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Tunable dynamic Fano resonances in coupled-resonator optical waveguides
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A route toward line-shape engineering of Fano resonances in photonic structures is theoretically proposed,
which uses dynamic modulation of the refractive index of a microcavity. The method is exemplified by considering
coupled-resonator optical waveguide systems. An exact Floquet analysis, based on coupled-mode theory, is
presented. Two distinct kinds of resonances can be dynamically created, depending on whether or not the static
structure sustains a localized mode. In the former case, a single Fano resonance arises, which can be tuned in
both frequency and linewidth by varying the refractive index modulation amplitude and frequency. In the latter
case, two resonances, in the form of narrow asymmetric dips in the transmittance, are found, which can overlap
resulting in an electromagnetically induced transparency effect.
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I. INTRODUCTION

Fano resonances [1], i.e., asymmetric and sharp line shapes
that result from the interference of discrete resonance states
with broadband continuum states, are ubiquitous in several
areas of physics [2]. In optics, they are observed in systems
ranging from waveguide-cavity structures to plasmonics and
metamaterials [2–5], promising applications for a wide range
of photonic devices such as optical filters, switches, modula-
tors, and sensors [6–10]. In this regard, line-shape engineering,
i.e., the possibility to control and tune frequency, shape,
and width of the Fano resonance, is of major importance.
Conventionally, the Fano line shape can be tuned over wide
spectral ranges by carefully altering the geometry of a
nanostructure [11–13]. However, dynamical and fine control
of Fano resonances is a highly desirable functionality, which
cannot be accomplished by material or geometric engineering.
So far, a few methods have been suggested for dynamical
line-shape engineering, based on two-beam interference [14],
phase engineering of the excitation beam [15], the use of
hybrid gratings [16], and the application of mechanical stress
[17].

In this work, a different route to create, shape, and fine
tune Fano resonances in photonic structures is theoretically
proposed, which is based on dynamic modulation of the
resonance frequency of a microcavity. We consider specifically
dynamic Fano resonances in coupled-resonator optical waveg-
uide (CROW) systems [18–20], which enable an exact analysis
based on coupled-mode theory. The CROW consists of a
homogeneous chain of resonators in which light propagates
by virtue of the coupling between adjacent resonators; a
Fano resonance is dynamically created by periodic modulation
of the resonance frequency of one resonator in the chain.
Creation of high-Q resonances by dynamic refractive index
modulations based on photonic transitions was previously
proposed in Ref. [21]; however, in that system, the resonances
were not of the Fano type. CROWs have been explored in a
variety of material platforms and resonator types, including
photonic-crystal defect cavities, microspheres, microdisks,
and microring resonators [22,23], with applications to light
slowing down and storage [24–26], light capturing [27],
time reversal [28,29], sensing [30], and for the realization

of topologically protected edge states [31]. While in static
CROW structures Fano resonances are usually realized by
side-coupled microcavities [2,32], in our setup they arise dy-
namically from the interference of different Floquet channels
[33–38], and can thus be controlled by tuning the frequency
and amplitude of the modulation signal.

II. PHOTONIC STRUCTURE AND FLOQUET ANALYSIS

Figure 1(a) shows a schematic of the CROW structure,
which comprises a chain of coupled micro- and nanores-
onators with the same resonance frequency ω0 and coupling
constant κ . The resonators can be realized, for example,
using photonic-crystal defect cavities, coupled microdisk
resonators, or silicon microrings. The resonance frequency
of the resonator at site n = 0 is assumed to be biased and
periodically modulated in time. This can be accomplished
by modulation of the microcavity refractive index using
various physical mechanisms such as free-carrier-plasma dis-
persion and electro-optic effects [39–42]. In CROW systems,
light transport can be described by coupled-mode theory
[18,25,27,28], which reproduces with excellent accuracy the
results obtained by finite-difference time-domain numeri-
cal simulations [21,25,27]. Neglecting resonator losses, the
coupled-mode equations for the complex field amplitudes an(t)
in each cavity read [27]

