in fish skin in which there are two different
types of birefringent crystals present with isotropic cytoplasm
gaps and obtained a noticeable enhancement of localization.
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Nevertheless, as we will show briefly, this enhancement of
localization for p-polarized light is valid for short wavelengths
compared to the mean layer thickness. At higher wavelengths,
we recover the Brewster anomalies for p states at oblique
incidence, impeding a remarkable localization of light.

In order to achieve an improvement of localization,
we propose a stack composed of alternating metamaterial-
birefringent disordered layers where the isotropic layers
possess a negative index of refraction [that is, we are
dealing with left-handed (LH) isotropic media [11,12]]. These
artificial materials have been reported to resolve images
beyond the diffraction limit [13,14], act as an electromagnetic
cloak [15,16], enhance the quantum interference [17], and
yield to slow light propagation [18]. Moreover, recent research
on LH metamaterials formed by hybrid metal-semiconductor
nanowires [19] has described negative indices of refraction
in the near infrared with values of the real part well below
—1 and extremely low losses (an order of magnitude better
than present optical negative-index metamaterials). With this
choice, we demonstrate a reduction of Brewster anomalies in
more than two orders of magnitude with respect to the standard
isotropic scheme at higher wavelengths, providing a means
to obtain polarization-insensitive, broadband reflections in a
wider wavelength region. Furthermore, this enhancement of
localization is practically independent of the thickness disorder
kind and is also held under weak refractive-index disorder.

The plan of this work is as follows. In Sec. II we
carry out an exhaustive description of our system and the
theoretical framework to derive an analytical expression for
the localization length & , in the short-wavelength regime
(that is, when the incident wavelength X is less than the mean
layer thickness ap). A detailed numerical analysis concerning
the localization length for two different disorder distributions
(the Poisson-thickness disorder and the uniform-thickness
distribution) will be performed in Sec. III. Two wavelength
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regions will be analyzed in detail: the previously mentioned
short-wavelength regime and an intermediate-wavelength
region (5 < A/ayp < 60) where, as we will show, the
improvement of localization is more pronounced. For
completeness, weak refractive-index disorder (with random
variations in the indices of refraction of each layer) is also
considered in our model. A set of analytical expressions for
&,p in the so-called intermediate-wavelength region, as a
function of the wavelength XA and the incident angle 6, is also
derived. Finally, we summarize our results in Sec. IV.

II. SYSTEM DESCRIPTION AND THEORETICAL MODEL

Our structure of interest is formed by a mixture of
alternating uniaxial birefringent layers and LH isotropic media
(see Fig. 1). For positive uniaxial layers, the corresponding
refractive index vector is given by ny = (n,n;,n,), while for
negative uniaxial layers n_ = (ny,n,,n1). The principal axes
of birefringent layers are aligned to the x and y directions,
and the ratio of negative uniaxial layers to the total number of
layers has been defined via the parameter f. Each birefringent
layer is sandwiched between two left-handed isotropic layers
with negative index of refraction ny, and the whole system
is embedded in a “standard” isotropic medium with positive
refractive index |ng|. The condition n, > n; > |ng| is held to
avoid critical angles, that is, to be sure that light is able to
access all angles of incidence at each isotropic-birefringent
interface in the stack. Light enters from the left at angle 6 and
propagates through the z axis.

In order to effectively improve the localization of light
in such mixed structures, we need LH metamaterials with
extremely low losses and constant values of the negative index
over a relatively wide spectrum. Such metamaterials have
been recently reported by Paniagua-Dominguez et al. [19]
and might operate in the near-infrared region (from 700 to
1900 nm in this case). As we will show in the next section, the
enhancement of localization in our system is mainly achieved
in a region where the incident wavelength XA satisfies the

y

FIG. 1. (Color online) Our disordered layered stack of alternat-
ing uniaxial positive (n;) and uniaxial negative (n_) layers. Dark
gray regions correspond to left-handed isotropic layers with negative
index of refraction ny. The principal axes of the birefringent layers
are aligned to the x and y directions, while light enters from the left
at angle 6 and propagates through z axis.
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inequality 20 < A/ay < 60, where ag corresponds to the mean
layer thickness. Accordingly, our mixed disordered stack can
adequately be tailored to operate in the near-infrared provided
that ap >~ 35 nm.

