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Beyond the adiabatic approximation, we develop a quantum theory for optical probe pulses propagating in
electromagnetically-induced-transparency (EIT) media by including Langevin noise operators and asking the
field operator to satisfy bosonic commutation relation. Influences on the degradation of quantum noise squeezing
from optical depth of atomic ensemble, strength of control field, and ground-state decoherence are studied in the
slow light, as well as storage and retrieval, for a squeezed probe pulse. Moreover, to give guidelines for realization
of quantum interfaces based on EIT media, we demonstrate that the quantum squeezing of output probe pulses

could be preserved with a stronger classical control field.
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I. INTRODUCTION

Storage and retrieval of light plays a crucial role both
for optical information processing and communication net-
work [1,2]. In particular, through the coherent Raman in-
terference, classical information of probe pulses, its profile
and phase, can be controlled with another strong field in the
electromagnetically-induced-transparency (EIT) media [3-5].
In addition to classical light sources, nonclassical light sources,
such as single-photon states, are investigated first in order
to map quantum state of light onto atomic ensembles as
a quantum memory device [6—10]. Then, another family of
nonclassical light sources, i.e., squeezed states with reduced
quantum fluctuation below that of vacuum, are performed in
experiments with demonstrations in the slow light [11,12],
as well as the storage and retrieval with a squeezed vacuum
pulse [13,14].

For quasicontinuous input fields with perturbed quantum
fluctuations, it is known that EIT media become opaque for
squeezed states [15]. Oscillatory transfer of initial quantum
properties between the probe and pump fields is studied
to preserve nonseparable entanglement between quantized
electromagnetic fields [16]. However, the above theoretical
approaches work only for continuous waves, and are not ap-
plied for probe pulses in the storage and retrieval process [17].
Within the adiabatic approximation, such a light storage and
retrieval process can be clearly illustrated by the picture of
dark-state polariton, which is a linear superposition between
optical pulse field and atomic polarization state [18-20]. In
this framework of dark-state polaritons, photon and atomic
states can be mutually transferred by adjusting the control
field strength without introducing any extra noises. Even
though one can introduce a squeezed operator for these
quantized dark-state polaritons, the corresponding squeezed
state transfer, quantum correlation, and noise entanglement
between probe field and atomic polarization are found as a
consequence in the adiabatic limit [21]. Furthermore, in terms
of quantizations, photon and atomic states follow different
commutation relations. It is thus very desirable to develop
a generalized quantum theory to go beyond the adiabatic
approximation for pulse propagation in EIT media.
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In this work, we develop a quantum theory for optical probe
pulses propagating in the EIT media, by introducing Langevin
noise operators to go beyond the adiabatic approximation. By
requiring the quantized probe field to satisfy bosonic com-
mutation relations, one can find the corresponding quantum
noises contributed from all possible dissipative processes.
Based on our theory, first we demonstrate quantum fluctuations
for the slow-light case when a squeezed vacuum pulse is
incident into a EIT medium with a strong classical control
field. Then, we study the quadrature noise fluctuations for
a squeezed pulse during the storage and retrieval process.
Our results not only show the degradation of quantum noise
squeezing but also give agreement both to the realizations in
the slow light experiment reported in the literature, as well
as storage and retrieval of squeezed probe pulses. Based on
the quantum theory developed in this work, we reveal that
even in atomic systems with a higher optical density, one can
preserve the quantum noise squeezing in the output probe field
by using a stronger control field. In nonlinear bulk media and
optical fibers, the quantum theory for pulse propagation has
been applied successfully for the generation of macroscopic
nonclassical states exhibiting quadrature squeezing, intrapulse
and/or interpulse quantum correlation, and entangled soliton
pulses [22-27]. The quantum theory for propagating pulses
in EIT media also paves the guideline for quantum memory
devices in quantum information and computation.