i
dan

dt
= ω0an + κ(an+1 + an−1) + δn,0�ω0(t)an, (1)

where �ω0(t) = σ + � cos(�t) is the resonance shift of the
resonator at site n = 0, which comprises a bias (static) term
σ and a sinusoidal term of amplitude � and frequency �.
For �ω0 = 0, the static uniform chain of coupled resonators
sustains Bloch states of the form an(t) = exp[−iqn − iω(q)t]
with the dispersion relation ω(q) = ω0 + 2κ cos q, where
−π � q < π is the Bloch wave number [see Fig. 1(b)].
Forward-propagating waves in the chain, corresponding to
a positive group velocity vg = −(∂ω/∂q) = 2κ sin q, have a
Bloch wave number q in the range (0,π ), whereas backward-
propagating waves correspond to −π < q < 0. For �ω0 �= 0,
the resonator at site n = 0 acts as a scattering center, enabling
the reflection of light waves propagating along the CROW
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at some spectral frequencies inside the CROW transmission
band (ω0 − 2κ,ω0 + 2κ). The high-frequency modulation
regime � � κ simply corresponds to a renormalization of
the coupling constant (see, e.g., [43]); this case is not of
interest for the onset of dynamic Fano resonances. Here we
assume that � and � are of the same order of magnitude as the
coupling constant κ . In this regime, dynamic Fano resonances

can arise because light can hop across the modulated resonator
following different Floquet paths [33]. Assuming that a
forward-propagating light wave with Bloch wave number q

(0 < q < π ) and frequency ω(q) = ω0 + 2κ cos q is incident
onto the modulated resonator from the left to the right side of
the chain, according to Floquet theory [33] the exact scattered
solution to Eq. (1) has the form

an(t) =
⎧⎨
⎩

∑∞
α=−∞{δα,0 exp[−iqα(n + 1)] + rα(q) exp[iqα(n + 1)]} exp(−i�αt), n � −1∑∞
α=−∞ Bα exp(−i�αt), n = 0∑∞
α=−∞ tα(q) exp[−iqα(n − 1)] exp(−i�αt), n � 1,

(2)

where �α = ω(q) + α�, rα(q) and tα(q) are the reflection and transmission amplitudes, respectively, of the various Floquet
(scattered) orders α = 0,±1,±2,±3, . . ., Bα(t) are the harmonic amplitudes of the field in the modulated resonator at n = 0, and
qα are defined from the relation

cos qα = cos q + α
�

2κ
, (3)

with 0 � qα � π if qα is real (propagative modes) and Im(qα) < 0 if qα is complex (evanescent modes). The power transmittance
T (q) and reflectance R(q) of the modulated resonator can then be calculated as

T (q) =
∑
〈α〉

vgα

vg0
|tα|2, R(q) =

∑
〈α〉

vgα

vg0
|rα|2, (4)

where vgα = 2κ sin qα is the group velocity at the Bloch wave number qα and the symbol 〈·〉 means that the sum is extended
over the indices α corresponding to propagative modes (i.e., qα real). The terms with α = 0 in the sums of Eq. (4), i.e.,
T0 ≡ |t0|2 and R0 ≡ |r0|2, correspond to elastic scattering, i.e., the frequency of the transmitted and reflected photon is not altered
by the oscillating potential at site n = 0. The other terms that contribute to the total transmittance and reflectance, namely,
Tα(q) ≡ (vgα/vg0)|tα|2 and Rα(q) ≡ (vgα/vg0)|rα|2, correspond to inelastic-scattering channels, with transmitted and reflected
photons with a higher (for α > 0) or lower (for α < 0) energy amount α��. For a lossless system, one has R + T = 1 and
the system is reciprocal, i.e., transmittance is independent of the incidence side. Substitution of the ansatz (2) into Eq. (1) and
elimination of rα and Bα yield the following difference equation for the transmission amplitudes tα of various Floquet orders:

tα

[
1 − exp(2iqα) + σ

κ
exp(iqα)

]
+ �

2κ
[tα+1 exp(iqα+1) + tα−1 exp(iqα−1)] = δα,0[exp(−2iqα) − 1]. (5)