Let us now perform a theoretical study of the localization
length for both s and p states in such structures under
uncorrelated thickness disorder. To this aim, we derive an
expression for the transmission coefficient of the whole
arrangement T ,, and then we use the standard definition of
the localization length

2L
Esp =" (D

(InT; )’

where L = Nay is the system length and N is the total number
of layers. The angular brackets (---) stand for averaging
over the disorder. The theoretical method here employed is a
nonperturbative approach based on the exact calculation of the
Green’s function (GF) of an electromagnetic wave in a given
electric permittivity profile [20]. Once the GF of the layered
structure is known, the transmission coefficient 7 , can be
derived using the Fisher-Lee relation [21]. This GF approach
is compatible with the transfer matrix method and has been
widely used to calculate the average density of states over a
sample, the energy spectrum of elementary excitations [22], or
the characteristic barrier tunneling time [23], among others.

In our Green’s function approach, the inverse of the trans-
mission coefficient through our multilayer structure, 1/7 ,,
coincides with the diagonal elements of the resulting transfer
matrix and can be derived via the following relation [20]:

T,, = Dy, (2)

where Dy corresponds to the so-called characteristic determi-
nant

N
) —1/2
Dy = Dg\(])) exp [—l(pN]H (1 - ”12—1,1) ! : 3)
=1

Here ¢y represents the total phase thickness accumulated by
the incident wave along the whole sample and is given by

N
o= ¢ )
=1

where ¢y is the phase thickness of each individual layer. For
our birefringent media, ¢; satisfy [9]

2 cin2
(E)amn |1 — <’%:+0> ,  p polarization,
1,z
Q= . (5)
2 ngsin2 0 . .
(Tﬂ)al”l,y - (UIIT) , s polarization,

with g; being the layer thickness and n; ; (j = x,y,z) being the
corresponding indices of refraction of the positive and negative
uniaxial layers,

ny, positive layers,

(6)

ny=ny= .
ny, negative layers,

and
positive layers,

m=V” ()

ny, negative layers.
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In our LH isotropic media, the parameters ¢; are calculated
via

27
o =—\ aj|no| cos 0 (8

for both s- and p-polarized states. Notice that the phase
thicknesses have negative signs in this case due to the
negativeness of the indices of refraction.

Dg\?) corresponds to the determinant of a tridiagonal matrix
and satisfies the following recurrence relation:

D =AD" — B DY, 9)
with the initial conditions
A=1,00=1, DY =o.
For/ > 1 we have
Ar=1+ exp [2ig] (10)
Fi-2,-1
and
B =(A = D(1—r} ). (11)

where the quantity r;_;; symbolizes the Fresnel reflection
amplitude of light propagating from region / — 1 into region
[. In our case, these coefficients are given by the generalized
isotropic-birefringent Fresnel relations [9,24]

Inglcos® — /n?  — ndsin6

ri-1g = (12)
ng| cos @ +/n} — ngsin? @
for s polarization and
Inolnycn - cos® — nd. /n? _ — n}sin? 6
(13)

ri—1g =
[noln; xn; ; cos 0 + nj, /”12,1 — njsin2 6

for p-polarized states. As is well known, these reflection
coefficients for p polarization vanish at the generalized
anisotropic Brewster angle 6y [25],

2 2
niz ) ng —ny

Inol J'\ n§ —nj.

tan(fg) = ( (14)

If the Fresnel coefficients ”12171 are small, one can easily
find [after simple inspection of the recurrence relation (9)]
that the parameter D(O) 1. Therefore, the determinant Dy
(and, consequently, the transmission coefficient 7 ,) may be
calculated at an arbitrary distribution of the layers thicknesses.
Provided that our system presents only thickness disorder (so
the reflection coefficients r7- 1, remain invariable along the
averaging process) and for a 1arge number of layers N, we can
write

1‘[ =2 ) e[ ) =2 ) T
=1

15)
where N4 stand for the total number of positive and negative
uniaxial layers, respectively, and the reflection coefficients
Is..p, are given by Eqgs. (12) and (13), with the appropriate
choice of uniaxial layer (that is, positive or negative) and
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FIG. 2. (Color online) Inverse of the localization length ’;‘p_ !
[calculated via Eq. (16)] vs the parameter f and the angle of
incidence 6. Two different values of the positive-layer birefringence
A, = n, — n; have been chosen.

incident polarization. After some trivial algebra, we obtain
the following analytical expression for the localization length
&, p [see again Eq. (1)]:

2610

Es,p

=-m[(1-s2 )7 (1-r2,)] a6

where f = N_/N. Notice that, under the low-reflection
assumption, Eq. (16) is independent of the thickness disorder
kind and the incident wavelength. We will analyze later
the validity of this theoretical result for short wavelengths
compared to the mean layer thickness, that is, A < ag.

