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Observation of surface dispersive shock waves in a self-defocusing medium
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We have theoretically and experimentally investigated surface dispersive shock waves (SDSWs) at the interface
between a self-defocusing medium and a linear medium. We demonstrate that SDSWs can form when the linear
refractive index of the self-defocusing medium is much greater than that of the linear medium, and the initial
nonlinearity far outweighs diffraction. SDSWs have been observed at the interface between air and a weakly
absorbing liquid when the power of the input beam far exceeds that needed to trap a surface dark soliton. We
also observed the formation of SDSWs when an input beam was projected away from the interface, and observed
these patterns at the curved surface.
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I. INTRODUCTION

Dispersive shock waves (DSWs), also known as undular
bores or collisionless shock waves, arise from the breaking
and mode dispersion of a nonlinear wave. They represent
a fundamental type of fluid behavior that has an oscillatory
front, appearing near wave-breaking points and expanding
afterwards, and necessarily exist in a dispersive fluid with an
effective pressure and an intensity or density background that
can support undamped waves. Although the study of DSWs
started long ago in hydrodynamics [1,2] and theoretical
characterizations of such structures have improved steadily
[3–5], the field has suffered from a lack of reproducible
laboratory experiments. In 1970, Taylor et al. were first to
observe DSWs in a strongly rarified plasma in a laboratory
[6]. Since then, experimental observations of DSWs have
been made in many physical systems, such as Fermi gas [7],
Bose-Einstein condensates [8–10], and electron beams [11].

Under certain regimes, the behavior of light mimics the
dynamics of a fluid [12]. Therefore, an all-optical experimental
platform can be proposed for studying the dynamics and
observing the formation of DSWs. In nonlinear optics, DSWs
were initially studied in optical fibers in the temporal domain
[13,14]. Recently, DSWs with a laser beam as an initial input
have been the subject of intense study in many optical sys-
tems, including photorefractive media [15–17], thermal media
[18–24], nematic liquid crystals [25], nonlinear arrays [26],
quadratic media [27], disordered media [28], and nonlinear
junctions [29]. Here, diffractions result in spatial dispersion
that regularizes the shock front through the onset of fast oscil-
lations in an expanding region after the wave-breaking points.

In contrast, surface spatial solitons also have been studied
extensively over the last few years [30–33]. Surfaces or bound-
aries have been found to play an important role in the propaga-
tion and stability of nonlocal solitons [31,34,35]. Recently, we
investigated the existence and stability of surface dark solitons
(SDSs), both theoretically and experimentally [36].

In this research, we undertake further theoretical and
experimental investigations of the nonstationary propagation
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of the SDS at the interface between a nonlocal self-defocusing
medium and a linear medium, where the linear refractive index
of the self-defocusing medium is much greater than that of the
linear medium. Surface dispersive shock waves (SDSWs) have
been found to survive in a regime where the initial nonlinearity
far outweighs diffraction (i.e., a regime where the background
intensity of the input beam far exceeds that needed to trap a
fundamental SDS). In this regime, the input beam is attracted
towards the interface until it converges to a reflecting point,
also called dark focus point or wave-breaking point. After that
point, the beam is repelled against the interface and SDSW,
composed of one-dimensional black and gray soliton [37]
trains, emerges gradually with constant velocity and darkness.
These optical SDSWs may find their counterparts in a classical
fluid or other fluidlike medium.

II. THEORETICAL MODEL

The light beam dynamics considered here is modeled ac-
curately by the (1+1)-dimensional dimensionless Schrödinger
equations

(i) in nonlocal self-defocusing medium, i.e., x � 0,

i
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∂z
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�n − σ 2 ∂2�n

∂x2
= −|u|2, (2)

(ii) in linear medium, i.e., x > 0,

i
∂u

∂z
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∂2u

∂x2
− ndu = 0. (3)

Here, u(x,z) is the complex amplitude envelope of the light
beam, where x and z stand for the transverse and longitudinal
coordinates. �n denotes the nonlinear index change in the
nonlocal self-defocusing medium. σ represents the degree of
nonlocality of the nonlinear response. nd > 0 describes the
difference in the linear refractive index between the nonlocal
self-defocusing medium and the linear medium.

