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We explore the formation of bright dissipative solitons in cavities with built-in nonlinear resonators. The
solitons in such systems are studied both analytically and numerically. We have found a different kind of bright
soliton which emerges due to an intrinsic bistability of the system. The solitonic structures have discontinuity
in the plasmonic part of the polaritonic field and exist due to an intrinsic multiplicity of the solution for the
plasmonic resonators density. The solutions may have two profoundly different localization scales, referred to as
single- and dual-core solitons. We found that the bifurcation diagrams associated with dissipative solitons reveal
the existence either a single- or a dual-core soliton depending on the intensity of the fields in a cavity. It was
established that the solitons of both kinds can be dynamically stable and thus can be observed experimentally.
A physical system for which the predicted phenomena may occur is described in terms of the effective medium
model and verified numerically.
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I. INTRODUCTION

The systems consisting of a planar cavity with built-in
resonators of different physical nature attracted a great deal
of attention recently. For example, the photons confined in
the cavity can strongly interact with the resonators embedded
in it when the cutoff frequency of the cavity is close to the
frequency of the intrinsic resonances. Strong coupling between
the photons trapped in the cavity and the resonator modes gives
rise to many interesting nonlinear phenomena in such systems.
One of the most intensively studied systems belonging to
polaritonic structures is a semiconductor microcavity with
strong exciton-photon interaction [1]. An intensive investi-
gation of the phenomena associated with the strong and fast
nonlinear response of microcavity exciton-polaritons has led
to the discovery of Bose-Einstein condensation of polaritons
[2,3] that occurs due to the small effective mass of its photon
component at temperatures much higher than those needed
for condensation of atomic gases. It has been demonstrated
that the polaritons exhibit superfluidity [4,5] and support the
formation of the vortices [6,7]. Recent discoveries also include
the observation of bistability [4,8], polarization multistability
[9–12], and parametric four-wave mixing [9–13].

Since the polaritonic systems are intrinsically non-
Hamiltonian, they are in the photonics context often referred
to as dissipative, in which losses are important and the
presence of an external energy supply is implicitly assumed
[14–16]. Dissipative-matter solitons in exciton condensates
were reported in Ref. [17] and dissipative dark and bright
polariton solitons in microcavities were discussed in [18–20].

In exciton-polariton systems the internal resonances imply
a rich variety of the effects associated with their dispersion
(diffraction) properties. Namely, it has been demonstrated that
in periodic and discrete systems different kinds of Bragg soli-
tons can be formed [21]. Bragg solitons may possess unusual
properties; for example, it was predicted that moving Bragg
solitons usually emit transitional radiation [22]. A special
family of midband Bragg solitons was considered in [23]
and the multicore discrete solitons were reported in [24]. The
Bragg systems may have both the focusing and the defocusing

nonlinearities and the richness of their dispersion properties
stems from the resonant coupling of the cavity modes.

A considerable effort has been devoted recently to the in-
vestigation of light-matter coupling phenomena in polaritonic
photonic crystal structures with complex unit cells containing
nanostructured semiconductors or metallic materials. The
attractiveness of such structures stems from their ability to
control electronic and photonic resonances simultaneously
and thus they may offer new possibilities for tailoring the
light-matter interaction.

Resonant interaction is a powerful tool to modify material
properties. For example, it is convenient to employ either
exciton resonances or plasmonic ones, because the wavelength
of plasmons (excitons) is much shorter then the wavelength
of the mode in a host material and therefore plasmonic
nanoparticles can be considered as localized weakly inter-
acting resonators embedded into a host dielectric. Among the
most prominent examples of such polaritonic crystal struc-
tures belong periodically modulated metal surfaces, including
surface corrugation [25–28] and hole arrays [29] and regular
arrangements of individual metal nanoparticles on dielectric
substrates [30]. Novel properties and new effects observed
in these structures, such as large photonic band gaps [25],
extraordinary light transmission properties through arrays of
subwavelength holes [29], negative refraction [31], and strong
coupling effects between electronic and photonic resonances
[32,33], provide insight into a different class of light-matter
coupling phenomena.

The cavities with built-in resonance inclusions can have two
profoundly different scales: Assuming that direct interaction
between the resonators is weak, the diffraction of the cavity
mode is much stronger than the diffraction in the resonators
mode. Simultaneously, nonlinear properties of the systems are
determined mainly by the resonators, which may lead to the
formation of unusual solitons possessing cores of two very
different characteristic sizes. These solitons are in a certain
sense analogous to Abrikosov vortices in superconductors of
the second kind, where the characteristic size of variation of
magnetic field is much larger than the characteristic size of the
variation of the order parameter.
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In this paper we consider the systems with the focusing non-
linearity and intrinsic resonances provided by subwavelength
built-in resonators. Specifically, we employ plasmon-polariton
systems where metallic nanoparticles yield intrinsic plasmonic
resonance. Such structures can support hybrid light-matter
excitations (plasmon-polaritons) and they to a large extent
resemble the exciton-polariton systems. The advantage of
the plasmon-polaritons stems from the fact that the focusing
nonlinearity can easily be achieved in these systems.

As an envisaged physical realization of this system we
suggest a planar Fabry-Pérot cavity filled with a nonlinear
medium in which metallic nanoparticles are embedded. In
general, such a system offers a possibility to investigate
the fundamental optical effects originating from the resonant
excitation of localized surface plasmons and optical waveguide
modes. Hereafter we refer to the field associated with the
optical waveguide mode as a cavity mode and the field of
the built-in resonators as a resonators mode. We focus on
phenomena associated with the formation and the dynamics
of dissipative solitons in a cavity with internal plasmonic
resonances. The nonlinearity in the system is primarily due
to the internal plasmonic resonators arising from the field
enhancement in the vicinity of the metallic surface, while the
diffraction is mainly attributed to the cavity mode.

The aim of the present paper is to investigate bright dissipa-
tive solitons possessing two cores with different characteristic
scales and which bifurcate from their conservative counterparts
in the media with focusing nonlinearity. The feasibility of
plasmon-polariton systems stems from the fact that they
make it possible to combine strong light-matter coupling and
intrinsic resonators with focusing nonlinearity.

The paper is organized as follows. In Sec. II we describe a
simple theoretical model based on the effective medium that
makes it possible to allows determining the relevant material
and geometrical parameters of the realistic cavity with built-in
resonators. A detailed description of the analytical model and
its numerical verification is presented in the Appendix. In
Sec. II we present a standard model which describes a cavity
with built-in resonators in terms of the coupled differential
equations for the fields E(x,t) and �(x,t) associated with the
cavity and resonators, respectively. Within the approximation
based on neglecting the nonlinear and dissipative terms we
determine the dispersion relation for linear excitations which
consists of the two branches.

In Sec. IV we consider stationary one-dimensional solu-
tions in a one-dimensional conservative case when the problem
can be analyzed on a two-dimensional phase plane. By means
of numerical simulations we compute the results for the
dissipative solitons and we show that they can have cores with
very distinct sizes.

