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Generating quadrature squeezed light with dissipative optomechanical coupling
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The recent demonstration of cooling of a macroscopic silicon nitride membrane based on dissipative coupling
makes dissipatively coupled optomechanical systems promising candidates for squeezing. We theoretically show
that such a system in a cavity on resonance can yield good squeezing, which is comparable to that produced by
dispersive coupling. We also report the squeezing resulting from the combined effects of dispersive and dissipative
couplings; thus the device can be operated in one regime or the other. We derive the maximal frequency and
quadrature angles needed to observe squeezing for given optomechanical coupling strengths. We also discuss the
effects of temperature on squeezing.
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I. INTRODUCTION

The field of cavity optomechanics continues to register
significant progress and a comprehensive review has recently
appeared [1]. The important developments include cooling
of the mirror to its ground state [2–4], mode splitting [5,6],
quantum state engineering of the mechanical motion [7–9], and
electromagnetically induced transparency (EIT) and its various
applications [10–17]. More recently, strictly quantum effects
like squeezing of the mirror [18–25] and the cavity field [26–
36] as well as generation of entangled photon pairs [37–39] are
receiving considerable attention. Ponderomotive squeezing
of light [27–32] using an on-resonance driving laser is one
of the most promising ways to generate squeezed light in
cavity optomechanics. Safavi-Naeini et al. [28] fabricated a
micromechanical cavity resonator from a silicon microchip
and observed the fluctuation spectrum at a level (4.5 ± 0.2)%
below the shot-noise limit despite highly excited thermal state
of the mechanical resonators (104 phonons). Purdy et al. [29]
placed a low-mass partially reflective membrane made of
silicon nitride in the middle of an optical cavity and pushed the
squeezing limit to 32% (1.7 dB) by cooling the membrane to
about 1 mK. Additional ways of producing optical squeezing
in optomechanical systems have also been proposed. One
example is use of a double-cavity optomechanical system
to generate two-mode squeezed light [33,34]. Another
example [35] is generation of quadrature squeezed light
using the dissipative nature of the mechanical resonator in
a single cavity driven by two differently detuned lasers. In
a closely related subject, Lehnert and co-workers reported
the experimental realization of entanglement between cavity
output photon-photon pairs [37] and entanglement between
mechanical motion and microwave fields [38].

It should be noted that much of the work on cavity
optomechanics uses dispersive coupling. However, there are
a few studies for dissipative coupling [40–47]—the intrinsic
cavity lifetime depends on the mechanical motion. A theoret-
ical analysis of dissipative coupling in cavity optomechanics
was reported by Elste et al. [40]. They pointed out that the
system gives rise to a remarkable quantum noise interference
effect which leads to the Fano line shape in the back-action
force noise spectra. Experimentally, Li et al. [41] for the
first time reported dissipative coupling in a cavity optome-
chanics system that comprises a microdisk and a vibrating

nanomechanical beam waveguide. Based on such a setup,
Huang and Agarwal [42] proposed a scheme to beat the stan-
dard quantum limit (SQL) by irradiation of squeezed light into
the cavity. Hammerer and co-workers [43,44] concentrated on
dissipative coupling by placing an optomechanical membrane
inside a Michelson-Sagnac interferometer. This scheme is
advantageous in the sense that the dissipative coupling is
not due to internal dissipation, but the output photons are
detectable. Weiss et al. [45] presented a comprehensive study
of dissipative coupling in both the weak- and strong-coupling
limits, and they found the parameter regions for amplifica-
tion of cooling as well as EIT and normal-mode splitting.
Wu et al. [46] experimentally reported the application of
torque sensing by using dissipative optomechanical coupling
in a photonic crystal split-beam nanocavity. Very recently,
Sawadsky et al. [48] demonstrated cooling starting from room
temperature to 126 mK based on the combined effects of
dissipative and dispersive coupling. This is quite a remarkable
development where the couplings can be changed, adding flex-
ibility to the operation. Encouraged by the significant cooling
in this experiment, we examine the optical squeezing that can
be produced in a dissipative optomechanical interaction.