The remaining part of this paper is organized as follows.
In Sec. II, we start from the Maxwell-Bloch equations for a
quantized probe pulse and a classical control field in the EIT
configuration. Without applying the adiabatic approximation,
we derive a propagation equation for the quantized probe
pulse by including Langevin noise operators. Then, in Sec. III,
quadrature variances in the noise fluctuations for probe pulse
are derived both for control fields in time-independent (slow-
light) and time-dependent (storage and retrieval) cases. Results
based on adiabatic approximations are also shown as a com-
parison, which clearly reveal a discrepancy on the output noise
fluctuations. Moreover, in Sec. IV, we discuss the quadrature
noise fluctuations for different optical depths of atomic
ensemble and different strengths of control field for slow-light
processes. Finally, we give a brief conclusion in Sec. V.
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FIG. 1. (Color online) EIT system considered in a single-A
configuration, where the transitions |1) <> |3) and |2) <> |3) are
driven resonantly by a quantized probe field, £, and a classical control
field denoted by its Rabi frequency, €2., separately. The decay rate in
the excited state |3) is denoted by I'.

II. THEORETICAL MODEL

We begin with the EIT system in a single-A configuration,
as illustrated in Fig. 1. Here, two copropagating beams pass
through a three-level atomic ensemble in the z direction, with
the total number of atoms denoted by N. A probe field excites
the transition from state |1) to state |3), with the transition
frequency ws;, which is treated by a quantum field operator
&(z,1) in the slowly varying envelope approximation. The
transition between |2) and |3), with the transition frequency
w3y, is driven resonantly by a classical control field with
the Rabi frequency denoted by €2.(z), which is a time-
dependent function during the storage and retrieval process.
The two-photon detuning is set as zero to have a transparency
window at the frequency ws;. In the Heisenberg picture, the
corresponding equations of motion to describe EIT systems
can be written as [3,4]

a+ 9\ & igns (1)
— 4+c— )€ =igNés,
ot 9z gvons
J R P A
5,013 = ~r13613 +igl +iQ612 + Fis, )
J R ok A
5012 = —Y12612 + Q2613 + Fi2, 3)

where 6,, = |u)(v] (u,v =1,2,3) is used as the collective
atomic operator, the constant g denotes the atom-field coupling
strength for the transition |1) < |3), and ¢ denotes the speed
of light in the vacuum. Dephasing rate for the dipole transition
o013 is denoted by y;3, being equal to I'/2, where I is the decay
rate of the excited state |3). The decoherence rate between two
ground states here is yj,. Moreover, in order to satisfy the
dissipation-fluctuation theory, Langevin noise operator, £i3
and F 12, 1s also introduced, which has a zero-mean expectation
value (F,,) = 0[28,29].

Since the control field is stronger than the probe field, we
can safely assume that the atomic population is almost in the
ground state. Then, the corresponding dipole transition &3
changes slowly compared to the excited state decay rate. As a
consequence, one can ignore the time derivative term in Eq. (2)
and obtain

1 A ~
613 = y—(igé’ +iQ:612 + F13). 4
13
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By substituting the solution shown in Eq. (4) into Eq. (1) and
Eq. (3), we have two coupled equations as follows:

9 3\ 4 N . gNQ. N .
< >5=_g &_ 8N, g

bp+i=—F3, (5
Y13 Y13 Y13

Q.|? Q* . Q* . N
—5122—(1/12-1— [£2] )512—g—55+i—cFl3+F12-
Y13 Y13

(6)

From Eqgs. (5) and (6), it is clearly illustrated that the decay
process in the atomic excited state contributes to the noise
fluctuations both for field operator £ and atomic dipole
moment &1,. Typically, the adiabatic condition is applied
for Eq. (6), by assuming &1 = —g £ /2.. However, such
an adiabatic approximation does not take into account the
quantum difference between quantized probe field and atomic
polarization, i.e., the former one must obey the bosonic com-
mutation relation, while the latter one follows the fermionic
commutation relation.

In Appendix A, through the Laplace transform, the cor-
responding output probe field can be found in the following
form:

Q(1)

E(z,1) = e %E0,7) + Jae ™

Y13
X /T d‘L"Q’f(r/)e*)/m(‘[fl")*l{(r,r')@
o e
Xé((),t’)—i—ﬁ(z,r), )

Here, I,(x) is the modified Bessel function, resulting
from the inverse Laplace transform L£~!(s~"tDess™') =
z 2N . .
(2)”/21,1(«/4QZ). Moreover, a = gc—yz is half of the optical
depth  (Dop = 20) for an EIT medium, and «(z,7) =
# f;/ dt"|Q.(x")? is a dimensionless quantity. The formula
for this effective Langevin noise operator 7i can be found in
Eq. (A4) for all the details.