In Sec. IV A we study the structural and dynamical stability
of the dissipative solitons. The dynamics and adiabatic decay
of the quasisolitons affected by small losses in the absence of
the pump are considered in Sec. IV B. In Sec. V we consider
stationary dissipative cavity solitons with a resonant pump
and we explore properties associated with bifurcation dia-
grams that support either single-core or double-core solitons
depending on the intensity of the fields. In the Conclusion
we summarize the results obtained and discuss the existence
of double-core solitons in analogy to superconductors of the
second kind.
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FIG. 1. (Color online) Schematic description of the homogeniza-
tion model for a FP cavity with Au-coated nanoparticles with an
active core. Au coating is indicated by a dark-colored ring, while a
bright-colored inner circle corresponds to an active core fabricated
from rare-earth-ion-doped silica.

II. HOMOGENIZATION MODEL

In this section we propose a simple theoretical model based
on the effective medium approach which describes the system
consisting of the cavity with metallic nanoparticles in terms of
the frequency-dependent effective dielectric constant εeff(ω).
Specifically, we consider a Fabry-Pérot (FP) cavity filled with
SiO2 glass characterized by the dielectric function εm = 2.1 in
which Au nanoparticles are embedded; see Fig. 1. The interior
of the cavity is described by an effective permittivity εeff(ω) =
εm + f εrm(ω), where the filling fraction f = L1/(L1 + L2) is
given by the ratio between the widths of two layers depicted
in Fig. 1. The layers are characterized by the dielectric
functions εrm(ω) = εm + εr (ω) and εm, where εr (ω) accounts
for the resonant behavior of the metallic nanoparticles that is
described by Lorentz-Drude-like form dielectric function in
the form

εr (ω) = ε0 − σc

ω2 − �2 + iγ ω
, (1)

where � is the localized surface plasmon resonance (LSPR)
frequency, σc is the coupling strength between the cavity
mode and a surface plasmon mode, ε0 corresponds to the
dielectric susceptibility of the LSPR frequency, and γ denotes
dissipation of the surface plasmon mode. A key idea of the
homogenization model is based on the assumption that the
parameters σc and γ can be determined from comparison
of the transmission, reflection, and extinction coefficients
associated with the system described by an effective medium
model and the results of the finite-difference time-domain
(FDTD) numerical calculations of the corresponding three-
dimensional (3D) structure containing a FP resonator with
metallic nanoparticles.

To do so, we first employed the results obtained from the
FDTD numerical calculations for the system consisting of Au
nanoparticles embedded in a FP cavity to extract the values
for the parameters σc and γ . By using the latter parameters
in evaluation of an effective permittivity εeff(ω) we found that
the size of the resulting width of the resonance associated
with the cavity significantly exceeds the critical size which
yields a sufficiently large value of the resonator Q-factor(∼50)
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that is required to support the existence of the dissipative
solitons. To overcome this intrinsic limitation arising from
ohmic, we examined a modified configuration, where lossy
Au nanoparticles are replaced with coated Ag nanoparticles
with active cores made of rare-earth-ion-doped silica. We have
verified a feasibility of such system by using a computational
approach for simulation of plasmonic nanoparticles [34,35]
that allows calculating the effective scattering, extinction,
and absorption cross sections of an active nanoparticle.
We have shown that by applying a sufficiently high-power
one obtains significantly enhanced effective scattering cross
section, which, in turn, makes it possible to achieve a sharp
cavity resonance corresponding to sufficiently large value of
the Q factor. Therefore, the cavity with active nanoparticles
may be considered as a feasible system where the phenomena
associated with the formation and dynamics of the dissipative
solitons described below might be observed experimentally.
We note that SiO2 which fills the cavity is a passive medium
unlike that that of a rare-earth-ion-doped silica used in metal-
coated nanoparticles with active cores. An undoped SiO2

in which the nanoparticles within FP cavity are embedded
represents a nonlinear medium and it supports the existence of
the nonlinear states in the cavity. A more detailed description of
the analytical model and its numerical verification is presented
in the Appendix.

III. MODEL EQUATION

Below we focus on the microcavity model which describes
a cavity with built-in resonators in the slow varying amplitude
approximation

∂tE − i
(
∂2
x + ∂2

y

)
E + (γ1 − i	1)E = i� − iEp, (2)

∂t� − iσ
(
∂2
x + ∂2

y

)
� + (γ2 − i	2 − i|�|2)� = iE, (3)

where E = E(x,t) is the complex amplitude of the cavity
mode, � = �(x,t) is the amplitude of the field of nonlinear
resonators, γ1 and γ2 are the losses for the cavity and the
resonator modes, respectively, 	1 and 	2 are the detunings
of the cutoff frequency of the cavity and the frequency of the
internal resonance with respect the pump frequency, Ep is the
pump field, and σ is the coefficient describing the diffraction
of the resonators mode. We assume that the pump is spatially
uniform in terms of both the amplitude and the phase. We
note that the effects of the dissipation, presence of the internal
pump, and inclusion of a compensating gain are important
for the experimental realization. We choose the pump in the
form of a driving force which stands on the right-hand side of
the Eq. (2). It corresponds to the cavity driven resonantly by
external coherent light at normal incidence.

We first study the properties of the linear waves in the
system. The linear excitations can be characterized by their
dispersion characteristics. By looking for the solution in the
form E,� ∼ e−iωt+ikx and by neglecting the dissipative and
nonlinear terms we obtain the following dispersion relation
ω(k) for the dispersive waves in the system

ω± = (1 + σ )k2 − 2	 ±
√

[δ + (σ − 1)k2]2 + 4

2
, (4)
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FIG. 2. (Color online) The dispersion characteristics of the cav-
ity with internal plasmonic resonances is shown in panel (a) for
	1 = −1.05, 	2 = −1.05. The solid line indicates the dispersion
for σ = 0, while the dashed line corresponds to σ = 0.0025. Panel
(b) shows the dispersion characteristics for the constant 	1 = −1.05
and variable 	2. The dependencies of the frequency of the spatially
uniform backgrounds with zero-wave vectors vs 	̃2 are shown in
panels (c) and (d) for 	1 = 0.7 and 	1 = −1.05, respectively.

where 	 = 	1+	2
2 and δ = 	1 − 	2. The parameter 	 con-

trols only the shift of the dispersion characteristics in respect
to the chosen reference frequency, while δ defines the detuning
between the plasmon and cavity resonances and thus affects
the shape of the dispersion characteristics.

The interaction between the waveguide cavity mode and
plasmonic resonators gives rise to lower and upper plasmon-
polariton branches which form the dispersion relation shown
in Figs. 2(a) and 2(b). In the absence of direct interaction
between the resonators σ = 0, there exists a gap between the
lower and the upper branches of the dispersion characteristics.
It is important to note that the gap closes for any finite σ , i.e.,
when the resonators interact between each other through their
evanescent fields.

Now let us consider spatially uniform nonlinear states in the
conservative limit and show that these states can be bistable.
The solutions can be expressed in the form of plane waves
E,� ∼ e−iωt+ikx . In the absence of pump Ep = 0 the equation
for the frequency of these backgrounds coincides with the
dispersion relation (4), where the detuning 	2 has to be sub-
stituted with the effective detuning 	̃2 = 	2 + ρ2 accounting
for the nonlinear correction of the resonant frequency, where ρ

is the amplitude of field � of the background � = ρeiωt−ikx .
Correspondingly, the backgrounds possess the structures of the
linear modes albeit calculated for the effective detuning 	̃2.
Thus, we can distinguish the backgrounds having the structure
of the upper and the lower polariton modes.