III. DYNAMIC FANO RESONANCES

Let us first notice that in the absence of the ac modulation,
i.e., for � = 0, the solution to Eqs. (5) is given by tα(q) =
δα,0tst (q), where tst (q) is the transmission amplitude of the
static CROW, given by

tst (q) = exp(−2iq) − 1

1 − exp(2iq) + (σ/κ) exp(iq)
. (6)

The transmittance Tst (q) of the static CROW is simply
given by Tst (q) = |tst (q)|2. A typical behavior of Tst versus
the normalized frequency [ω(q) − ω0]/κ is shown in Fig. 1(c)
by the dotted curve. Dynamic Fano resonances can be created
by switching on the ac modulation term. Toward this aim, let us
assume for the sake of definiteness σ > 0; however, a similar
analysis holds for σ < 0. The special case σ = 0 behaves
rather differently and it will be considered in the next section.
For σ > 0, the static CROW structure sustains a localized
(bound) mode oscillating at the frequency ωloc = ω0 + (4κ2 +
σ 2)1/2 outside the transmission CROW band; see Fig. 1(b). The
bound mode is exponentially localized around the site n = 0
with a localization length 1/μ defined by the relation sinh μ =
σ/(2κ), namely, one has |cn|2 = exp(−2μ|n|) [see the right
panel in Fig. 1(b)]. To create a Fano resonance at the frequency

ωF inside the CROW transmission band, let us modulate the
microcavity refractive index at the frequency � satisfying
the condition � = ωloc − ωF . In this case, a light photon at
the frequency ω(q) close to ωF incident onto the modulated
microresonator (incident Floquet channel) can gain one energy
quantum �� and drop into the “bound” state. Similarly,
photons in the bound state can lose one energy quantum ��

and jump to the incident channel. Interference between direct
and indirect (bound-state mediated) photon crossing creates
a Fano-like resonance, as shown in Fig. 1(c) by the solid
curve. For parameter values chosen in the simulation, the total
transmittance T comes from the contribution of the scattering
channel T0 and of six inelastic channels Tα , corresponding
to α = ±1, ± 2, ± 3 (for higher values of |α|, the modes
are evanescent at any incidence photon energy and do not
contribute to the transmittance). The different (elastic and
inelastic) contributions to the total transmittance are depicted
in Fig. 1(d). Note that the contribution from the inelastic-
scattering channels is extremely small, i.e., the transmitted
and reflected light basically have the same frequency as that of
the incident light. Formally, the onset of the Fano resonance
can be explained by considering the small-modulation limit
�/κ → 0 and looking for a solution to Eqs. (5) as a power
series, tα = t (0)

α + t (1)
α + t (2)

α · · · , where the term t (k)
α is of the
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FIG. 1. (Color online) (a) Schematic of a CROW with dynamic
modulation. (b) Left panel: energy spectrum of the CROW, compris-
ing the continuous band (ω0 − 2κ,ω0 + 2κ) of Bloch modes (dashed
area) with dispersion relation ω(q) = ω0 + 2κ cos q (solid curve).
For σ > 0, an additional bound state does exist, at a frequency ωloc

above the continuous band. Right panel: intensity distribution of the
bound mode for σ/κ = 1. (c) Transmittance vs normalized frequency
[ω(q) − ω0]/κ for σ/κ = 1, �/κ = 1, and �/κ = 0.3 (solid curve).
The dotted curve is the transmittance of the static CROW (� = 0),
whereas the dashed curve is the transmittance as predicted by the
approximate analytical relation (6). Inset: enlargement of the Fano
resonance. (d) The four panels in the figure show the contribution
to the total transmittance [solid curve in (c)] that arises from the
elastic-scattering channel (T0) and from the six inelastic-scattering
channels (T±1, T±2, and T±3).
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FIG. 2. (Color online) Fano line-shape engineering. (a) Trans-
mittance for σ/κ = 1, �/κ = 0.3, and �/κ = 1 (curve 1), �/κ = 2
(curve 2), and �/κ = 3 (curve 3). (b) Transmittance for �/κ = 1,
σ/κ = 1, and for �/κ = 0.3 (curve 1), �/κ = 0.6 (curve 2), and
�/κ = 0.9 (curve 3).

order of ∼(�/κ)k . At leading order (k = 0), one recovers the
static case, namely, t (0)

α (q) = δα,0tst (q), whereas at first order,
one obtains

t (1)
α (q) =

{
0, α �= ±1
− �

2κ

tst (q) exp(iq)
1−exp(2iqα )+(σ/κ) exp(iqα ) , α = ±1.