In Eq. (7), there are three different terms contributing to the
pulse propagation. The first term, following Lambert-Beer’s
absorption law, corresponds to the attenuation of input probe
pulse owing to the decay process in the excited state. The
second term is dominant in the EIT system, which shows that
the probe field can almost penetrate through atomic ensembles.
The last term, 71, can be expressed in terms of the original noise
operator FB and Fn, as shown in Eq. (A4). Even though
the required Langevin noise operator, 71, has a complicated
form, nevertheless, we recast this effective Langevin noise
operator by asking the field operator £ to satisfy the bosonic
commutation relation, i.e., [S(L,‘C),(S‘AT(L,‘E)] = 1. Due to
the fact that the EIT medium is a linear system, we can
contribute all possible noises stemmed from the interaction
between atomic reservoirs into this effective Langevin noise
operator 7i. We want to remark that in deriving Eq. (7), the
adiabatic approximation that 61, &~ —g & / 2. is not applied
here. By including Langevin noise operators, the required
commutation relation for atomic polarizations to satisfy is
automatically included in this propagation equation for the
quantized probe pulse. Base on this equation, we derive the
quadrature variances in noise fluctuations for probe pulse in
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the following section, along with a comparison to the slow-
light and light-storage-retrieval processes.

III. QUANTUM NOISE REDUCTION IN EIT MEDIA

Now, we apply our theoretical results to the slow-light and
light-storage-retrieval cases with a squeezed vacuum pulse
propagating in the EIT medium. Here, we define in-phase
and out-of-phase quadrature operators for the quantized field
X=&8+&" and Y = —i(€ — &"), which correspond to the
amplitude and phase fluctuations, respectively. For a given
length of EIT media, z = L, this in-phase quadrature operator
at the output can be found explicitly:

Xp(t) = e Xo(r) + f dt' f(r,THXo(t) + X, (8)
0

where X, =i+ Al is the corresponding quadrature noise
operator, and the shorthand notation f(z,7’) is defined as

Fr.t) = Ja e 2OE)
Y13

X 37712(1’71'/)*1((1’,'[/)@

Ve@t)

Based on Eq. (8), we can obtain the quadrature variance for
output probe pulse. That is

€))

(X7 (D)) = e Pr(X3(0)) + T, fo dt'[f(r. T P(X5())

+ Tpe P/ f(z,0)(X2(0)) + (X2), (10)

where Dg, = 2. We also have applied the equal-space com-
mutation relation for the quantized field, [S (L, ),f f (L,;py)] =
T,8(71 — 12), with the time constant 7, used to imply that
Tp‘1 JE f(z,t)€(z,t) dt has physical meaning of photon num-
ber inside the whole light pulse. The mathematical formula to
obtain a proper time constant, 7, is shown in Appendix B.
In deriving Eq. (10), uncorrelated relation between input field
and noise reservoir is also assumed, i.e., [)A(o,f(,,] = 0. The
quadrature variance of noise operator 7 is found by following
Eq. (7), along with the bosonic commutation relation for the
probe field, i.e.,

(Xo)=1—ePr -1, / do'[f(z, 7))
0

—Tye P/ f(z,7) + 2(iTh). (11)

Here, (7i#) is proportional to the mean photon number in the
bosonic thermal reservoir, which is zero at the absolute zero
temperature 7 = 0 K. By substituting Eq. (11) into Eq. (10)
with the help of Eq. (9), the output quadrature variance for
probe pulse in EIT media has the form

Q.)? .
| F' (Dopt)) (1-(X3(0))

(X7(0)=1—e¢ Pon (1 + T,

- T,,/O dt'[f(r, 7P (1 — (X3(x))) + 2(7'a).
(12)

From Eq. (12), we can see clearly that for a coherent state
input, with the (X, %(r)) = 1, the output variance is above one
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with additional noise fluctuations from thermal noises in the
coupled reservoirs. When the input field is a squeezed light,
ie., (X%(r)) < 1, the second and third terms in Eq. (12) will
reduce the output variance accordingly, while the last term in
Eq. (12) always destroys the quantum squeezing, resulting in
a larger quantum variance in the output field.

At T = 0K, even though contributions from thermal noises
vanish, quantum fluctuations still remain. In the following
calculations, we treat the system at 7 =0 K, and do not
take thermal fluctuations into consideration by excluding any
external thermal noises. In the typical experimental conditions
to realize EIT phenomena, contribution from the second term
in Eq. (12) is quite small for Doy > 1. In this scenario, the
dominant contribution to the degradation in quantum noise
squeezing comes from the third term, which can be viewed as
the initial squeezed variance weighted by the response function
[f (z,7)]? through a convolution integral.