We can calculate how the frequency of the spatially uniform
state depends on the effective detuning. These dependencies
are shown in panels (c) and (d) of Fig. 2 for the backgrounds
with zero-wave vectors. The frequency of the backgrounds
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FIG. 3. (Color online) The bifurcation diagrams for the con-
servative case γ1 = γ2 = 0 (black solid line) and dissipative case
γ1 = γ2 = 0.03 (blue dashed line) are shown in panel (a) for 	1 =
	2 = 0.7. The same pair of diagrams except that 	1 = 	2 = −1.5
are shown in panel (b).

depends on the effective detuning 	̃2 as

ω± 0 = −	1 − 	̃2 ±
√

(	1 − 	̃2)2 + 4

2
, (5)

where subindex 0 refers to the fact that the backgrounds
have zero-wave vectors. In the expression given by Eq. (5)
the + and − signs correspond to the backgrounds having
the structures of the upper and the lower linear polariton
modes, respectively. In the case of a background having zero
frequency, the nonlinearity increases the effective detuning 	̃2,
which is indicated by the right arrows in Fig. 2. From panels
(c) and (d) of Fig. 2 one can see that the discussed background
can exist only if the linear detuning 	2 is lower than a certain
critical value 	2 0. The intervals of linear detuning 	2, where
there may exist the background having zero frequency are
indicated by thick blue and black horizontal lines in panels (c)
and (d).

Now we show that for the positive and negative 	1

the background has a structure of the upper or the lower
polariton modes, respectively. The equality ω± 0 = 0 yields
(	1 + 	̃20)2 = (	1 − 	̃20)2 + 4 (ω± 0 = 0 at 	̃20), which is
equivalent to 	̃20 = 1/	1. Let us assume that 	1 is positive;
then 	̃20 is positive too. Therefore, the term −(	1 + 	̃20) is
negative and it can be compensated only when the square root
in (5) is taken with the + sign. It means that for positive 	1

only the upper mode can be tuned into the resonance. The
nonlinear effects increase the effective 	̃2 and we can conclude
that nonlinear tuning into the resonance is possible only if
	2 < 	̃20 = 1/	1; see Fig. 2(c). A completely analogous
analysis that can be carried out in the case of negative 	2,
reveals that the lower mode can be tuned in the resonance
provided the condition 	1 < 0, 	2 < 1/	1 is satisfied; see
Fig. 2(d).

By introducing a finite pump the symmetry becomes broken
and a pair of backgrounds bifurcate from the zero-pump
background. One of these backgrounds is stable and another
is unstable. It is obvious that the background bifurcating from
the trivial solution is always stable. The bifurcation diagrams
which show the dependencies of the amplitude of |�| field on
the pump Ep are shown in Fig. 3. The analysis outlined above
can also be carried out for the dissipative case, although the
algebra becomes more complicated and is less instructive from
the physical point of view. In Fig. 4 we display the areas in the

-4 -2 0 2 4

-2

-1

0

1

2

III

s1

f1

s2

2

1

f2

FIG. 4. (Color online) The regions of parameters on parameter
plane 	1-	̃2, where there is an intrinsic bistability and the spatially
uniform background has the structure of the upper branch (f1,s1)
and lower branch (f2,s2). All equilibrium states describing spatially
uniform states belong either to the same phase plane (f1 and f2) or
different phase planes (s1 and s2).

parameter plane 	1 − 	̃2, where the bistability of spatially
uniform states exist for the conservative case. Specifically,
we determined the regions in the parameter plane 	1 − 	̃2,
where the upper (f1,s1) and lower (f2,s2) branches can be
tuned into the resonance, where the indices 1,2 refer to the
cases when the states belong to the same and the different
phase plane, respectively.

IV. CONSERVATIVE SOLITONS

The stationary fields are governed by the system of ordinary
differential equations

∂2
xE + (iγ1 + 	1)E + ψ = Ep, (6)

σ∂2
xψ + (iγ2 + 	2 + |ψ |2)ψ + E = 0. (7)

In this section we consider the 1D conservative case
γ1 = γ2 = 0. This problem is relatively simple and can be
treated analytically. It constitutes a good starting point for
the understanding of a more complicated case of dissipative
solitons. In the conservative case the solution can be found in
the form of pure real functions. When we assume vanishing
coefficient of the diffraction of the resonators mode to be
σ = 0, the dimensionality of the phase space of the ordinary
differential equations describing the stationary solutions is
significantly reduced. The equations for stationary solutions
read

∂2
xE + 	1E + ψ = Ep, (8)

(	2 + ψ2)ψ + E = 0. (9)

A crucial point here stems from the fact that the second
equation is an algebraic one and the phase space of the whole
system is only 2D. Now let us consider the phase plane of
Eq. (9). By using the second equation one can express the
amplitude of the resonator mode ψ as a function of the cavity
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FIG. 5. (Color online) (a) Potential Fm(E) and (b) the phase
plane, where the homoclinic trajectory corresponding to a soliton
is indicated by a thicker line. The parameters are 	1 = 	2 = 0.7.

field E. Then the function ψ = ψ(E) can be substituted into
the first equation and the set of Eqs. (8) and (9) can be reduced
to the second-order nonlinear differential equation for the field
E.

However, Eq. (9) can have either one or three solutions
ψm(E), where m denotes number the solutions. Each of the
roots of Eq. (9) will generate a nonlinear second-order ordinary
differential equation describing motion of a particle in a
potential

Fm(E) = 	1E
2

2
− 3ψ4

m(E)

4
− 	2ψ

2
m(E)

2
, (10)

while the equation for the field E can be expressed as

∂2
xE + ∂Fm

∂E
= 0. (11)

When the dependence ψ(E) is unique we can identify
the homoclinic trajectories corresponding to soliton solutions.
These solitons have one characteristic scale defined by the
interplay between the diffraction of the cavity mode and the
effective nonlinearity associated with the nonlinear resonators.
Hereafter we refer these solitons as single-core solitons.
The behavior of the single-core solitons is demonstrated in
Fig. 5, where we display the potential Fm(E) and the phase
plane when 	1 = 	2 = 0.7. In the latter figure the trajectory
corresponding to the soliton is indicated by the thicker line
and the parameters of the system belong to area f1 shown in
Fig. 4.

The situation is more interesting when Eq. (9) has three
different roots. In this case there are three different equations
and the solution can be given by any of them. We note that it is
possible to switch between the solutions provided that E and
∂xE remain continuous. Each of the switches will correspond
to the discontinuity in the ψ field, which is, however, not
prohibited if the diffraction of the ψ field is neglected, i.e.,
when σ = 0. It opens a possibility to design a family of soliton
solutions with discontinuities in the ψ field. Let us consider
the soliton solutions in more detail. We start with the case
of negative 	1 < 0 when the soliton trajectory can comes
close to the equilibrium point corresponding to the spatially
uniform solution having the structure of the lower polariton
mode. It yields the reason to expect that the field in such
a soliton is also similar to the field in the lower polariton
mode. In the absence of the pump Ep = 0 the trivial solution
(E = 0, ψ = 0) is a saddle. If 	2 < 1/	1, then there is another
steady state; in fact, there are two symmetric states E1 = −E2,
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FIG. 6. (Color online) Panels (a) and (b) show the potentials and
the phase plane, respectively, for the case when Eq. (9) has three
real solutions ψ = ψm(E), while the whole homoclinic trajectory
of Eq. (11) belongs to only one phase plane. The parameters are
	1 = 	2 = −1.05.