In addition, we address a TE polarized light beam, where
the continuity of the transverse field implies u(x = +0) =
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u(x = −0). In our dimensionless system, the value of nd is
much greater than the actual difference in the linear refractive
index between the nonlocal self-defocusing medium and the
linear medium [33]. When the actual linear refractive index of
the nonlocal self-defocusing medium and the linear medium
are n0 and nL, the dimensionless index difference nd = (n2

0 −
n2

L)k2
0w

2
a/2, where k0 is the wave number in vacuum and wa is

a characteristic length of beamwidth used for normalization.
In most experiments, we have (k0wa)2 � 1 for any paraxial
beams. Therefore, nd � 1 is easily satisfied even for a relative
small difference between n0 and nL. Details can be found
in Ref. [33]. When nd � 1, almost all the light beams will
propagate in the higher-index nonlinear medium [31]. Here,
we choose nd = 500 in numerical simulations. The asymptotic
behaviors of SDSWs when x → −∞ are similar to those of
bulk DSWs [21]. For the theoretical study of SDSWs in this
paper, ∂u/∂x|x→−∞ = 0 are used in numerical simulations
for convenience. According to the experimental instance [31],
the boundary condition for the nonlinear index change is
assumed to be ∂�n/∂x|x=0 = 0 and �n(x → −∞) = 0. For
a thermal nonlocal nonlinear medium, this implies that the
interface between the nonlinear and linear medium is thermally
insulating and the other surface of the nonlinear medium is
thermally conducting.

To gain a better understanding of shock behavior, it is
instructive to express Eq. (1) in a hydrodynamic form by
applying the transformation u(x,z) = √

ρ(x,z) exp[iφ(r,z)],
where ρ = |u|2 plays the role of the density of an optical
fluid and φ is the corresponding phase. Separating real and
imaginary components yields two Euler-like fluid equations

∂ρ

∂z
+ ∂(ρv)

∂x
= 0, (4)
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Here the spatial chirp v = ∂φ/∂x plays the role of the
transverse velocity of an optical fluid. Eq. (4) expresses
conservation of power during propagation of a light beam
along the z axis, whereas Eq. (5) is a momentum equation
describing that optical flow results from nonlinear pressure
and diffraction. Diffraction always makes the input beam flow
away from the surface, whereas the nonlocal self-defocusing
nonlinearity causes the beam to flow towards the regions of
low intensity (i.e., the vicinity of the surface). The surface is
equivalent to a potential barrier that prevents the beam from
flowing into the linear medium. Because of the rejection of the
surface, a beam flowing into the surface converges to a dark
focus point corresponding to an infinite gradient of the hydro-
dynamic type around a point of vanishing intensity. Around the
focus point, the beam begins to divide. After the focus point,
SDSW is progressively manifested. It consists of distinctive
one-dimensional black and gray soliton trains and maintains a
fixed velocity and darkness flowing away from the surface.

III. NUMERICAL SIMULATIONS

Numerical simulations of SDSWs at the interface between
a nonlocal self-defocusing medium and a linear medium are

FIG. 1. (Color online) Numerical simulation of SDSWs based on
Eqs. (1)–(3) with σ = 2.4. (a), (b) Propagation of SDSWs for different
N . (c), (d) Snapshots of case (a) at a different propagation distance
z: nonlinear index change (blue long-dashed curve) and optical fluid
density (black solid curve) compared with the input beam (dashed
curve). Dashed-dotted lines show the interface.

based on Eqs. (1)–(3). Here, the input amplitude envelope
u(x,z = 0) = NW (x), where W (x) is a fundamental SDS
solution of these equations [36] and N2 describes the intensity
of the background. N2 = 1 shows that the initial nonlinear
effect balances the diffraction, whereas N2 > 1 shows that
the initial nonlinear effect is stronger than the diffraction. The
diffraction effect makes the input beam move away from the
surface in the x-axis direction, during propagation in the z-axis
direction. In addition, it also makes the transverse velocity v

of the optical fluid in the x-axis direction greater where the
background intensity is greater. The beam then will spread
under the diffraction effect. In contrast, nonlocal defocusing
nonlinearity makes the beam move towards the surface in the x-
axis direction during propagation in the z-axis direction. When
the two effects mutually balance, the beam will SDS propagate.
When the initial nonlinear effect is much stronger than the
diffraction, the beam will propagate in the form of SDSWs.