Now, we turn to the studies on a squeezed vacuum pulse
propagating in EIT media. The incident intensity distribution
of probe field is described by a Gaussian profile, ¥ (t) =
exp[—12/At?], with the width of intensity At at e~!, and
such a weighting function is imposed on the probe pulse for
the initial quantum variance, i.e.,

(X3(0)=1—(1—e)y(r), (13)

where ry is the maximum value for the degree of squeezing. It
can be seen that the squeezed variance reaches its maximum
value at the center of input pulse, while the background
variance reflects that of vacuum states as the standard quantum
limit.

For the slow-light case, by referring to the experiment
conducted by Akamatsu et al., in Refs. [11,12], we apply
our quantum theory of pulse propagation to reveal the output
variance in a quantized probe field by setting the system
parameters as follows. The width of probe field is set as
At =~ 255/ T, optical density of the system is Dgp = 10, and
the maximum degree of squeezing in the incident pulse (at the
peak) is rop = 0.115. Here, all the parameters are normalized
with respect to the decay rate in the excited state, I". The results
of output variance calculated by Eq. (12) are shown in Fig. 2(a)
for three different strengths of control field, i.e., 2. = 0.13T,
0.07T", and 0.04TI", respectively. The peak position of output
pulse follows the same analytical formula for an EIT medium.
As the strength of control field decreases, the group velocity of
probe pulse goes slowing down accordingly. From Fig. 2(a),
one can see that the quantum variances for squeezed probe
pulse evolve as that of the classical profile of probe pulse in
this slow-light region. In this scenario, the squeezed photons
carried by probe pulse propagate as a whole with the same
slowing-down group velocity. Moreover, the decay process
from the atomic system adds additional fluctuations into the
probe pulse, resulting in the degradation of squeezed variance.

One may wonder what would be the results in the adiabatic
limit. Here, we also provide the comparison between adiabatic
and nonadiabatic approaches. According to the adiabatic
approximation, we neglect the time derivative, damping terms,
and related Langevin noise operators in Eq. (6). Then, by
applying 6o = —g £ /2. and using the Laplace transform
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FIG. 2. (Color online) Evolutions of the quadrature noise variance of a squeezed probe pulse propagating in the slow-light region:
(a) shows the results beyond the adiabatic approximation, while (b) shows the results under the adiabatic approximation. Here, (i) shows
the initial noise fluctuation of an incident squeezed vacuum pulse with squeezing degree ry = 0.115, while (ii)—(iv) show the noise fluctuations
of output pulses. The coupling strengths of control fields are (i) 2. = 0.13T", (iii) 0.07T, and (iv) 0.04T", respectively. The optical density
(Do) of the system is 10, the width of input squeezed pulse at e™! is At = 255/ T, and the ground-state spontaneous decay rate is set as
Y12 =0.

method, we have the output probe field in the form Equation (15) gives the output noise variance in the
adiabatic limit, based on which we show the results in Fig. 2(b)
A Qc(T) 4 . .
E(z,1) = £(0,7,). (14) for the slow-light case. As a comparison, we apply all the same
Qc(tp) system parameters used in Fig. 2(a). One can see that even

According to Eq. (14), the ratio between probe and control though a time delay in the output probe pulse is revealed in

fields is fixed, i.c., £(z ’r) /9.(7) = £(0,7,)/ Qu(t,). Thus we the adiabatic limit, the resulting quadrature noise fluctuations
s 1.C.y 9 c - stp c\ltp)-. . . .

can clearly see that the ground-state coherence propagates .rem:;llm tl:f ls)atpe ?s t.he ;Iip ut\gpLse.hThat 15 f:onsequenkcle

with the probe field under the adiabatic approximation. The in the adiabatic limit [21]. With the comparisons to the

. . . nonadiabatic results shown in Fig. 2(a), a discrepancy between
corresponding quadrature noise variance for output probe field . - . L e
can be found as the nonadiabatic and adiabatic limits can be understood clearly.