ψ1 = −ψ2. A simple algebra shows that for zero pump Ep = 0
all steady states are given by one potential if 3

2	1
< 	2 < 1

	1
and the equilibrium points corresponding to the backgrounds
with nonzero intensity are centers.

However, the fact that all three equilibrium points belong to
the same phase plane does not necessarily mean that there are
homoclinic trajectories starting and ending at the zero steady
state. One can prove that for these trajectories (corresponding
to bright solitons) to exist, an additional condition 	2 > 9

8	1
must be satisfied. Then there are two homoclinic trajectories
corresponding to bright solitons. The potentials, the phase
plane, and the solution are shown in Fig. 6. In the presence of
the pump the situation is similar except that the symmetry of
the nontrivial states is broken and there are two nonequivalent
homoclinic trajectories starting and ending at the lowest state.
One has to keep in mind that the latter solutions exist when the
pump is within the bistability region provided that there exist
three different spatially uniform solutions.

In the case when 	2 < 3
2	1

, each of the potentials has a
maximum and the steady states are all saddles belonging to
different phase planes. This is illustrated in Fig. 7, where the
potentials, the phase planes, and one of the possible localized
solutions is shown. Let us note here that there may be an infinite
number of such solutions with discontinuities because the
positions and the number of the discontinuities can be chosen
arbitrarily. The soliton solutions are the trajectories (that can
include switches between the phase planes) starting and ending
at the saddle points. In the case of the soliton solutions nestling
on the lower homogeneous state, the trajectory starts and
ends at the point E = 0, ∂xE = 0 belonging to the middle
phase plane; see the thicker magenta lines in Fig. 7. This
trajectory can switch to another plane at some point; in our
case, it switches to the upper phase plane (the continuation
of the trajectory is indicated by the magenta line), then at
the symmetric point the trajectory may switch back to the
middle phase plane and return to the initial steady state. The
E and ψ fields of the solution of such kind are shown in
panels (b) and (c) of Fig. 7. It is worth noticing here that the
distance between the discontinuities can be chosen arbitrarily
from the range of the allowed values. We note that the width
of the central area of the soliton, where the nonlinear effects
are important, does not coincide with the distance between
the discontinuities. Therefore, the central area of the soliton
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FIG. 7. (Color online) Panels (a) and (b) show potential and the
phase planes, respectively; the trajectory corresponding to a soliton is
indicated by a thicker line and the switchings from one phase plane to
another are indicated by thinner dashed lines. Panels (b) and (c) show
the solutions for the E and the ψ fields; the inset in panel (c) shows
the structure on the ψ field in the core of the soliton: The thicker
dark line corresponds to σ = 0 and the thinner green line shows the
continuous solution for relatively small σ = 0.0025. The parameters
are 	1 = 	2 = −1.5.

consists of two cores: The first one corresponds to the area
where nonlinear effects define the variation of the field, while
the second core corresponds to the area given by the distance
between the discontinuities in the ψ field.

A. Structural and dynamical stability of conservative solitons

Now we examine whether the solutions with discontinuities
in the ψ field are structurally stable, i.e., if the solution
undergoes only slight modification when we introduce very
small but finite diffraction in the ψ field. The structural stability
is an important issue because the discontinuities in the ψ field
make the term σ∂2

xψ singular. In fact, it may happen that even
very weak direct interaction in the � field can destroy soliton
solutions and, therefore, these solutions do not have physical
importance. To examine the structural stability, we study how
stationary linear excitations decay to the zero background.
When σ �= 0, the dimensionality of the phase space increases
from 2 to 4 and two more eigenvalues governing the relaxation
of the tails to the background appear. The relaxation law is

given by the expression

k2 = 	2 + σ	1 ±
√

(	2 + σ	1)2 + 4(1 − 	1	2)

2σ
. (12)

For the parameter areas f2 and s2 in Fig. 4 all four roots k

of Eq. (12) are pure imaginary and, therefore, the asymptotics
of the stationary solutions decay to zero. This reveals that a
finite σ does not generate a resonance between the soliton and
the linear modes (otherwise, there may exist only so-called
embedded solitons). To prove the existence of the soliton
solutions for a finite σ , we compute them numerically.
The numerical simulations reveal that for a finite σ the
discontinuities in the ψ field transform into the steep but
smooth parts of the curve. Therefore, we can claim that the
solitons are structurally stable. It is worth mentioning that the
finite value of σ not only smooths the discontinuities but also
uniquely defines the width of the second core.

A typical solution for small σ is shown in panels (b)
and (c) of Fig. 7, indicated by the thinner green line. The
distribution of the E field for small σ nearly coincides with the
distribution of the field E field for σ = 0, in fact, the mismatch
between the curves is too small to be noticed in panel (b). In
contrast, the difference in the ψ field distributions is clearly
visible in the core area of the soliton.

When the upper branch can be tuned into the
resonance(	1 > 0), two of the four roots k given by Eq. (12)
are pure imaginary, while other two are pure real. Indeed, in this
case the region of the bistability of the spatially uniform states
is given by the condition 	2 < 1/	1. Then for the positive
	2, which corresponds to the region f1 (Fig. 4), we obtain
the condition 0 < 1 − 	1	2 and, therefore, the square root in
Eq. (12) is always larger than the absolute value of 	2 + σ	1.
It is obvious that the condition 0 < 1 − 	1	2 is satisfied also
in the region s1 because in the latter the conditions 	1 > 0
and 	2 < 0 apply. As a result, one pair of the wave vectors k

is always imaginary, while the other pair is always real in these
parameter regions. It means that in the general case the soliton
tails do not decay to zero if the soliton parameters belong to
the regions f1 or s1.

To understand the statement from the physical point of
view, let us look at the dispersion relation for the linear waves
propagating in the system characterized by the parameters
from the f1 or s1 regions. For σ �= 0 the gap between the two
branches is closed, which means that the solitons existing in
this gap for σ = 0 in general disappear for finite values of σ

because they are in resonance with linear waves. Therefore,
for positive 	2 only embedded solitons can exist.

We note that in the presence of dissipation the tails of
stationary solutions do decay to the spatially uniform state
and therefore the dissipative solitons nestling on the upper
branch can be found. However, one might anticipate that
they are weakly localized for small losses. In this paper we
focus on the solitons existing in the areas s2 and f2 while
the solitons nestling on the upper polariton branch are left for
future research.