(7)

While t
(1)
−1(q) is a bounded function of q and of the order of

∼�/κ , t (1)
1 (q) shows a singularity at q = qF = arccos[(ωloc −

� − ω0)/2κ], which breaks the perturbative analysis. The
singularity can be avoided by considering both t0 and t1 of
the same order, ∼1. In the two-channel approximation, one
obtains, at leading order,

t
(0)
0 (q) 
 exp(−2iq) − 1

1 − exp(2iq) + (σ/κ) exp(iq) − �(q)
, (8)

where we have set �(q) = (�/2κ)2 exp[i(q + q1)]/[1 −
exp(2iq1) + (σ/κ) exp(iq1)]. Note that t

(0)
0 (q) differs from the

static value tst (q) because of the complex term �(q) in the
denominator of Eq. (8). Since near q ∼ qF the Floquet channel
α = 1 corresponds to an evanescent mode, at leading order the
transmittance can thus be calculated as T (q) 
 |t (0)

0 |2, which
well reproduces the exact shape obtained by exact numerical
analysis of Eqs. (4) [see the dashed curve in Fig. 1(c)].
Note that around the frequency ω = ωF , the transmittance
shows a characteristic sharp and asymmetric profile, rapidly
varying from zero to (almost) one. The frequency ωF around
which the Fano resonance appears can be tuned by changing
the modulation frequency � according to the relation ωF =
ωloc − �, whereas the resonance width is controlled by the
modulation amplitude �; see Fig. 2.

IV. RESONANCE OVERLAP AND
ELECTROMAGNETICALLY INDUCED TRANSPARENCY

The case of the unbiased microresonator (σ = 0). shows
a different behavior. Here the static transmittance is unity
[Eq. (6) with σ = 0] and the structure does not sustain any
localized mode. When the modulation is switched on, for
� < 2κ , quite remarkably, two resonances (rather than one)
at the frequencies ω0 + 2κ − � and ω0 − 2κ + � are created,
symmetrically placed with respect to ω0; see Fig. 3(a). In
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FIG. 3. (Color online) Spectral transmittance in the unbiased
case (σ = 0) for �/κ = 0.8 and for (a) �/κ = 1 and (b) �/κ = 2.
(b) Inset: an enlargement of the transmittance around ω = ω0, with a
characteristic EIT-like spectrum arising from resonance overlap.

the weak modulation limit, this behavior can be explained by
observing that for σ = 0, a singularity can appear in either
t

(1)
±1(q) [Eq. (7)] at the Bloch wave numbers q such that ω(q) =
ω0 ± (2κ − �). The two resonances appear as asymmetric dips
in the transmission spectrum [see Fig. 3(a)]. As � → 2κ−,
the two resonances have interference and overlap at ω = ω0,
yielding a more complex resonance pattern comprising a nar-
row transmission dip embedded with an ultranarrow resonance
peak with unity transmittance at frequency ω = ω0; see Fig.
3(b). The ultranarrow transmission peak created inside the dark
dip and arising from resonance overlapping can be regarded
as a kind of electromagnetically induced transparency (EIT)
effect. The entire dynamical process, i.e., creation and over-
lapping of resonances, is well described within a five-channel
model by considering the amplitudes tα , α = 0,±1,±2, in
Eqs. (5).