In this paper, we develop analytically the theory of
ponderomotive squeezing in cavity optomechanics with dis-
sipative coupling. We show that the squeezing magnitudes
with dissipative coupling are comparable to those achieved
using dispersive coupling. This squeezing scheme broadens
the scope of the quantum study of nonlinear interaction in
optomechanics. Our proposal is based on the parameters
reported in [48]; however, it is not limited to this system and
is applicable to any optomechanical systems that can provide
combined interactions. This squeezing scheme works in the
unresolved-sideband regime, which has advantages in its easier
system fabrication requirements. Moreover, this particular
parameter regime makes it feasible for obtaining squeezed
light with low-frequency mechanical oscillators, although
thermal phonons are still an issue. We show that the system can
generate a 3 dB squeezed field by use of reasonable driving
laser powers when the thermal phonon occupancy is as large as
1.5 × 105 (the corresponding bath temperature T = 1 K). The
effect of a higher bath temperature can be offset by increasing
the driving laser power. As a by-product, our theory explains
the new instability region for small pump laser red-detunings
which was discovered in the experiment [48].
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The structure of this paper is organized as follows: In
Sec. II, we introduce the Hamiltonian of the optomechanical
system with both dispersive and dissipative couplings and find
the input-output relation for the cavity field. In Sec. III, we
provide the analysis of the squeezing effects under purely
dissipative coupling. We compare it with the conventional dis-
persive squeezing and show that they both generate squeezed
output with similar magnitudes but in different quadratures. In
Sec. IV, we study the effects of the combined coupling on the
squeezing and find the optimal quadrature angle for squeezing.
We also study the effects of the mechanical mode at finite
temperature. In Sec. V, we analyze the effective detuning of the
driving laser due to the change of cavity resonance frequency,
and then show its effect on the squeezing spectra. We present
our conclusion in Sec. VI.

II. MODEL

We consider an optomechanical system in which a mechan-
ical oscillator (frequency ωm) is coupled to an electromagnetic
cavity. We model the cavity mode with the annihilation opera-
tor a and the mechanical oscillator with the displacement x and
momentum p, or with dimensionless operators Q = x/xZPF

and P = (�xZPF)p where xZPF = √
mωm/� is the mechanical

zero-point fluctuation. The mechanical displacements weakly
modulate the cavity resonance frequency ωc(Q) and damping
rate κ(Q). We expand them to linear order to get ωc(Q) ∼= ωc −
gωQ and κ(Q) ∼= κ − gκQ, where the dispersive coupling
constant gω = (∂ωc/∂Q) and the dissipative coupling constant
gκ = (∂κ/∂Q). In the general cases, the dispersive coupling
is larger than the dissipative coupling by a factor of gω/gκ =
ωc/κ � 1. However, by placing a micromembrane inside a
Michelson-Sagnac interferometer, it has been shown that gκ

and gω can be made of the same order.
When the optomechanical system is driven by a strong

laser with frequency ωl and power P , the Hamiltonian can be
written, in the rotating frame, as

H = �(ωc − ωl)a
†a + 1

2 �ωm(Q2 + P 2) − �gωa†aQ

+ i�
√

2κ(Q)[a†(El + ain) − H.c.], (1)

whereEl =
√

P
�ωl

and ain represents the input vacuum noise. To

proceed, we linearize the Hamiltonian following the standard
procedure by writing a = as + a1, P = Ps + P1, and Q =
Qs + Q1. The mean values of the steady state can be calculated
as

as =
√

2κsEl

κs + i�s

, Qs =
(

gω

ωm

+ �sgκ

κsωm

)
|as |2, (2)

and Ps = 0. Under the effect of the driving laser, the
mechanical oscillator displacement Qs modulates both the
cavity resonance frequency and the decay rate. Hence we
define �s = (ωc − gωQs) − ωl as the driving laser detuning
from the effective cavity resonance frequency; and we define
κs = κ − gκQs as the effective cavity decay rate. Both �s and
κs depend on the power of the driving laser. However, by tuning
the driving laser frequency ωl , one can always cause it to be on
resonance with the effective cavity frequency, i.e., �s = 0. Un-
der this condition, the effective cavity decay rate is determined
by the quadratic equation κ2

s − κκs + 2E2
l gωgκ/ωm = 0. In

the typical optomechanical systems, the term 2E2
l gωgκ/ωm is

negligible compared to κ and hence κs
∼= κ . For example, with

the parameters reported in [48], 2E2
l gωgκ/ωm < κ/103 when

the driving power is below 10 mW.
Then the linearized Hamiltonian takes the form H = H0 +