Next, we apply our theoretical results to the light storage and
5 Q(1)
i) =1-|

Qc(7p)

retrieval process with a squeezed vacuum pulse, by referring to
the experimental parameters reported in the literature [13,14].
Here, the set of system parameters are pulse width of the probe

where 7, satisfies the relation G(z,) = G(t) — gZTNZ, and  field At =255/T and the maximum degree of squeezing

G(r) = for d7'|Q.(t)[2. Here, we also introduce an effective in the incident pulse ry = 0.115. For the probe pulse being

2
} [1 —(X3(z,))] +2¢@ta)y, @15)

noise operator #, in order to satisfy the required bosonic f““y. stored, we choose the optical density Doy = 50, Fhe
commutation relation Rabi frequency of control field before and after storage being
0 . 0 — 01 _
Y ) Tw T e S
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8 . & g -0.4 10.06 ©
S ! b > (S R . -1:F 2 @
27050 ] (i) o ! .' e
5 : ! ’0.04g E -0.6 ! : 0042
g '. -' 23 <) 2
@ 1 ! 10.023 S -0.8f (i) ! ‘ 0.02a
= ' 1 5 > U ' =]
(@] 1 ! 5 O ! 1 Q
1 ' L ‘ & ] . ' ©
0 2000 4000 6000 8000 100%0 "o 2000 4000 60(90
Time ( in units of 1/T) Time ( in units of 1/T)

FIG. 3. (Color online) Quadrature noise variance of a squeezed probe pulse during the storage and retrieval process. (a) The case when the
probe pulse is fully stored in the EIT medium, with Dy, = 50. Here, the input noise fluctuation is shown in (i), while the output fluctuation
retrieved after a storage period 7, = 4000(1/ I') is shown in (ii). The corresponding control field strength as a function of time is shown in (iii).
(b) The case for the storage only a partial of probe pulse, with D, = 10. Here, the initial noise fluctuation of incident squeezed vacuum pulse
is shown in (i), the noise fluctuation of output pulse in the slow-light case, with Q. = 0.05T", is shown in (ii), and the corresponding noise
fluctuation of output pulse after storage and retrieval process, with the storage time g = 2500(1/ I'), is shown in (iii). The corresponding control
field strength is depicted in (iv). Other parameters used are as follows: the width of input squeezed pulse at the intensity e~! is At = 255/T
and the ground-state decay rate y;, = 0.
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Q. = 0.07T", and the period during the storage ¢, = 4000/ .
Results on the output quadrature variance in the probe pulse
after storage and retrieval process is shown in Fig. 3(a).
Degradation on the noise squeezing due to atomic noise
fluctuations can be seen clearly for the output pulse. Again,
our theoretical formula can be also applied to the case when
the probe field is only partially stored, as shown in Fig. 3(b)
for Doy = 10, the Rabi frequency of control field before and
after storage being 2, = 0.05T", and #;, = 2500/ I". Based on
these, one can expect to have an optimization protocol for the
squeezed probe field in the storage and retrieval process.

IV. DISCUSSIONS

For the comparison between nonadiabatic and adiabatic
limits, as shown in Eq. (12) and Eq. (15), one can see that
the difference comes from the optical density (Do = 2a) of
atomic system and the related response function [ f (7, )2 It
is known that for an atomic system with a higher Doy, the decay
of classical field goes faster. The decay is proportional to the
exponential function exp[— Dop ], which is the same scenario
for the quantum noise variance as shown in the second term
of Eq. (12). However, the response function [ f(t,7’)]* gives a
counterintuitive result. To have a clear picture on this response
function, we consider the slow-light case as an example, i.e.,
Q. = const, and rewrite | f(r,7")|> shown in Eq. (9) in terms
of D()pt:

"2 2 _ (Dop)e” P s
Lf (@00 = [f(ADF = =2 ]
2 2
< exp <_4|szc| Ar) 2 [ [4(Dop)| | Ar} |
r r

(16)

where A7 =1 — 7/. From Eq. (16), one can find that the
response function, f, in the slow-light case is a function of
optical density Doy and control field strength .. When .
increases, the width of this response function decreases. In
this scenario, the interaction time between field and atoms
is reduced accordingly, resulting in preserving the output
quantum fluctuations easily. On the other hand, the output
noise variance suffers less with a smaller optical density.