Let us discuss the properties of the solitons in the areas f2
and s2. The soliton fields in the region f2 are wide and not
intensive in the vicinity of the border of the domain of the
soliton existence. When the values of 	1 and 	2 come close
to the boundary between areas f2 and s2, the intensities of the
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FIG. 8. (Color online) The distributions of the E and ψ fields for
the conservative solitons in the region f2 are shown for 	1 = 	2 =
−1.065 [panels (a) and (c)] and for 	1 = 	2 = −1.05 [panels (b)
and (d)]. The spectra governing the stability of the solitons are shown
in panels (e) and (f). The pump Ep is equal to zero for both cases, the
diffraction in the ψ field is σ = 0.0025.

soliton fields increase; see panels (a) and (b) in Fig. 8, where
distributions of the E fields are shown for 	1 = 	2 = −1.065
and 	1 = 	2 = −1.05. Panels (c) and (d) display the ψ-field
distributions for the same parameters.

When the values of 	1-	2 enter s2 region, a narrow second
core develops in the resonators field ψ in the center of the
soliton. For the values of 	1 and 	2 belonging to the area
s2 of Fig. 4 one can observe the formation of a dual core
soliton with two different characteristic scales. This feature is
more clearly seen in the distribution of the resonators field ψ ;
however, it is also visible for the cavity field E.

Let us remind the reader that for σ = 0 there are discontinu-
ities in the ψ field and a pair of these discontinuities transforms
into a narrow second core of the soliton for finite σ . However,
E and ∂xE are continuous for σ = 0; the discontinuity occurs
only in ∂2

xE. The discontinuity in the second spatial derivative
of the E field manifests itself in a very abrupt change in the
spatial dependence of the E field in the center of the soliton.
The characteristic size of this sharp feature is equal to the
characteristic width of the narrow pattern in the ψ field.

Finally, we remark that it is not correct to consider the
discussed dual-scale solitons as a solitary structure with the
wings having different decay rates. It is important to point out
that the highly nonlinear central region of the soliton has two
different characteristic scales.
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FIG. 9. (Color online) The distributions of the E and ψ fields for
the conservative solitons in the s2 region are shown for 	1 = 	2 =
−1.1 [panels (a) and (c)] and for 	1 = 	2 = −1.5 [panels (b) and
(d)]. The spectra governing the stability of the solitons are shown
in panels (e) and (f). The pump is equal to zero for both cases; the
diffraction in the ψ field is σ = 0.0025.

From a physical point of view the dynamical stability
of the solitons is of fundamental importance because only
stable solitons can be observed in experiments. We studied
the dynamical stability of the solitons by solving the spectral
problem for the weak excitations on the background of the
soliton. The spectra obtained for the conservative case are
shown in panels (e) and (f) in Figs. 8 and 9. One can see
that in the region f2 the (single-core) solitons with relatively
low � field intensity are stable; see panel (f) in Fig. 8, which
shows the eigenfrequencies of the linear excitations. When
the soliton intensity increases, two discrete eigenvalues within
the gap collide in the center and produce two pure imaginary
frequencies governing the growth rate of the unstable mode;
see panel (e) in Fig. 8. In the region s2 the situation is the
opposite. The dual-core solitons with relatively low �-field
intensity are unstable [panel (e) of Fig. 9], while for higher
intensity and a more pronounced second core the solitons
become stabilized [panel (f) in Fig. 9]. We inspected the
stability by direct numerical simulation of the master equations
(2) and (3) by imposing the initial conditions in the form of
the soliton solution perturbed by a weak noise. The results of
the direct numerical simulations are shown in Fig. 10. One
can see that initially the soliton propagates without any strong
perturbations and then the instability gradually sets in and
destroys the soliton, which splits into two dispersive wave
envelopes.
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FIG. 10. (Color online) The temporal evolutions of the intensities
of the field E (a) and field � (b). A soliton solution corresponding
to 	1 = 	2 = −1.1 perturbed by weak noise was taken as the initial
condition. The pump Ep is equal to zero, the diffraction in the � field
is σ = 0.0025.

B. Adiabatic decay of the dual-core solitons

In this section we consider the adiabatic evolution and a
decay of the solitons caused by small losses in the absence
of the pump. We assume the initial condition in the form of
a conservative dual-core soliton and we study its dynamics in
the presence of weak losses.

Initially, the dual-core soliton is intense and therefore stable
(the soliton belongs to the region s2). In the presence of
small losses the soliton intensity slowly decreases due to
the dissipation, while the distributions of the fields remain
to resemble those of the conservative soliton. To fit the
time-dependent fields by the soliton, its parameters must
vary in time. Namely, 	1,2 are decreasing functions of time
	1,2 = 	1,2 − Q(t), where 	1,2 are the initial values of 	1,2

and Q(t) is a positive monotonically increasing function
accounting for the adiabatic variation of the soliton frequency.

The fact that low-intensity dual-core solitons are dynami-
cally unstable allows us to anticipate that at some moment the
intensity of a slowly decaying soliton will reach the threshold
value when the instability sets in. Beyond this threshold the
soliton is assumed to decay rapidly into dispersive waves
due to the instability. To verify this hypothesis we performed
numerical simulations of the dynamics of the soliton. The
typical results are shown in panels (a), (c) and (b), (d)
in Fig. 11, which display the evolution of the quasisoliton
fields for several values of the dissipation. We emphasize
the resemblance of the quasisoliton evolutions in the stage
of a rapid decay to those belonging the unstable conservative
soliton shown in panels (a) and (b) in Fig. 10.

Alternatively, we also imposed the initial condition such
that the initial � field is chosen to be in the form of the
conservative soliton field distribution multiplied by the factor
1.1 and zero initial field E . The typical evolutions of the
fields are shown in panels (e) and (f) in Fig. 11. In this case,
we observe the formation of a strongly localized oscillatory
state instead of the soliton. We assume that the formation of
the oscillating structure occurs due to the excitation of the
internal mode of the soliton (there is a pair of discrete nonzero
eigenvalues in the gap of the soliton spectrum). The energy
of the localized structure decreases with time but the field
remains localized until the intensity of the soliton reaches the
threshold value and the soliton rapidly collapses beyond the
threshold.
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FIG. 11. (Color online) Panels (a) and (b) show the temporal
evolution of the E and � fields, respectively, in the system with
the dissipation γ1 = γ2 = 0.005. A conservative soliton calculated
for initial conditions 	1,2 = −1.5. The same but for γ1 = 0.005 and
γ2 = 0.0005 is shown in panels (c) and (d). Panels (e) and (f) show
the evolution for the case γ1 = γ2 = 0.005 when the initial conditions
are assumed in the form of the conservative soliton field distribution
multiplied by factor 1.1 for the � field and zero initial conditions for
the field E. Panel (g) displays the evolution of the maximum absolute
value of the E field for the first (black solid line), second (red dashed
line), and the third (blue dashed line) cases. The pump is equal to
zero for all cases; the diffraction in the � field is σ = 0.0025.

