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Blackbody aperture radiation: Effect of cavity wall
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In this paper we show that the coherence properties of the radiation emanating from an aperture in the single
wall of a half-space blackbody cavity can be determined by considering how free-space blackbody radiation is
scattered by those apertures. That is, although the presence of the cavity wall modifies the blackbody radiation
field, it has no effect on the field components that are relevant in the scattering computations. This conclusion
is essential since it justifies the methodology employed in earlier papers. Furthermore, our analysis shows that
this computationally simple procedure is rigorous only for the half-space geometry and it also gives indications
of when the results obtained by the procedure provide good approximations of the radiated field properties.
This work thereby defines the domain of validity of earlier results connected with the coherence properties of
blackbody radiation outside the cavity.
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I. INTRODUCTION

The importance and abundance of thermal emitters imply
that a good understanding of blackbody radiation is essential
to the analysis and modeling of radiation phenomena. It was
the desire to explain the early measurements of the spectrum of
light (and radiated heat) obtained from heated bodies that led
Planck to formulate his celebrated expression for the spectral
distribution of blackbody radiation, given by [1–3]

4a0(ω) = 2�ω3

πc3

1

exp(�ω/kBT ) − 1
, (1)

where T is the absolute (equilibrium) temperature of the body,
kB is the Boltzmann constant, and � is the reduced Planck
constant. Here the left-hand side is displayed in a form, which
is consistent with the notation used in [4].

Although Planck in places applied rigorous electromagnetic
theory in his analysis [1], Planck’s description of the spatial
behavior of the blackbody radiation field was mainly based
on ray optics considerations [5]. It was only later that a full
electromagnetic treatment of blackbody radiation in closed
(infinitely large) cavities was established [6–10]. The far-field
patterns of blackbody apertures and other surface emitters
have been extensively studied in radiometry [11], but there
the treatment is in terms of scalar fields. Furthermore, for
blackbody radiation, in particular, the planar source distribu-
tion is deduced from the far-field properties of the radiation
rather than vice versa (see for example [12] and [13]). It seems
that the electromagnetic cross-spectral density of a blackbody
field in the aperture was first determined in [14], where it
was also shown that the radiation emanating from the aperture
is Lambertian and unpolarized in every direction of the far
field. These results were extended in the paraxial case to the
cross-spectral density of the far field in [15]. As is shown
in [4] the influence of an opening in the cavity wall on the field
inside the aperture is, however, treated incompletely in these
papers. The correct expressions for the cross-spectral density
in the aperture as well as in the far field are also derived therein.
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In the analysis of the blackbody field inside the cavity
aperture as done by us and others [4,14,15], the cross-spectral
density function of the field is assumed to be that of blackbody
radiation in free space. The correctness of this assumption
is clearly not self-evident and it is, in fact, incorrect as we
will show in this work. However, as our results indicate, the
deviations from the correct cross-spectral density prove to be
such that the results concerning the field in the aperture and
the field radiated from the aperture remain unchanged. This is
shown to follow from the specific half-space cavity geometry
employed in the referenced papers and does not extend
rigorously in any obvious way to other cavity geometries. In
this specific geometry the aperture itself is also demonstrated
to have no influence on the cross-spectral density of the field
inside the cavity or in the cavity aperture.

The structure of this paper is such that in Sec. II we present
the main results of the fluctuation-dissipation theorem as
applied to electromagnetic fluctuations in blackbody cavities,
which were originally derived by Agarwal [10]. We recall
these results here since the notations in his paper differ
somewhat from ours. Also, we present the derivations in a
form which avoids potential pitfalls related to the singularities
in the electromagnetic dyadic Green’s functions (see, e.g., [16]
for a discussion of the singularities). In Sec. III we consider
the cross-spectral density tensors of free-space and half-space
cavities and discuss both their differences and their similarities.
Specifically we show that in the half-space geometry consid-
ered here these tensors will always yield the same results for
fields propagating away from the half-space cavity. Finally,
we summarize our results and discuss their implications in
Sec. IV.