To illustrate the influence from different optical densities,
in Figs. 4(a) and 4(b), we show the quadrature variance of
a squeezed probe pulse propagating in the slow-light region
for (a) Dope =5 and (b) Dgy = 50, respectively. Naively, a
larger value of the optical density results in a large degradation
in the degree of output noise squeezing. However, if the
strength of control field €2, increases at the same time, such a
degradation in the noise squeezing can be avoided. In Fig. 4(c),
the minimum variance of quadrature noise fluctuations (the
dip in the profile) is shown for different optical depths (Dgp)
of atomic ensembles and different strengths of control field
(£2,) in the slow-light region. With the same parameter set,
the evolutions of quadrature noise variance are depicted for
Dope =5, 10, and 50 as a comparison. One can see that as
the control field €2. is small, a quick change in the quadrature
noise variance occurs for all values of D,,. However, when
the control field strength €2, is large enough, the quadrature
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FIG. 4. (Color online) Quadrature noise variance of a squeezed
probe pulse propagating in the slow-light region for different optical
densities: (a) Doy = 5 and (b) Do = 50. (i) The quadrature variance
of the incident squeezed pulse; while (ii)—(iv) show the quadrature
variance of output pulses under different control field strengths.
(i) Q. = 0.1T", (i) 2, = 0.07T, and (iv) 2. = 0.05T", respectively.
The peak variance of quadrature noise (the dip in the profile) is shown
in (c) as a function of 2., for Dy = 5, 10, and 50, respectively.

noise approaches a constant value. It can be seen that different
values of D result in the same constant value of quadrature
noise variance when €2, becomes larger. This result reflects
that when a wide enough transparent window is supported in
EIT media, the output noise variance can be kept as the same
as that of the input one for all values of Dgy’s.

Moreover, in practical experiments, spontaneous decay in
the ground states, y;,, can be another decoherence mechanism
for the degradation in the output noise squeezing. Here,
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FIG. 5. (Color online) Quantum noise variance of a squeezed
probe pulse with the introduction of ground-state decoherence
y12. The input variance is shown in (i), while the output vari-
ances are depicted for (i) 2. = 0.1005T",y;, = 0.0033T, (iii) Q2. =
0.0715T",y1, = 0.0019T", and (iv) 2. = 0.495T",y;, = 0.00087T",
respectively.

we take the ground-state decoherence into consideration by
referring to the experiments conducted by Akamatsu et al.,
who have performed measurements on the noise squeezing in
the slow-light case, both for continuous waves [11] and for
pulses [12]. By adopting experimental parameters from the
measured photon flux shown in Fig. 4(c) of Ref. [12], we
calculate the output quadrature noise variance of a squeezed
probe pulse in Fig. 5. Good agreement between our theoretical
results and experimental observations can be found easily.
For all the three cases shown in Fig. 5, theoretical results on
the output noise squeezing is slightly better than those from
experimental measurement. Such a small discrepancy on the
values comes from the reason that only quantum noises are
considered, while all other possible noise sources from the
environment are neglected. It is noted that one can expand
Eq. (12) with nonresonance processes by replacing y;3 by
v13 —iA, and yi» by y1o — i8, respectively, where A, and 6
are the corresponding one- and two-photon detunings in EIT
media.

V. CONCLUSION

In summary, we have developed a quantum theory for
the quantized probe pulse propagating in EIT media beyond
the adiabatic limit. By requiring the bosonic commutation
relation for quantized probe field to be satisfied, we derive
the required Langevin noise operator, which contributes to the
quadrature variance in the output field. Our results show the
degradation of quantum noise squeezing, which is missing
in the adiabatic limit, both for the slow-light and light-
storage-retrieval processes with a squeezed probe pulse. Such
a quantum mechanical approach gives a clear physical insight
to the quantum noise variance in the output probe field, related
to the control field strength and optical density of atomic
ensemble. This work provides a deeper understanding in the
quantum memory with squeezed light sources, and can also be
applied to the relevant quantum information processing.
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APPENDIX A

In this Appendix, we provide the formula to derive Eq. (7)
by solving the coupled equation of Egs. (5) and (6). First
of all, we define the interaction window both in space and
time. Here, at t = 0, the probe field enters the EIT medium
with the length of atomic cloud L, and light-atom interactions
take place only inside the atomic ensemble, i.e., 0 <z < L
and ¢ > 0. Furthermore, we also transform our system into
the moving frame, by changing the variables to T =t — z/c
and 7’ = z, respectively. It should be noted that the control
field, 2., propagates with the speed close to light speed,
or equivalently Q.(z,1) = Q.(t — z/c) = Q.(t). Since the
initial condition of input probe field is given, we apply the
Laplace transform by changing the coordinate space z — s,
ie., by defining E(s,7) = E[E(z )], Ps, 1) = L[612(z,7)],