It is interesting to note that the decrease of the energy of the
dual-core soliton leads to the increase of the maximal intensity
of the E field. It means that the dual-core cavity soliton of lower
energy looks brighter for the observer because only the cavity
mode shines out from the cavity. It is illustrated in panel (g) in
Fig. 11 where the dependencies of the maximum intensity of
E field vs time are shown. One can see that the brightness of
the soliton increases and reaches maximum approximately at
the moment when the soliton starts to decay.
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V. STRUCTURAL STABILITY AND DYNAMICS OF THE
DISSIPATIVE SOLITONS

The existence of stationary solitons in the dissipative
systems requires the presence of a pump. In this section we
consider stationary dissipative cavity solitons with the resonant
pump. In the dissipative case, the phase space is 4D for σ = 0
and 8D when σ is nonzero. This renders a complete analytical
description rather difficult even in the simplest case σ = 0;
however, the mechanism of the formation of dual-core solitons
persists. In the case σ = 0 Eq. (7) transforms into an algebraic
equation,

(iγ2 + 	2 + |ψ |2)ψ + E = 0. (13)

It can easily be established that the intrinsic bistability exists
when 	2 < −√

3γ2 and the lowest root of the Eq. (13) lies in
the interval 0 < |ψ | <

√
I−, the intermediate one in

√
I− <

|ψ | <
√

I+, and the upper root in the interval
√

I+ < |ψ |,
where

I± =
−2	2 ±

√
	2

2 − 3γ 2
2

3
. (14)

The intrinsic bistability exists for the field E lying in the
interval |E−| < |E| < |E+|, where

|E±|2 = [
γ 2

2 + (
	2

2 + I±
)2]

I±.

Likewise in the conservative case, the field ψ must not be
continuous. Indeed, we found the dissipative solitons with
the discontinuities for the parameters supporting an intrinsic
bistability. We also have shown that these solutions can be
dynamically stable.

In the dissipative case the issue of structural stability is also
of primary importance. We found out that finite σ smooths the
discontinuity but the soliton solutions survive, transforming
into the solitons with two characteristic sizes: The first one is
defined by the diffraction of the cavity mode while the second
one corresponds to the healing length of the discontinuity
governed mostly by the strength of the interaction between
resonators σ . However, in the dissipative case the soliton
intensity depends not only on the soliton frequency (which
is equal to the frequency of the pump) but also on the intensity
of the pump. It means that for some parts of the bifurcation
curve the cavity soliton possesses a single-scale core while
for the other parts of the same bifurcation curve the core
of the soliton has two characteristic scales. The bifurcation
diagrams for different detunings are shown in Fig. 12. Let us
denote a critical value of the ψ field as |ψth| = √

I− such that
all |ψ | > |ψth| are given by the intermediate or the largest
root of the Eq. (7). The soliton trajectory starts on the lowest
background [which is given by the lowest root of the Eq. (13)]
and goes around another fixed point. For certain parameters
it happens that the maximum amplitude of the soliton field
exceeds ψth. Then at this point the soliton trajectory must
switch to a trajectory belonging to the phase space generated by
another root ψ(E). Indeed, our numerical simulations indicate
that when ψ passes the critical value, a folding point appears
on the bifurcation characteristics. At the same time a narrow
pattern starts to develop in the core of the soliton. Hereafter
we refer this folding point as an intrinsic bistability folding
point (IBFP). It is important to note here that for small σ the
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FIG. 12. (Color online) The bifurcation diagrams for dissipative
solitons showing the dependencies of the maximum absolute value of
the ψ field of the soliton on the pump field Ep . The red and blue lines
correspond to σ = 0.0025 and σ = 0.04, respectively. The dashed
red lines indicate the threshold values ψth. Panel (a) illustrates the
case 	2 = 	1 = −1.05 when the threshold value |ψth| lies above
the FFP of the soliton bifurcation curve. The case 	2 = 	1 = −1.2
is shown in panel (b), the threshold value |ψth| lies below the FFP
of the soliton bifurcation curve. The black curves in panels (a) and
(b) show the bifurcation diagrams for the spatially uniform states.
The field distributions of the single- and dual-core solitons are shown
in panels (c) and (d) for 	2 = 	1 = −1.05 and 	2 = 	1 = −1.2,
respectively; the diffraction in the ψ field σ = 0.0025. The soliton
solutions shown in panels (c) and (d) correspond to the points on
bifurcation diagrams (a) and (b) indicated by the purple and the green
circles. The losses are γ1 = γ2 = 0.01.

folding point appears close but not exactly at the threshold
point found for σ = 0; see panels (a) and (b) in Fig. 12. The
typical distribution of the fields in the dissipative single- and
dual-core solitons are shown in Fig. 12(d) for a small value
σ . For larger σ the IBFP becomes less sharp and disappears
for a sufficiently large value of σ ; see the bifurcation curves
for σ = 0.0025 and σ = 0.04 in Fig. 12. Then the bifurcation
diagram of the soliton has only one folding point, which we
refer to as a fundamental folding point (FFP).

Now we address a dynamical stability of dissipative soli-
tons. We have studied the stability by solving the correspond-
ing spectral problem numerically and by direct numerical
simulation of the master equation. The stability properties
of the dissipative solitons are very rich and require special
consideration which is out of the scope of the present paper.
However, it is important to point out that the dissipative dual-
core solitons can be stable and thus amenable to experimental
verification.
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FIG. 13. (Color online) The eigenfrequencies for the stable (a)
and unstable (b) dual-core dissipative solitons. The pumps are
Ep = 0.0106 for the stable soliton and Ep = 0.085 for its unstable
counterpart. The eigenvalues above the red dashed line Imω = 0
correspond to the unstable modes. The development of the instability
is illustrated in panels (c) and (d), showing the temporal evolutions
of the E and � fields, respectively. The other parameters are
	2 = 	1 = −1.5, γ1 = γ2 = 0.01.

Based on the results of our numerical simulations, we found
that the stable soliton usually belongs to the upper branch of the
bifurcation curve close to the folding point. The increase of the
pump and, correspondingly, the intensity of the soliton result in
the instability of the soliton. In panel (a) in Fig. 13 we present
the spectrum of a stable dual-core soliton. The spectrum
reveals one zero eigenvalue corresponding to the translational
symmetry of the soliton. Besides this translational mode, the
other excitations are characterized by the frequencies with
negative imaginary parts which predict the soliton to be
stable. The stability has been confirmed by direct numerical
simulation when the initial conditions were assumed to be in
the form of a soliton perturbed by weak noise.

The discrete part of the spectrum shown in Fig. 13 has
six eigenvalues. When the pump increases two pairs of them
collide and then the imaginary values of two of the eigenvalues
crosses the horizontal axes and become positive and give rise
to the instability. The spectrum of the unstable soliton is shown
in panel (b) in Fig. 13. The onset of the instability is illustrated
in panels (c) and (d) showing temporal evolution of the E and
� fields. One can see that the instability leads to the collapse
of the soliton.

We conclude the section with the following two notes. First,
the instability discussed above is not the only one that can exist
in the considered system. We have chosen it as an example
because this kind of instability is typical at the boundary
separating stable and unstable dual-core solitons. Second, we
have demonstrated the existence of the single-core dissipative
solitons nestling on the lower branch of the dispersion relation;
however, we have not found any significantly new features
associated with these solitons. Since our paper is primarily

devoted to the dual-core solitons, we omit the discussion of the
single-core dissipative solitons. Likewise, we do not discuss
the solitons nestling on the upper branch of the dispersion
characteristics although, in general, they can exist in contrast
to the conservative case. These issues will be addressed
elsewhere.