Hint + Hdamp and

H0 = ��sa
†
1a1 + 1

2
�ωm

(
Q2

1 + P 2
1

)
,

Hint = −�
G∗

ωa1 + Gωa
†
1√

2
Q1 − �Gκ

a
†
1 − a1√

2i
Q1, (3)

Hdamp = −�

√
2κs(a

†
1ain − a†

ina1) − �
Gκa

†
in − G∗

κain

2
√

κs

Q1,

where Gω,κ = √
2asgω,κ is the driving-field-enhanced dis-

persive (dissipative) coupling constant. The form of the
Hamiltonian (4) suggests that it is more intuitive to write the
cavity field in terms of its quadratures: X = (a1 + a

†
1)/

√
2,

Y = (a1 − a
†
1)/(

√
2i), and [X,Y ] = i. In this paper, we are

interested in generating squeezing light in the output field.
Under the effect of dissipative coupling, the standard input-
output relation

ain + aout =
√

2κs

(
1 + gκ

2κs

)
a ≈

√
2κsa, (4)

since gκ � κs . This relation holds for the field quadrature
Xin + Xout ≈ √

2κsX, and similarly for Y . Hereafter, we first
focus on the on-resonance driving scenario (�s = 0) and then
discuss the squeezing effect with detuned driving by relaxing
this condition. When �s = 0, the coupling strength Gω,κ is
real. The dynamics of the system can be described using the
quantum Langevin equations

1

ωm

Q̈1 + γm

ωm

Q̇1 + ωmQ1 = GωX + GκY + Gκ√
2κs

Yin + ξ,

(5)

Ẋ = −κsX − GκQ1 +
√

2κsXin, (6)

Ẏ = −κsY + GωQ1 +
√

2κsYin. (7)

Here, ξ models the Brownian noise acting on the mechanical
oscillator, and it obeys 〈ξ (t)ξ (t ′)〉 = γm(2n̄th + 1)δ(t − t ′),
where n̄th is the mean phonon occupation number. The
correlations for the vacuum field are 2κs〈Xin(t)Xin(t ′)〉 =
2κs〈Yin(t)Yin(t ′)〉 = κsδ(t − t ′). In the unresolved-sideband
limit κs � ωm � γm; hence the vacuum noise dominates over
the Brownian mechanical noise at low n̄th.

We illustrate the coupling relations of the quantum noises
in the optomechanical system in Fig. 1. The field quadratures
are subjected to the vacuum input noise Xin and Yin. More
importantly, we notice that, due to the dissipative coupling
Gκ , the input vacuum noise Yin is also coupled directly
to the mechanical motion Q1. At the same time, the form
of the interaction Hamiltonian shows that Q1 interacts with
the different cavity quadratures at the rates Gω and Gκ .
Therefore, Yin is fed into the system through two paths: (i)
it directly couples to the cavity field; and (ii) it couples
to the mechanical motion Q1 dissipatively and then the
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FIG. 1. The input quantum noises and their coupling relations
among different quadratures (X,Y ) of the cavity field and mechanical
mode (Q1). The dashed arrows show the noise input and coupling
due to dissipative coupling Gκ .

optomechanical interaction transfers the noise to the cavity
field. These two paths interfere in a coherent manner and lead
to the Fano resonance in the cavity field spectrum.

We calculate the output field by combining Eqs. (4)–(7)
after the taking Fourier transform and find

(κs − iω + χGωGκ )Xout + χG2
κYout

= (κs + iω − χGωGκ )Xin −
√

2κsχGκξ, (8)

(κs − iω − χGωGκ )Yout − χG2
ωXout

= χG2
κXin + (κs + iω + 2χGωGκ )Yin −

√
2κsχGωξ, (9)

where χ = ωm/(ω2
m − ω2 − iωγm) is the mechanical sus-

ceptibility. Equations (8) and (9) describe how the input
quantum noises add to the quantum fluctuation of the output
fields. Without optomechanical interactions, the output field
preserves the input field fluctuations, i.e., 〈X2

out〉 = 〈Y 2
out〉. As

one increases the optomechanical interaction strengths Gω

and Gκ , the noises are distributed in a nonlinear manner. The
quantum squeezed states are generated when the variance is
lower than that of the coherent state, i.e., Sθ = 〈Z2

θ 〉 < 1/2 for
a specific quadrature Zθout = Xout cos θ + Yout sin θ .