After simple inspection of Eq. (16), one observes that the
Brewster anomalies for p-polarized states occur only when
f = 0 (isotropic-positive stacks) or f = 1 (isotropic-negative
stacks). In such particular cases, the right-hand side of Eq. (16)
becomes zero at 6, resulting in the logarithmic divergence
of the localization length &, and, consequently, in the delo-
calization of p states. This result can be easily evidenced in
Fig. 2, where we represent the inverse of the localization length
for p polarization ép‘ ! [calculated via Eq. (16)] versus the
parameter f and the angle of incidence 6. Two different values
of the positive birefringence A, = n, — n have been selected
(with our choice of the refractive index vectors, the following
relation holds: A_ = —A,). The index of refraction of the
left-handed layers has been chosen to be nyp = —1.33. One
observes that for real mixtures of positive and negative uniaxial
layers [9] (that is, when 0 < f < 1) no Brewster anomalies
occur. For higher-birefringence parameters [see Fig. 2(b)] we
obtain a smoothly varying landscape for &, ! Consequently,
as we increase the strength of the layers birefringence, we
achieve more localized states.

III. NUMERICAL RESULTS

In this section we present our numerical results concerning
the localization length for two different disorder distributions,
that is, the Poisson-thickness disorder and the uniform-
thickness distribution. Two wavelength regions will be ana-
lyzed in detail: the short-wavelength regime (A /ag < 1), where
we will check the validity of our main theoretical result (16),
and an intermediate-wavelength region (5 < A/ag < 60) with
an enhancement of localization of up to two orders of
magnitude with respect to standard isotropic layers.
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FIG. 3. (Color online) Localization length & , vs the angle of
incidence 0 in the short-wavelength regime (A/ay = 0.032) for
a Poisson-thickness distribution for (top) s-polarized states and
(bottom) p-polarized light. Solid lines symbolize our numerical
calculations, whereas dashed lines show our theoretical results
[Eq. (16)].

A. Poisson-thickness disorder

Let us first consider the well-known Poisson-thickness
distribution for our disordered system, where the averaging
process of In Ty , is carried out via

1 [t a
(InT ,) = — da exp| —— [InT; p, 17
0 ao

ap

where, for each single realization, the numerical computation
of the quantity 7 , is obtained via the exact recurrence
relation (9). To this aim, we show in Fig. 3 the localization
length &, , versus the angle of incidence ¢ in disordered stacks
with mixing ratios of f = 0.25 (left column) and f = 0.75
(right column) in the short-wavelength regime (A /ay = 0.032).
Dashed lines correspond to our theoretical results based on
Eq. (16). One observes good agreement between our numerical
and theoretical results with an error of less than 5%. As
can be noticed from Fig. 3, in the short-wavelength regime
the localization length of p states remains constant in a
wide range of incident angles (about 45° for f = 0.25 and
70° for f = 0.75). As previously commented, higher values
of the positive birefringence A, yield an enhancement of
localization. This is a manifestation of a total suppression
of Brewster delocalization, in good agreement with recent
numerical results [9].

For higher wavelengths the situation is markedly different,
as can be easily observed in Fig. 4. Here we represent our
numerical calculations for the localization length & , as a
function of the wavelength A for two different angles of
incidence, 0 = 0° and 0 = 28°. Let us first concentrate on
Figs. 4(a) and 4(b), where isotropic layers with index of re-
fraction |ng| = 1.33 have been considered. The birefringence
of positive layers has been chosen to be A = 2.33, and the
ratio f = 0.75. Solid lines symbolize our numerical results
performed via Eq. (17). One notices that &, , has a quadratic
dependence on A at higher wavelengths, a typical result for
various disordered models and the subject of intensive ongoing
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FIG. 4. (Color online) Localization length & , vs the incident
wavelength A for two different angles of incidence, 6 = 0° and 6 =
28°. (a) and (b) Standard isotropic-birefringent stacks (with positive
indices of refraction) and (c) and (d) LH isotropic-birefringent
disordered structures. The birefringence of the positive layers has
been chosen to be A, = 2.33, and the ratio f = 0.75 in all cases.
Solid lines represent our numerical calculations [Poisson-thickness
distribution, Eq. (17)], whereas the dotted lines symbolize the
localization-length calculations performed via Egs. (18) and (19) (top
panels) and Egs. (21) and (22) (bottom panels).