VI. DISCUSSION AND CONCLUSION

We studied theoretically and numerically the formation and
dynamics of the solitons in the cavities with built-in nonlinear
resonators represented by the metallic nanoparticles embedded
in a planar FP cavity filled with a nonlinear medium. The
dispersion in the system is mainly supplied by the cavity mode,
whereas the nonlinearity is provided by the resonators.

To estimate the realistic parameters of the envisaged
resonator which makes it possible to investigate the dynamics
of the dissipative solitons, we have used an effective medium
approach which describes the cavity in terms of the effective
dielectric function. We have found that the effective damping
associated with losses in the Au or Ag nanoparticles does
not allow achieving of sufficiently large Q factor of the
resonator which may support the formation of the dissipative
solitons. To overcome this limitation, we suggest replacing
lossy nanoparticles with active coated ones, which leads to
significant reduction of the width of the extinction coefficient
that characterizes the localized plasmon resonance associated
with such nanoparticles. We have demonstrated, using the
example of Ag-coated nanoparticles, that for sufficiently high
pump power the active material compensates for the losses and
one can achieve sufficiently large enhancement of the surface
plasmon field in the vicinity of the nanoparticle that would
consequently allow achieving a sufficiently large Q factor of
the resonator.

Then we studied the soliton solutions of the mathematical
model consisting of two coupled equations for the amplitudes
of the cavity mode and the resonators mode. It was shown
that in the case of the focusing nonlinearity there may exist
solitons nestling on the mode belonging to the lower branch
of the dispersion characteristics. It is important to point out
that the core of the solitons can have two different scales in
the case when the built-in resonators do not interact with each
other directly, i.e., the diffraction of the resonators field is small
σ ≈ 0.

For vanishing diffraction of the resonator field σ = 0, we
studied analytically the conservative solitons with disconti-
nuities in the resonators field. It was shown numerically that
these solitons with discontinuities are structurally stable and
that small diffraction in the resonators field smooths the dis-
continuities but does not destroy the solutions. To investigate
the dynamical stability of the solitons, we solved numerically
the spectral problem governing the stability of the solitons.
We found that the dual-core solitons can be dynamically stable
and thus they can be observed experimentally. To confirm the
results of the spectral analysis and to study the development
of the instability, we performed direct numerical simulations
of the dynamical equations. We found that unstable solitons
collapse. Further, we studied numerically the behavior of
quasisolitons in the presence of weak losses. It was shown
that the losses result in the adiabatic variation of the soliton
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parameters until the quasisoliton reaches the intensity at which
the soliton collapses.

We also investigated the properties of the dissipative
solitons in the presence of the pump; we found the field
distributions in the solitons and calculated their bifurcation
curves. It was shown that for a weak diffraction of the ψ

field the intrinsic bistability gives rise to a folding point
on the bifurcation diagram. The stability of the dissipative
solitons were studied by solving the spectral problem for small
excitations on the soliton solutions and by direct numerical
simulations of the dynamical equations. It was established
that the dissipative solitons can be stable and thus offer a
possibility of experimental observation. The typical scenarios
of an instability onset were considered and demonstrated by
numerical simulations.

The main goal of the paper was to explore the properties
of the dual-core solitons nestling on the lower branch of
the dispersion characteristics, however, we would like to
acknowledge that the systematic study of the solitons nestling
on the upper branch, the problem of the soliton motion and
the related issues are of much interest as well and they will be
addressed elsewhere.

The dual-scale solitons can be seen as an optical analogy
of such objects as Abrikosov vortices in superconductors that
also have two characteristic scales. In superconductivity the
equation for the magnetic field is linear and possesses a large
characteristic scale. In contrast, the equation for the order
parameter is nonlinear and is characterized by a very short
spatial characteristic scale. In this sense the resonators mode
in the optical system considered here is analogous to the order
parameter in superconducting systems and the cavity field in
the optical system is analogous to the magnetic field in the
superconducting counterpart. These properties link our optical
system to the superconductors of the second kind. One has to
keep in mind however, that the mechanisms of the interactions
between the subsystems are profoundly different.

Finally, we note that the existence of a very narrow core
of the solitons can prove to be of great importance for
practical applications. For example, the narrow core should
make the soliton very sensitive to the spatial inhomogeneities
of the cavity and therefore the dual-core soliton controlled by
the holding beam can be used for the scanning the cavities and
in the measuring of their local characteristics.
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APPENDIX

To perform numerical 3D simulations of our system we used
OPTIFDTD software [36], which employs the FDTD approach
[37] that produces a direct numerical solution of the time-
dependent Maxwell’s curl equations. To get a spectral response
FDTD as a time-domain simulation method, a discretized
Fourier transform is used. The calculated transmitted power
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FIG. 14. (Color online) The transmitted power as a function of
wavelength in the FP cavity with Au nanoparticles calculated by
the FDTD method: the localized SPP resonance associated with a Au
nanoparticle in SiO2 without a FP cavity (blue dashed line); the lowest
FP resonance at λ = 805 nm (magenta dash-dotted line); Fano-like
resonance associated with a Au nanoparticle in the FP cavity (solid
red line).

Pz as a function of the wavelength λ in the direction of the z

axis can be calculated as a sum of two terms associated with
TE and TM polarizations Pz = P TE

z−x + P TM
z−y , where P TE

z−x =
1
2 Re[

∫ ∫
ExH

∗
y dxdy] and P TM

z−y = − 1
2 Re[

∫ ∫
EyH

∗
x dxdy].

We used a Gaussian modulated continuous-wave propagating
in the direction of the z axis as an input wave signal. The
width of the FP cavity L = L1 + L2 (see Fig. 1) is chosen in
such a way that the corresponding waveguide cutoff frequency,
i.e., the lowest frequency mode supported in the FP cavity,
coincides with the frequency of the surface plasmon resonance
localized on the metallic nanoparticle. Namely, we consider
a Au nanoparticle embedded in the silica glass in absence of
a FP cavity characterized by the dielectric function εm = 2.1.
In Fig. 14 we present the results obtained by using the FDTD
method: the transmitted power Pz vs wavelength λ for FP
cavity with metallic nanoparticles. Specifically, transmitted
power associated with an isolated nanoparticle placed in the
silica glass without a FP cavity is indicated by the blue dashed
line in Fig. 14, which reveals strong resonance associated
with excitation of the localized surface plasmon mode at
λ = 809 nm.

The lowest FP cavity resonance without nanoparticles
occurs at λ = 805 nm (magenta dash-dotted line) when the
width of the FP cavity is d = 190 nm. The interaction between
the two modes leads to a strong modified resonance shape
of the resulting transmittance, which reveals a Fano-like
resonance behavior; see the red solid line possessing a peak
at λ = 920 nm and a dip at λ = 786 nm corresponding to a
single plasmon extinction peak. Such a behavior indicates the
formation of the plasmon-polariton polariton, where a peak
and a dip in transmittance indicate excitation of the lower and
upper plasmon-polariton branches at normal incidence.