III. SQUEEZING WITH PURELY DISSIPATIVE COUPLING

The phenomenon of ponderomotive squeezing with purely
dissipative coupling can be obtained by setting the dis-
persive coupling strength Gω = 0 and �s = 0, so that
Yout

∼= (χG2
κ/κs)Xin + Yin and Xout + (χG2

κ/κs)Yout
∼= Xin +

mechanical noise. The vacuum input Xin is coupled not only
to Xout but also to Yout via the mediated mechanical mode
Q1 scaled by the mechanical suspectibility χ and dissipative
coupling strength Gκ . When one measures the field Zθout =
Xout cos θ + Yout sin θ at θ �= 0◦ or 90◦, Yout interferes partially
with Xout since χ (ω) is generally complex. The interference
leads to squeezed quantum noise. The output squeezing
spectrum is

Sdiss
∼= 1

2
+ G2

κ

κs

(2|χ |2�diss cos2 θ − Reχ sin 2θ ), (10)

where �diss = G2
κ/(4κs) + γm(2n̄th + 1) is the effective me-

chanical damping rate. By optimizing θ and χ (ω) we obtain
the optimal squeezing magnitude

S
opt
diss = γm(4n̄th + 3)

G2
κ/κs + 2γm(4n̄th + 3)

. (11)

FIG. 2. (Color online) Comparison of squeezing spectra with
purely dissipative coupling (a) and (b) and purely dispersive coupling
(c) and (d): The regions inside the black contours in the density plots
(a) and (c) show a 3 dB squeezing region and the blue horizontal
lines show the optimal quadrature, which are plotted in (b) and
(d), respectively. The dissipative coupling strength is Gκ = 2π ×
150 kHz with driving laser powerP ∼ 3.5 W; the dispersive coupling
strength is Gω = 2π × 75 kHz with driving laser powerP ∼ 40 mW.
Other parameters are κs = 2π × 1.5 MHz, ωm = 2π × 136 kHz,
γm = 2π × 0.23 Hz, �s = 0, and n̄th = 0.

The squeezing magnitude can be enhanced by a large effective
dissipative optomechanical coupling strength G2

κ/(κsγm) and
a low mean phonon occupancy number n̄th. The optimal
squeezed quadrature angle lies at tan θ

opt
diss

∼= −√
4G2

κ/(κsγm),
and θ

opt
diss approaches 90◦ with a large dissipative coupling

strength Gκ . From the above analysis, we can see that the
ponderomotive squeezing relies solely on the interference of
two paths of Xin. One needs to suppress the input noises
Yin and ξ by choosing a quadrature angle θ

opt
disp close to 90◦.

The output field shows antisqueezing at ω = ωm when θ �= 0.
To illustrate the squeezing effect, we plot the output field
spectra at different quadratures in Figs. 2(a) and 2(b) by
numerically solving the quantum Langevin equations (5)–(7).
We use the parameters provided by the experiment reported
in [48], and the specific values are given in the caption of
Fig. 2. At the angle θ

opt
diss, the output spectrum [as shown in

Fig. 2(b)] is characterized by a large squeezing of ∼40 dB
at frequency ω ∼ ωm − 2π × 15 Hz and antisqueezing
at ω = ωm.

In the other limit when dispersive coupling solely gov-
erns the optomechanical interaction, i.e., Gκ = 0, Eqs. (8)
and (9) reduce to Xout

∼= Xin and Yout
∼= Yin + (χG2

ω/κs)Xin +
mechanical noise. This is the conventional ponderomotive
squeezing scheme. It shares a similar noise transformation with
that we discussed above. Hence we are able to observe a similar
squeezing phenomenon, but the optimal squeezed quadrature
is around tan θ

opt
disp

∼=
√

κsγm/(2G2
ω), and θ

opt
disp approaches 0

with a large dispersive coupling strength Gω. The output
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squeezing spectrum is

Sdisp
∼= 1

2
+ G2

ω

κs

(2|χ |2�disp sin2 θ + 2Reχ sin 2θ ), (12)

where �disp = G2
ω/κs + γm(2n̄th + 1). By optimizing θ and

χ (ω) we obtain the optimal squeezing magnitude

S
opt
disp = γm(n̄th + 1)