research [26,27]. Dotted lines correspond to the following
numerically deduced equations for the localization length as a
function of the wavelength:

. 1.30¢, 1 A\
S 1306 ( ) (18)

ap

ag ao 1.15C?r2(cos 6)0

1.30 1 A\°
& = i + 2,2 ol ) 19
ao ap 1.15C rp(cosé) U\ ag

where C = 1.15(n; + ny + |nol) and &, (§p,) represents the
localization length of s(p) states in the limit of short wave-
lengths [see again Eq. (16)]. In addition, ri , stands for the
average interfacial reflection coefficient in our system [9,20]

and is given by

rf_p =1- f)rfw,+ + frfﬂpi. (20)

An in-depth numerical analysis has been performed to derive
Egs. (18) and (19). To this aim, 20 different layered stacks
at different angles of incidence have been considered, and a
detailed study of the coefficient characterizing the quadratic
dependence on A has been carried out. Notice that the results
derived via Eqgs. (18) and (19) are in good agreement with
our numerical calculations for angles of incidence up to 28°.
At higher angles of incidence (not shown in our figures) the
deviation between numerical and analytical results is greater
than 5%.

Let us now replace the standard isotropic layers by left-
handed isotropic metamaterials (this change, as previously
mentioned, assumes that the index of refraction ny is now
negative). As was recently shown by our group for isotropic
layered structures [26], this change of sign results in a
significant modification of the transmission coefficient T ,.
As a consequence, the localization length & , presents a
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region of linear dependence on A when the positions of
the layer boundaries are randomly shifted with respect to
ordered periodic values. The same behavior is found for LH
isotropic-birefringent layered stacks.

The physical explanation for this effect is related to the
vanishing of the total phase accumulated along the structure.
This vanishing occurs only for stacks of alternating right-
handed media (isotropic or birefringent) and left-handed
isotropic layers, where the alternating phases possess opposite
signs. Provided strong uncorrelated thickness disorder, the
total phase accumulated over the whole structure is practically
null. Thus, the transmission coefficient 7§ , (which strongly
depends on the total phase along the structure) has a smoother
dependence on the frequency w than the typical right-handed
stacks, where the average of In T , [see the denominator of
Eq. (1)] gets the well-known dependence w?. In our case, this
average has a linear dependence on the frequency (that is, the
localization length is proportional to the wavelength A).

Our numerical calculations confirm this feature, as can
be noticed in Figs. 4(c) and 4(d). Solid lines symbolize
our numerical calculations [Poisson-thickness distribution,
Eq. (17)], while dotted lines correspond to our numerically
deduced set of equations,

SN A R
ap  ag + Clrs|(cos8)05 \ ay )’ (
G _tn, 2 (1

a  ap  Clrpl(cos6)30 (a())' (22)

After direct comparison of Figs. 4(c) and 4(d) (left-handed
isotropic-birefringent stacks) with Figs. 4(a) and 4(b) (standard
isotropic-birefringent stacks), one observes an enhancement of
the localization for isotropic metamaterial structures at higher
wavelengths, mainly due to a smoother dependence of the
localization length &, , with the incident wavelength A.

B. Uniform-thickness disorder

Let us now study another type of thickness disorder in which
the arrangement of layers has random boundaries [26]. For
completeness, weak refractive-index disorder has also been
included in our model, where we have randomly changed
the indices of refraction of each layer via the following
relations: ng = ng)) + 06 (isotropic layers) and n; = n(f) +
o8 (birefringent layers, either positive or negative). The super-
scripts (0) indicate unperturbed refractive indices, whereas the
parameters o; are zero-mean independent random numbers
within the interval [—0.5,0.5]. The strength of the disorder
is measured by the parameter §, which has been chosen to
be roughly 2% of the corresponding unperturbed indices of
refraction (that is, we assume weak refractive-index disorder).