A group of typical SDSW results is shown in Fig. 1. A
smooth input beam [Figs. 1(a) and 1(b)], the profile of which is
shown in Figs. 1(c) and 1(d), will move progressively towards
the surface in the x-axis direction during propagation in the
z-axis direction until it converges to a reflecting point (i.e.,
wave-breaking point) at a finite distance. At the z-axis position
of this reflecting point, the profile of the beam, as shown
in Fig. 1(c), becomes very steep in the vicinity of surface,
where the gradient of the beam is very large. The convergence
of the beam increases the strength of the diffraction effect.
Beyond that point, diffraction regularizes the front through
the gradual appearance of black and gray soliton trains (i.e.,
SDSWs) as shown in Fig. 1(d). The angle of the black and
gray solitons with the propagation direction (i.e., transverse
velocity v) increases as their relative darkness decreases as
displayed in Figs. 1(a) and 1(b). In particular, the transverse
velocity of the black soliton is zero and it propagates parallel
to the surface.
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FIG. 2. (Color online) Impact of nonlocality degree on SDSW
and relationship between SDSW and bulk DSW with N = 21. (a)–(c)
Propagation of SDSWs and bulk DSW. (d) Comparison of DSW
profiles between (a) and (c) at a certain distance. Dashed-dotted lines
show the interface or the symmetry axis of bulk DSW.

A comparison of Figs. 1(a) and 1(b) shows that the
number of black and gray soliton trains increases for larger
N . In particular, the SDSW is composed of half a black
soliton and N ′ − 1 gray solitons, where N ′ = N for integer
values of N or the closest integer to it when N is not an
integer. From Figs. 1(c) and 1(d), we can also see that the
nonlinear index change is very steep at the breaking point and
subsequently becomes smooth and fluctuating corresponding
to the oscillatory front.

Next we investigate the impact of nonlocality degrees
on SDSWs and the relationship between SDSWs and bulk
DSWs. A group of typical SDSWs with different nonlocality
degrees is shown in Fig. 2(a) and 2(b). A comparison of the
SDSWs shows that the number of black and gray soliton
trains decreases as the degree of nonlocality degree observed
at a certain distance (e.g., at z = 0.7) increases. However,
the degree of nonlocality does not qualitatively change the
number of black and gray soliton trains if we observe them
at a great enough distance from where the SDSWs were
formed. It merely retards the breaking of the beam and the
formation of SDSWs, and broadens the region of black and
gray soliton trains. From Fig. 2(d), or by comparing Fig. 2(a)
and 2(c), we find that a SDSW in nonlocal self-defocusing
media can be regarded as half of a bulk DSW with an
antisymmetric amplitude distribution. The relationship has
also been found between surface solitons and bulk solitons
in nonlocal nonlinear media [33,38].

Further insight into the behavior of SDSWs can be gained
by determining the reflecting distance and finding its functional
relationships with background intensity N2 and nonlocality
degree σ . The simulated results are shown in Fig. 3. The
reflecting point corresponding to |∂v/∂x| ∝ ∞ is found
at xr = 0 [Fig. 3(a)]. The reflecting distance zr decreases
monotonously with increasing N2 as displayed in Fig. 3(b) and
increases linearly with increasing σ as revealed in Fig. 3(c).
This is because an increase in the background intensity makes
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FIG. 3. (Color online) Determination of the reflecting distance
and its functional relationship with N2 and σ . (a) Chirp profile for
various z with N = 18, and σ = 2.4. (b) The reflecting distance vs
N 2 for different σ . (c) The reflecting distance vs σ for various N .

the input beam converge more quickly to the surface and then
form a reflecting point. In contrast, the nonlocality degree
tends to weaken nonlinearity and slows the convergence of the
input beam to the surface.