G2
ω/κs + 2γm(n̄th + 1)

. (13)

This result is identical to the one derived in [30] and has been
experimentally demonstrated in [28,29]. The optimal output
frequency is (ω − ωm)2 = �dispγm/2 + γ 2

m/4, which increases
with coupling strength G2

κ . We plot the output spectra of
dispersive squeezing in Figs. 2(c) and 2(d), as a comparison
with the dissipative squeezing in Figs. 2(a) and 2(b). The
optimal squeezing spectrum has a quadrature angle close to 0.
The optimal squeezing magnitude is shown as ∼30 dB, which
agrees with Eq. (13). We observe similar output squeezed
spectra, although the optimal squeezing magnitude is smaller
than in Figs. 2(a) and 2(b) due to the lower coupling strengths.

Physically both the dispersive coupling and the dissipative
coupling generate optical squeezing in a similar manner, in
the sense that they couple the input noise from one quadrature
coherently to the other quadrature. Thus the input vacuum
noise couples to the optomechanical system via two paths,
as shown in Fig. 1. These two paths interfere and lead to
squeezing. The optimal squeezing exists at different quadrature
angles due to the fact that Gω couples noise from X to Y and
Gκ couples noise from Y to X via the mechanical mode.

IV. SQUEEZING WITH COMBINED EFFECTS OF
DISSIPATIVE AND DISPERSIVE COUPLING

In the previous section, we studied squeezing phenomena
with purely dispersive coupling or dissipative coupling. One
natural question is whether the combined effect of these
two coupling regimes could enhance the squeezing. We next
study the generation of squeezed state in the presence of
both coupling regimes Gω and Gκ . When the driving laser
frequency is on resonance, �s = 0, according to Eq. (8),
the input vacuum fluctuations destructively interfere when
GωGκ → κs/χ . Complete destructive interference exists only
when χ is purely real, i.e., ω � ωm. The output squeezing
spectrum is

Sdisp
∼= 1

2
+ (Gκ cos θ − Gω sin θ )2

κs

×
[

2|χ |2�comb − Reχ

(
2Gω cos θ − Gκ sin θ

Gκ cos θ − Gω sin θ

)]
,

(14)

where �comb = (4G2
ω + G2

κ )/(4κs) + γm(2n̄th + 1). The opti-
mal squeezing quadrature angle tan θ

opt
comb ∼ Gκ/(2Gω) and

the squeezing magnitude

S
opt
comb

∼= 1

2

γm(2n̄th + 1)(
G2

ω + G2
κ/4

)
/κs + γm(2n̄th + 1)

. (15)

We see that the squeezing magnitude can be enhanced by
increasing the coupling strengths Gω and Gκ for any given

FIG. 3. (Color online) The density plots (a) and the optimal
squeezing quadrature (b) of the output field spectra with combined
dispersive and dissipative couplings. The regions inside the black
contours in (a) show the 3 dB squeezing region and the blue horizontal
line shows the optimal quadrature which is plotted in (b). The
coupling strengths are Gω = 2π × 75 kHz and Gκ = 2π × 15 kHz
with driving laser power P ∼ 40 mW. Other parameters are identical
to those used in Fig. 2.

mean phonon number n̄th. The squeezed quadrature rotates
from quadrature X to quadrature Y as the ratio of the coupling
strengths Gκ/(2Gω) increases.

In Fig. 3(a), we plot the output spectra at different
quadratures when the optomechanical system is subject to
both dispersive and dissipative couplings. We set the cou-
pling strengths such that Gω = 5Gκ , in accordance with the
experiment parameters in [48]. The density plot resembles the
main features of ponderomotive squeezing with purely Gω or
Gκ , except for a trivial quadrature difference. However, there
are distinctions. The frequency bandwidth of the squeezing
spectra increases at large quadrature angle and shrinks at
lower quadrature angles. This is particularly advantageous in
practice, since one usually focuses on a specific quadrature
and hence one can make use of the larger bandwidth of the
squeezed spectra.

In the optomechanical ponderomotive squeezing process,
the mechanical element functions as an active mediating
element and it provides coherent coupling between two field
quadratures. At the same time, it is subject to the environmental
Brownian noise which is incoherent with the cavity field.
In the reported ponderomotive squeezing experiments with
purely dispersive optomechanical coupling, the environment
temperature sets the limit of the squeezing magnitudes: Safavi-
Naeini et al. [28] reported 0.2 dB squeezing at n̄th ∼ 104 and
Purdy et al. [29] pushed the squeezing magnitude to 1.7 dB
with a lower thermal phonon occupancy n̄th = 47.