We note that the field pattern belonging to the mode at
λ = 786 nm has strongly localized character which resembles
a localized surface plasmon mode, while the distribution of the
field corresponding to the mode at λ = 920 nm corresponding
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to the lower plasmon-polariton branch reveals a waveguide-
like-mode standing-wave pattern.

The Fano-like resonance with minimum centered at =
786 nm (blue line in Fig. 14) can be described in terms
of a simple analytical model presented in [38]. In general,
the microscopic origin of the Fano resonance arises from
the constructive and destructive interference of a narrow
discrete resonance with a broad spectral line or continuum.
This phenomenon has been observed in various plasmonic
nanostructures [39]. The excitations are achieved through
the interference of a plasmon resonance, which acts as the
continuum state (CS), with a discrete state (DS), which can be
the excitation of the diffraction channel such as, e.g., gratings
or plasmonic crystals or the excitation of a guided mode.

In our case we consider the interaction of a plasmonic
resonance (acting as the CS) with a discrete resonance
(corresponding to the lowest FP resonance), giving rise to
Fano-like shape. The shape of the resonance resulting from
the coupling of a SPP resonance with a FP waveguide mode
has the form

σ (E) = (E + q)2

E2 + 1
, (A1)

where q is the shape parameter which determines the asym-
metry of the profile and E = 2(E − Ed )/�d is the reduced
energy, which depends on the energy of the incident photon
E, the energy of the DS Ed , and its width �d . The presence of
the plasmonic resonance in the Eq. (A1) can be included via
coupling of the DS (LSP) to the continuum that is given by
ν
√
L(E), where ν is the coupling factor between the CS and

the DS and L(E) is the plasmonic line shape

L(E) = 1

1 + (E−Ep

�p/2

)2 , (A2)

with Ep and �p denoting energy and width of the plasmon
resonance, respectively. On the other hand, coupling of an
incident photon to CS is given by g

√
L(E), where g is a

coupling factor. From comparison between the results for
the extinction coefficient obtained from FDTD numerical
calculation shown in Fig. 14 we found that the width of
the plasmonic resonance �p = 150 nm and FP resonance
�d = 500 nm; see Fig. 15. The coupling of the DS to the
continuum is given with a good approximation via Fermi’s
golden rule by ν2 = �d/2π , which yields factor ν = 8.9. The
coupling factor g is given by the probability of exciting the
plasmon resonance with a plane wave, in other words by
the plasmon resonance width, that is, g2 = �p/2π which for
�p = 150 nm yields g = 4.9.

We found that when the parameters �p and ν that charac-
terize plasmonic resonance shown in Fig. 14 are substituted
into the homogenization model, the resulting width of the
resonance associated with the cavity does not make it possible
to achieve a sufficiently large value of the resonator Q factor
estimated from the homogenization model to be Q > 50,
which is required to support the existence of the dissipative
solitons. In order to increase the value of the Q factor it is
necessary to significantly reduce the width of the extinction
coefficient associated with the plasmon resonance. This is,
however, not possible to achieve by using an arbitrary lossy
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FIG. 15. (Color online) The shapes of the FP resonance at λ =
805 nm (dash-dotted magenta line), SPP resonance at λ = 809 nm
(dashed blue line), and Fano resonance (solid red line) determined
according to analytical model [38], all of which correspond to curves
obtained from numerical simulations shown in Fig. 14.

metallic nanoparticle because its extinction cross section is
dominated by absorption.

On the other hand, it is well known that the optical
properties of the nano-sized plasmonic particles can be signif-
icantly affected when the material absorption is compensated
for. Specifically, we follow the concept of an active coated
nanoparticle proposed in Ref. [40], in which it was shown
that in the case of a concentric nanometer-sized spherical shell
consisting of an active three-level gain medium core fabricated
from rare-earth-doped silica and a surrounding plasmonic
metal shell, the active material can compensate for the intrinsic
losses and even overcome them so that the resulting extinction
cross section is dominated entirely by radiated power. To
characterize gain medium we have used a general permittivity
model described in terms of the real part of the refractive index
n and imaginary part of the refractive index k, which represents
the optical loss or gain constant, while the permittivity is

500 550 600 650
−5

0

5

10

15

20

25

30

35

40

λ [nm]

S
ca

tt
er

in
g

 c
ro

ss
 s

ec
ti

o
n

 [
n

m
2 ]

Q
scatt

,Q
ext

Q
abs

Ag coated NP d
out

 = 48 nm
active SiO

2
 core (k = −0.1) 

d
in

= 36 nm in PMMA(n = 1.495)

FIG. 16. (Color online) The effective scattering, extinction and
absorption cross sections Qscatt, Qext (red solid line), and Qabs

(magenta solid line) for a Ag nanoparticle embedded in PMMA
with active SiO2 core characterized with the optical gain constant
k = −0.1.
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FIG. 17. (Color online) The effective scattering, extinction, and
absorption cross sections Qscatt, Qext, and Qabs for a Ag nanoparticle
embedded in PMMA with active SiO2 core characterized with the
optical gain constant k = −0.3.

defined as ε = n2 − k2 + i2kn. By following Ref. [41] we
have introduced gain by considering a susceptibility model
suitable for representing such a three-level system. We used
the real and imaginary parts of the rare-earth-ion-doped silica
susceptibility that have been determined with the parameters
Nσem and Nσabs, where N is the concentration of the rare-earth
ions and σem and σabs denote the emission and absorption cross
section, respectively.

According to a generalized version of the Mie theory, the
standard definition a positive value of the absorption cross
section σabs indicates power lost due to absorption within

the nanoparticle, while a negative absorption cross section
is interpreted as the net power leaving the nanoparticle, i.e.,
the power being radiated by the active coated nanoparticle.
When σabs becomes zero, the losses associated with the lossy
coated nanoparticle are compensated for by the gain. When
we increase pump power, σabs becomes more negative, the
total amount of light leaving the coated nanoparticle increases;
i.e., the scattered radiation is accompanied by power being
radiated by the active coated nanoparticle. The scattering and
absorption efficiencies Qscatt and Qabs are defined as the ratio of
the corresponding cross sections σscatt and σabs to the geometric
cross section of the particle.

By using a computational approach for simulation of
plasmonic nanoparticles [34,35], we have calculated the
effective scattering, extinction, and absorption cross sections
for both Au and Ag nanoparticles and we have found that
Ag nanoparticles display significantly larger extinction and
scattering cross section than those for Au. Therefore, hereafter
we consider Ag-coated nanoparticles with outer diameter
dout = 48 nm with active SiO2 core with inner diameter din =
36 nm characterized by the optical gain constant k = −0.1
that is embedded in poly(methyl methacrylate) (PMMA)
(nPMMA = 1.495). In this case, the losses are compensated
for by gain, and as a result effective absorption cross section
Qabs (magenta solid line) is nearly zero, while scattering and
extinction cross sections Qscatt and Qext coincide (red line);
see Fig. 16. When pump power is further increased, i.e.,
k = −0.3—see Fig. 17—one obtains significantly enhanced
effective scattering cross section (blue solid line), while both
extinction (red dash line) and absorption (magenta dash-
dotted line) cross sections become negative, thus indicating
outcoming flux power from the active nanoparticle.
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