IV. EXPERIMENTAL RESULTS

Experimental observations of SDSWs were performed at
the interface between diluted India ink (a solution of carbon in
water) and air, where the dilution was made by adding 1 mL
India ink to 20 L pure water. The solution was contained in
a designed cell of dimensions 16 mm × 16 mm × 15 mm in
the x, y, and z (propagation) directions, respectively. Here, the
bottom and lateral faces of the cell were made of 1-cm-thick
copper for conducting heat and maintaining temperature. The
top face of the cell was exposed to air to form a thermal
insulating interface. Additionally, the input and output faces
of the cell were made of 0.3-mm-thin glasses for propagating
SDSWs. It is noteworthy that the solution is a thermally
nonlocal self-defocusing medium. The carbon in the solution
absorbs the light and subsequently creates a thermal gradient
in response to the light intensity. The heat diffuses throughout
the sample cell and produces a nonlocal index of refraction
by way of the thermo-optic effect. Neglecting the effects of
convection, the resulting system can be described by Eqs. (1)
and (2) [18].

The experimental setup is shown in Fig. 4. A laser beam
with a wavelength of 532 nm and a 1/e2 beam width of 1 mm

FIG. 4. (Color online) Sketch of the experimental setup.
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FIG. 5. (Color online) Observations of SDSWs. Intensity dis-
tribution of the output beam, collected at the output face of the
cell (x-y plane), for different input powers: (a) P = 2 mW, (b)
P = 1.68 W, (c) P = 2.51 W, (d) P = 5.24 W, which is almost y
invariant. Dashed-dotted lines show the interface.

was half blocked by a blade at the input face (z = 0 mm) of
the cell, and then projected onto the solution parallel to and
along the interface between the solution and the air. Then,
we observed the intensity distribution at the output face (z =
15 mm) of the cell by imaging the output beams with a charge-
coupled device (CCD) camera.

We performed a series of experiments to observe the
formation of SDSWs. A group of typical results is shown
in Fig. 5. At a low power of 2 mW, the nonlinear effect
is very weak. The input beam projected along the interface
spreads and its beam edge gradually leaves the interface during
the propagation due to diffraction. As shown in Fig. 5(a),
the dark stripe becomes very wide at the output face. By
increasing the input beam power to 1.68 W, the nonlinear
effect is observed to strengthen and balance diffraction. The
input beam shrinks towards the surface during propagation.
The dark stripe becomes very narrow at the output face and
forms a SDS, as shown in Fig. 5(b). When the input power
increases further to 2.51 W, the initial nonlinear effect is
much stronger than the diffraction. The beam splits into many
filaments consisting of black and gray soliton trains and forms
a SDSW, as shown in Fig. 5(c). By increasing the input power
further to 5.24 W, the beam splits even further, as shown in
Fig. 5(d). A comparison of Figs. 5(c) and 5(d) shows that the
number of black and gray soliton trains grows with power. It is
noteworthy that the distribution of the optical density is almost
invariant along y, as expected. This validates the assumption in
the model of a y-invariant system. These experimental results
are qualitatively consistent with the above numerical results.

We next observed the formation of SDSWs when the input
beam is projected away from the air-solution interface in the
x-axis direction. The sample cell was moved up and down in
the x-axis direction, in order to control the distance � between
the input beam edge blocked by the blade and the interface,

FIG. 6. (Color online) (a)–(c) Experimental observations and
(d)–(f) simulation comparison of SDSWs when the input beam
is projected � away from the air-solution interface in the x-axis
direction. (a)–(c) The profiles of the input beams (z = 0 mm) and the
SDSWs (z = 15 mm) are obtained through the average of the intensity
distribution (almost y-invariant) at the input and output face of the
cell along the y-axis direction. The input power is 5.24 W. (d)–(f)
The nonlocality degree σ = 2.4 and background intensity N = 21.
Dashed-dotted lines show the interface.

that is the distance of the input beam away from the interface.
In our system, the intensity distribution of the optical beams
over the propagation lengths involved is almost invariant along
y. The intensity distribution of the input beams and the SDSWs
recorded at the input (z = 0 mm) and output (z = 15 mm) face
of the cell is averaged along the y-axis direction to convert into
the profiles of the input beams and the SDSWs.