We now compare the effect of the thermal phonons on
squeezing with different optomechanical couplings. Equa-
tions (11), (13), and (15) indicate that the output quadrature
variance increases approximately proportionally to n̄th at large
coupling rates. Comparing Eqs. (11) and (13), we find that
optomechanical systems with purely dissipative coupling (Gκ )
or purely dispersive coupling (Gω) can generate squeezed
fields of similar squeezing magnitude if Gκ = 2Gω. In Fig. 4,
we illustrate the effects of the mean thermal phonon number
on the optimal squeezing magnitude under different coupling
regimes. The curves show that the squeezing magnitude
decreases with large thermal phonon occupancy n̄th. Even
when the thermal phonon number is as high as n̄th = 1000,
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FIG. 4. (Color online) The effects of the mean thermal phonon
occupation n̄th on the optimal squeezing magnitudes with different
couplings. The optimal squeezing magnitudes are very similar for
finite n̄th; hence the three curves overlap.

the system yields about 10 dB squeezing with combination
optomechanical couplings at P = 40 mW. If we increase the
driving laser power toP = 150 mW, the squeezing magnitude
increases to 15 dB. Note that this phonon number is, however,
difficult to achieve with low mechanical frequency ωm since n̄th

is inversely proportional to ωm. For example, the system has to
be precooled down to T ∼ 6.5 mK in order to get n̄th = 1000.
On the other hand, at high bath temperature, a large squeezing
magnitude requires an increase in the coupling strength, which
can be achieved by increasing the pump power. If the bath
temperature increases to T = 1 K, the corresponding thermal
phonon number increases to n̄th ∼ 1.5 × 105. One needs to
increase the driving laser power to P ∼ 750 mW in order to
get 3 dB squeezing. For this power the system is still in the
stable region.

Note, however, that the pump power cannot increase
infinitely as too strong a pump laser leads to instability of
the system dynamics. We discuss the stability condition in
detail using the Routh-Hurwitz criterion [49] in the Appendix.
For example, our linearization method breaks down and the
system settles into instability when the laser power reaches
P ∼ 830 mW for the parameters given above and the laser
frequency set as ωl = ω0 − 3ωm. At this power, the coupling
strengths are Gω = 2π × 250 kHz and Gκ = 2π × 50 kHz. A
lower driving laser frequency allows for a higher critical pump
power. Our analysis also reveals an unstable region when the
effective driving laser detuning �s is a small negative value.
This explains the special instability region discovered in [48].

V. SQUEEZING WITH A FIXED-FREQUENCY
DRIVING LASER

Sawadsky et al. [48] demonstrated a strong cooling effect
in an optomechanical system with both dissipative and
dispersive coupling interactions. The experimental results
agree remarkably well with the theoretical calculation. In
the experiment, the authors fixed the driving laser frequency
ωl on resonance with the empty cavity resonance frequency
ωc. When the driving laser power increases, the effective
cavity resonance frequency changes due to the displacement
of the mechanical membrane, and this leads to an effective
detuning of the driving laser. In this section, we analyze the
squeezing phenomena in an optomechanical system driven by
a laser with fixed frequency ωl = ωc. Under this condition,

FIG. 5. (Color online) The change of the effective detuning and
mean cavity photon number as the driving laser power increases from
0 to 200 mW. Other parameters are identical to those used in Fig. 3.

the effective detuning �s and effective cavity decay rate κs

can be determined by solving the nonlinear equation set (2).
We use the parameters reported in [48]. The solution to (2)
shows that κs ∼ κ when the driving laser power El is below
250 mW. However, the effective driving laser detuning �s

increases linearly from 0 to a value close to −ωm, as shown in
Fig. 5. The cavity mean photon number |as | is also displayed
in Fig. 5. When the driving laser power is set as 40 mW,
the effective detuning �s = 2π × 20 kHz. The corresponding
coupling strengths remain at the values Gω = 2π × 75 kHz,
which are similar to the ones used in Figs. 2 and 3. We show the
squeezing spectra with different coupling interactions in Fig. 6
at zero temperature. Their optimal squeezing magnitudes reach
close to 40 dB. We find large regions with over 3 dB squeezing
in both spectra, as illustrated between the thick black 3 dB
contour lines. We observe large regions of squeezing over
10 dB and in Fig. 6(b) even squeezing over 20 dB. The results
are very similar to the ones in Figs. 2(a) and 3(a), and even
the effects of temperature are similar so they are not discussed
here.