V. EXPERIMENTAL IMPLEMENTATION AND EFFECTS
OF CAVITY LOSSES

Let us briefly comment on the practical requirements for
the experimental implementation of dynamic Fano resonances.
Ultrahigh-Q coupled nanocavities can be realized in a two-
dimensional triangular-lattice air-hole photonic-crystal slab
[23], and ultrafast dynamic modulation of the refraction index
can be achieved by carrier injection. For CROW designed
to operate at λ0 ∼ 1560 nm, a typical value of the coupling
rate is κ 
 2π × 60 GHz, according to the experimental
data of Ref. [23]. Hence the spectrum shown in Fig. 1(c)
corresponds to a dynamic Fano resonance with spectral width
(distance between minimum and maximum of transmittance)
of 
594 MHz, created by refractive index modulation at
frequency � = 2π × 60 GHz and modulation amplitude
�/ω0 
 4.68 × 10−5. Assuming that the fractional change in
resonant frequency is directly related to the fractional change
in the index of refraction n, i.e., �/ω0 
 δn/n, the estimated
value of modulation is within the current technology limits of
the maximum index change [(δn/n)max ∼ 10−4]. Finally, let
us briefly discuss the limitations introduced by cavity losses.
There are basically two types of resonator losses that limit
the observation of Fano resonances: static cavity losses and
spurious time-periodic losses arising from index modulation of
the resonator at site n = 0. As far as static losses are concerned,
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FIG. 4. (Color online) Effect of loss modulation on dynamic
Fano resonances. Spectral transmittance for σ/κ = 1, �/κ = 0.8,
�/κ = 1 and for increasing values of loss modulation parameter ρ:
ρ = 0 (curve 1), ρ = 0.125 (curve 2), and ρ = 0.25 (curve 3).

let as assume a nanocavity Q factor that is larger than 106,
which is achievable with current technology, according to
Ref. [23]. The static resonator losses simply limit the res-
olution of the spectrum to less than 200 MHz; the Fano
resonance of Fig. 1(c), corresponding to a spectral width of

594 MHz, should therefore be resolved. The other limitation
that might prevent the observation of dynamic Fano resonances
comes from carrier injection used to modulate the resonance
frequency, which generally introduces spurious dynamical
modulation of cavity losses [41] at site n = 0. We simulated
the effect of cavity loss modulation by assuming �ω0(t) =
σ + � cos(�t) − i�ρ[1 − cos(�t)], where the dimensionless
parameter ρ accounts for the imaginary-to-real modulation
strength induced by carrier injection [41]. Figure 4 shows
an example of computed Fano resonances that takes into
account modulation of resonator losses. The figure clearly
shows that for moderate values of ρ (e.g., ρ > 0.2), a
severe degradation of the Fano resonance occurs. Hence
spurious dynamic modulation of cavity losses represents the
most severe limitation for the observation of narrow Fano
resonances; in particular, carrier injection leading to modu-
lation strengths ρ of cavity loss larger than ∼0.2 should be
avoided.

VI. CONCLUSIONS

Line-shape engineering, i.e., the possibility to control and
tune the frequency and shape of the Fano resonance, is a
functionality of key relevance. Conventionally, the Fano line
shape can be tuned over wide spectral ranges by carefully
altering the geometry of a nanostructure; however, material
or geometric engineering alone does not enable dynamical
and fine line-shape control. In this work, a different dynamic
method to create, shape, and tune Fano resonances in photonic
structures has been theoretically proposed, which is based
on dynamic modulation of the resonance frequency of a
micro- and nanocavity. Analytical results based on exact and
perturbative Floquet analysis have been presented for the case
of coupled-resonator optical waveguide structures; however,
the method can be extended to other photonic structures,
such as a waveguide side coupled to a cavity [44]. Our
results provide an important step toward the engineering and
dynamical control of Fano resonances in integrated photonic
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structures that could be extended to disclose new physical
aspects and applications of Fano resonances. For example, the
use of dynamic modulation breaks time-reversal symmetry and
thus, with a judicious engineering of the photonic structure,

could be potentially extended to realize nonreciprocal Fano-
like resonances, i.e., different Fano line shapes for forward and
backward propagation, which is a possibility that has been so
far overlooked.
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