A group of typical experiment results is shown in Fig. 6(a)–
6(c). Here, we first observed the formation of SDSWs when the
input beam is projected along the interface. Figure 6(a) shows
the profiles of the SDSW (z = 15 mm) and the corresponding
input beam (z = 0 mm). Then, we observed the formation of
SDSWs when the input beam is projected 113 μm away from
the interface, as shown in Fig. 6(b). Figure 6(c) shows the
formation of SDSWs when the input beam is projected 194 μm
away from the interface. We can see that the filamentization
number increases with increasing the distance. This is because
the velocity of the beam arriving at the interface increases
as the distance increases. The collision of the beam with the
interface will be stronger and the dispersive shock behavior
reflected by the interface will also be more obvious.

Figures 6(d)–6(f) show a group of typical numerical
results as comparison. Figure 6(d) shows the formation of
SDSWs when the input beam propagates along the interface.
Figures 6(e) and 6(f) show the formation of SDSWs when
the input beam propagates 0.82 and 1.64 away from the
interface. We can see that the filamentization number increases
with increasing distance. The numerical simulation agrees
qualitatively with the experimental results.

Finally, we observed the formation of SDSWs along curved
surfaces. The input beams were projected along the rim of the
cell, i.e., the x = 0 face. The amount of the solution in a cell
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FIG. 7. (Color online) (a)–(c) Experimental observations and
(d)–(f) simulation comparison of SDSWs forming along curved
surfaces. (a)–(c) The profiles of the input beams (z = 0 mm) and
the SDSWs (z = 15 mm) are obtained through the average of the
intensity distribution (almost y invariant) at the input and output
face of the cell along the y-axis direction. The input power is 5.24
W. (d)–(f) The nonlocality degree σ = 2.4 and background intensity
N = 21. Dashed-dotted lines show the interface.

was adjusted to change the shape of the surface of the solution.
The intensity distribution of the input beams and the SDSWs
recorded at the input (z = 0 mm) and output (z = 15 mm) face
of the cell is also averaged along the y-axis direction to convert
into the profiles of the input beams and the SDSWs.

A group of typical experiment results and simulation com-
parison is shown in Fig. 7. First, we observed the formation of
SDSWs along a concave surface. Figure 7(a) shows the profiles
of the SDSW (z = 15 mm) and the corresponding input beam
(z = 0 mm). Figure 7(d) is a simulation comparison in this
case. Here the input beam propagates in the z direction along
the concave surface x = z(z − 0.6)/0.04. Then, we observed
the formation of SDSWs along a planar surface. The SDSW
result and the corresponding input beam is shown in Fig. 7(b).
The corresponding simulation comparison is shown in Fig.
7(e), where the input beam propagates in the z direction along
the planar surface x = 0. Figure 7(c) shows the result of SDSW
formed along a convex surface with the corresponding input
beam. The corresponding simulation comparison is shown in

Fig. 7(f), where the input beam propagates in the z direction
along the convex surface x = −z(z − 0.6)/0.04. Compared
with SDSWs at the planar surface, SDSWs at the concave
surface become thin, whereas SDSWs at the convex surface
become thick. This is because the beam will arrive at a concave
surface after traveling a shorter distance with a lower velocity,
and similarly arrive at a concave surface after traveling a longer
distance at a higher velocity. The experimental results agree
qualitatively with the numerical simulations.

V. CONCLUSIONS

We can summarize our investigation of surface dispersive
shock waves (SDSWs) composed of black and gray soli-
ton trains by considering both theoretical and experimental
approaches. Theoretically, we found that SDSWs can form
at an interface between a self-defocusing medium and a
linear medium, when the linear refractive index of the self-
defocusing medium is much greater than that of the linear
medium, and the initial nonlinearity far outweighs diffraction.
The number of black and gray soliton trains increases as the
background intensity increases, and the nonlocality degree
does not qualitatively affect this scenario. In fact, a SDSW
in a self-defocusing medium can be regarded as half of a bulk
dispersive shock wave (DSW).

Experimentally, we observed SDSWs at the interface
between air and a weakly absorbing liquid (diluted India ink)
when the input power far exceeds that needed to trap a surface
dark soliton. We also observed SDSWs when an input beam
was projected away from the interface, and observed them
at curved surfaces. The experimental results are qualitatively
consistent with the numerical results. Such SDSWs integrate
the unique features of both surface waves and DSWs in bulk
self-defocusing media. These results may motivate further
study of DSWs in conjunction with surface waves.
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