VI. CONCLUSION

In conclusion, we investigated the generation of quadrature
squeezed states with dissipative coupling optomechanical
interactions. Our results show that the dissipative coupling

FIG. 6. (Color online) The squeezing spectra in an optomechan-
ical system with (a) purely dissipative coupling Gκ = 2π × 150 kHz
and P ∼ 3.5 W, and (b) both couplings combined with Gω = 5Gκ =
2π × 75 kHz and P ∼ 40 mW. Other parameters are identical to
those used in Figs. 2 and 3. The regions beween the black contours
have over 3 dB squeezing.
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interaction is able to generate strong squeezed vacuum states.
The squeezing magnitude depends on the coupling strengths
and the mean phonon occupancy due to the mechanical noise.
When the dissipative and dispersive coupling strengths are
similar, they both generate comparable squeezing magnitude.
This scheme works in the unresolved-sideband limit which en-
ables its application in low-frequency mechanical oscillators.
In potential experimental realizations, one challenge would be
the large thermal noise introduced by the large phonon number
with low mechanical frequency. Large squeezing magnitudes
require one to precool the system using a dilution refrigerator.
The large thermal noise can also be offset by increasing the
pump power by the same order of magnitude as for n̄th.

APPENDIX: STABILITY CRITERION

While we follow the standard linearization procedure in
solving the nonlinear Hamiltonian, we must make sure of the
stability of the system dynamics for our chosen parameters.
We investigate the dynamics of the system using the quantum
Langevin equation

d(t)/dt = M(t) + in(t), (A1)

with (t) = (X,Y,Q1,P1)T for the system operators, in(t) =
(
√

2κsXin,
√

2κsYin, − ImGκ√
2κs

Xin,ξ − ReGκ√
2κs

Yin)T for the input
noises, and

M=

⎛
⎜⎜⎜⎝

−κs �s −ReGκ − ImGω 0

−�s −κs ReGω 0

0 0 0 ωm

ReGω ReGκ + ImGω −ωm −γm

⎞
⎟⎟⎟⎠.

(A2)

The system is stable if all the eigenvalues of the matrix
M have negative real parts. Before we present the stability

condition using the Routh-Hurwitz criterion [49], we would
like to make the following approximation. When the driving
laser frequency is not far off resonance (�s ∼ 0), the steady

state of the field as
∼=

√
2
κs
El(1 − i �s

κs
). Note that, although

Gω,κ is generally complex, the imaginary part is smaller than
the real part by a factor of �s/κs . In this paper, since we
concentrate on the unresolved-sideband-limit regime κs �
ωm > �s , we can make the approximation (ReGω,κ )2 ∼= G2

ω,κ

with good precision. We find the condition for stability in our
system,

�s

(
G2

ω + G2
κ

) − ωm

(
κ2

s + �2
s

)
< 0, (A3)

ωm�s

2κsγm

(
G2

ω + G2
κ

) + ω2
m

+
(

κ2
s + �2

s − ω2
m

2κs + γm

+ γm

2

)2

−
(γm

2

)2
> 0. (A4)

Note that, when Gκ → 0, these conditions reduce to the
stability condition for the optomechanical system with purely
dispersive coupling Gω. In the unresolved-sideband limit
where κs � ωm � γm, Gω,κs

can be treated as purely real
and the conditions (A3) and (A4) are simplified as

− γm

2κsωm

(
κ2

s + �2
s

)2
< �s

(
G2

ω + G2
κ

)
< ωm

(
κ2

s + �2
s

)
.

(A5)

From this condition, one can see that the system is always sta-
ble when �s = 0. For small negative �s (≡ ωc − ωl − gωQs),
the first inequality in (A5) imposes a very tight condition on
the stability. Especially with a very high mechanical quality
factor Q = ωm/γm, the condition reduces to (|2�s |/κs)(G2

ω +
G2

κ )/κ2
s < 1/Q. This explains the instability region discovered

in [48].
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