Fi5(s,7) = L[F13(z,7)], and Fi2(s,7) = L[F12(z,7)]. Then in
the s domain, Egs. (5) and (6) become
E(s,7) = (s)! [ y“( )P( 1)+ £(0,7)
+ iﬂms,m] , (AD)
cY13
0 < |Qc|2> A
—P(s,t)=—(yn+ P(s,7)
ot Y13
2 )E( ,T) + F(s,1), (A2)

Y13

where s’ =5 + £ Aj, and F(s,7) = ly—Flg(S 7) + Fo(s,7).
By substituting Eq (Al) into Eq. (A2) and solving the
differential equation, we can obtain the solution as shown
below:

. R N
P(s,T) = P(s,0)exp [—mr —k(7,0) + g—K(r,O)(s/)"}
cY13

8

T
dt'QH(t)e T« @ ) ) (s)) !
C )
Y13

N
X exp {g—K(T,T/)(S/)_l}
V3
+/ die—7E—T)— K(”)exp{ ——k(7,7)(s")” }
0
., . gNQ
X\ F(s.t) —i——

CY13 Y13

The first term in Eq. (A3) can be neglected because we assume
that there is no polarization initially. We substitute this solution
into Eq. (A1) and perform the inverse Laplace transform. Then,
we can have the output probe field propagating through an EIT

(s/r‘FB(s,r/)) . (A3
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medium as shown in Eq. (7). Here, the corresponding noise operator 7i(z,7) in Eq. (7) is

az,1) =i—

N [* ¢ N
; 8 dz' exp |:—0l (1 - Z—)] Fi3(z,7)
Y13 Jo 2z

N Q. / N
—ig— ) / / d7'Q (e r(r—t)-«(, I)exp[ all— Z—)i| (\/40[/(('( /) (1 — Z—)) Fi3(Z,t))
Y13 Y13 Z b4

N Q.
g (‘C)/ / dZQ (.[)e yi(t—1)— K(Tf)expl: o

07/1% Y13

APPENDIX B

In Eq. (12), one can calculate the output variance of a
quantized probe field with any given noise distribution initially,
(Xo(1)). The dominant term in the output variance is the
convolution integral from the response function f and related
input variance. To find the proper time constant, 7, defined
in Eq. (12), we look at the steady state in the slow-light
case by taking the input probe field as a continuous wave,
ie., ()A(O(r)) = XO and . = const. In this scenario, one can
directly reduce Eq. (12) into the following form for the output
variance:

2
(X2)=1 _[ Do (1 +T,,|QrfI (Dopt)>
+ T,,/ dAt [f(AT)]2:| (1-(X3). @D
0

Here, we have extended the integration from zero to infinity
for such a time-independent input variance. Moreover, the

1 —_ /
(1 — Z—)} ‘/a( Z)11 (\/4alc(r,r/) <1 - Z—)) Fis(Z', )
z k(t,T’) Z
- ﬁszc(r) ' dt’/z dz e 7Rk @) ey |:—a ( - i)] Iy <\/4ouc(‘r ) (1 — —)) Fia(z 7).
CY13 0 0 z z

(A4)

(

integration inside the bracket in Eq. (B1) can be solved
analytically by using the integral identity:
Joodxte ™ 12(Vbx) = e [Io(y) — ()] — 1, where
y = b/2a. The resulting quadrature variance can be found as

o (Do t)yl2F ] &
Xj)=1-exp|——2"——|(1—(X5). (B2
( L> p|: )/12F+2|Qc|2 ( < 0)) ( )
In Eq. (B2), one can see that the exponential term corresponds
to the intensity damping due to the ground-state decoherence,

y12. In the derivations shown above, the commutation relation
is required to satisfy

[£(0,6).£1(0,t)] = T, 8(t — 1), (B3)
based on which we have the explicit form for the time constant,
T,

P
_ l—‘v DOPl (e$ - e_s)(Dopt)_y2
TNE Io(E) — L)

(Dop)|Q2¢
yal+21Q1>°

(B4)

with the shorthanded notation & =
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