First, the short-wavelength regime will be considered. In
Fig. 5 we show the localization length &, , versus the angle
of incidence 6 in such disordered stacks with mixing ratios
of f =0.75 (left column) and f = 0.25 (right column) for
AJap = 0.032. Dashed lines correspond to our theoretical
result, Eq. (16). Even though this equation was derived for only
thickness disorder, good agreement between our numerical and
theoretical results is found, provided weak refractive-index
disorder.
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FIG. 5. (Color online) Localization length & , vs the angle of
incidence 6 in the short-wavelength regime (A/ap = 0.032) for
a uniform-thickness distribution for (left) s polarization (right)
p-polarized light. Solid lines symbolize our numerical calculations,
whereas dashed lines show our theoretical results [Eq. (16)].

As we increase the incident wavelength, the behavior of
the localization length is significantly different (as previously
stated in the Poisson-thickness distribution). In Fig. 6 we
represent three-dimensional plots of the localization length & ,
for a combined scheme of uniform-thickness and refractive-
index disorders. Figures 6(a) and 6(c) display the numerical
calculations for isotropic-birefringent stacks with |ng| = 1.33,
whereas Figs. 6(b) and 6(d) show our left-handed isotropic
stacks with ng = —1.33. In order to perform a reliable average
of the logarithm of the transmission coefficient, In 7§ ,, 800
random configurations of our disordered stack have been
considered in all cases. Once more, the birefringence of
positive layers was A, = 2.33, and the ratio f =0.75. It
can be noticed that, at long wavelengths, a decrease of one
order of magnitude for &, at normal incidence is achieved
[compare Figs. 6(c) and 6(d)], and a decrease of even up
to two orders of magnitude occurs at higher angles. Similar

&, (units of a)
&, (units ofa)

&, (units of a)
&, (units of a)

O (e,
s‘%ss) 0

FIG. 6. (Color online) Enhancement of localization under a
mixed scheme of uniform thickness and weak refractive-index
disorder for LH isotropic-birefringent stacks. Numerical calculations
for &, , vs the wavelength A and the angle of incidence 6 are shown.
The birefringence of positive layers was chosen to be A, = 2.33,
while the ratio f = 0.75 in all cases. (left) Our numerical results
for isotropic-birefringent stacks with |ng| = 1.33 and (right) our
left-handed isotropic stacks with ng = —1.33. The simulations were
averaged over 800 random configurations of the layered stacks.
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numerical results have been obtained by taking into account
uniform-thickness disorder alone (not shown in our figures).
Consequently, under a strong uncorrelated positional disorder
scheme, weak refractive-index disorder does not significantly
affect the localization of light.

IV. DISCUSSION AND CONCLUSIONS

A detailed theoretical and numerical analysis of the lo-
calization length, under uncorrelated thickness disorder, in
alternating metamaterial-birefringent random layered stacks
has been performed. Our work was motivated by the recently
reported suppression of Brewster delocalization in alternat-
ing isotropic-birefringent stacks [10], where Jordan et al.
mimic the guanine-cytoplasm structure in fish skin formed
by two different types of birefringent crystals present with
isotropic cytoplasm gaps [9]. Nevertheless, this enhancement
of localization for p-polarized states is achieved for short
wavelengths (compared to the mean layer thickness ap). At
higher wavelengths, we recover the Brewster anomalies for p
states at oblique incidence, impeding a remarkable localization
of light.

Our disordered metamaterial-birefringent stacks can ef-
fectively improve the localization of light in the so-called
intermediate-wavelength region (in our case, 5 < A/ay < 60)
by up to two orders of magnitude with respect to the standard
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isotropic scheme at oblique incidence. This is mainly due to the
smoother dependence of the localization length on the incident
wavelength (linear dependence) in this particular region,
unlike the well-known quadratic dependence in positive-index
disordered stacks. Moreover, this enhancement of localization
is practically independent of the thickness disorder kind and
is also held under weak refractive-index disorder.

In order to reduce losses in our system (principally
due to the presence of left-handed layers) we considered
metamaterials with extremely low losses and constant values
of the negative index over the near-infrared region (from
700 to 1900 nm in this case) [19]. As shown in Sec. III,
the predominant enhancement of localization in our system
is achieved in the region 20 < A/ag < 60. Accordingly, our
mixed disordered stack can effectively be tailored to operate
in the near infrared provided that ap >~ 35 nm.

Our group believes that these metamaterial-birefringent
disordered structures might provide great insight for the
experimental design of polarization-insensitive, broadband
reflectors.
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