II. CORRELATION TENSORS DERIVED FROM THE
FLUCTUATION-DISSIPATION THEOREM

Following Agarwal [10] and for mathematical symmetry,
we use Gaussian units to write the Maxwell equations at
angular frequency ω in vacuum as

∇ × E(r,ω) = ik0[H(r,ω) + 4πM(r,ω)] (2)
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and

∇ × H(r,ω) = −ik0[E(r,ω) + 4πP(r,ω)], (3)

where k0 = ω/c and c is the speed of light in vacuum.
Here E and H denote the electric and magnetic fields, which
are sourced by the (external) polarization and magnetization
vectors P and M, respectively. For a unique solution to
exist, these equations must also be accompanied by boundary
conditions, which can be expressed in terms of the tangential
components of E and H, and the normal components of
E + 4πP and H + 4πM at interfaces, together with the Silver-
Müller radiation conditions [17] at infinity. When blackbody
radiation is studied the boundary conditions are usually due to
constraints imposed by the geometry of the blackbody cavity.

It is useful to separate the effect of the boundary conditions
from the rest of the solution to Eqs. (2) and (3). This can be
done by noting that, for a well-posed problem, there is a unique
solution E′ and H′ to the specified boundary conditions and
the homogeneous system of differential equations obtained
from Eqs. (2) and (3) by putting P,M = 0. The difference
fields �E = E − E′ and �H = H − H′ then satisfy Eqs. (2)
and (3), but with the boundary conditions changed so that
they are everywhere replaced by the value zero. We now
consider the solution to this modified system when M = 0.
The symmetrical roles of P and M means that the situation
P = 0 has a completely analogous treatment, and hence the
simplification can be used to obtain the full solution as the
superposition of these two special cases. Thereby we consider
the equations

∇ × �E(r,ω) = ik0�H(r,ω) (4)

and

∇ × �H(r,ω) = −ik0[�E(r,ω) + 4πP(r,ω)]. (5)

By taking the curl of the latter equation and by using the former
equation to get rid of �E, we arrive at the wave equation(∇ × ∇ × −k2

0

)
�H(r,ω) = −4πik0∇ × P(r,ω), (6)

which immediately implies the divergence condition

∇ · �H(r,ω) = 0. (7)

When we apply the vector identity ∇ × ∇ × A = ∇(∇ · A) −
∇2A together with this divergence condition, we can rewrite
Eq. (6) as(∇2 + k2

0

)
�H(r,ω) = 4πik0∇ × P(r,ω), (8)

which is the vector Helmholtz equation.
A fundamental solution to the vector Helmholtz equa-

tion (8) is provided by the tensor Green’s function G(r,r′,ω)I,
where I is the unit tensor and G(r,r′) is the scalar Green’s
function

G(r,r′,ω) = exp(ik0|r − r′|)
|r − r′| , (9)

which satisfies the scalar Helmholtz equation(∇2 + k2
0

)
G(r,r′,ω) = −4πδ(r − r′). (10)

The tensor G(r,r′,ω)I does not in general satisfy the zero
boundary conditions that accompany Eqs. (4) and (5). We can,

however, add to this tensor a regular tensor, which satisfies the
homogeneous counterpart to the vector Helmholtz equation (8)
for all r′, such that the resulting tensor GH(r,r′,ω) satisfies the
zero boundary conditions as well as the equation(∇2 + k2

0

)
GH(r,r′,ω) = −4πδ(r − r′)I. (11)

Indeed, the solution to the vector Helmholtz equation (8) and
thus via Eq. (5) to the system consisting of the equations (4)
and (5), can be written as

�H(r,ω) = −ik0

∫
GH(r,r′,ω) · ∇′ × P(r′,ω)dr′, (12)

�E(r,ω) =
∫

∇ × GH(r,r′,ω) · ∇′ × P(r′,ω)dr′

− 4πP(r,ω). (13)

Hence the zero boundary conditions are satisfied by �E(r,ω)
and �H(r,ω) when they are satisfied by GH(r,r′,ω) and
∇ × GH(r,r′,ω) for all r′.

With the solution given by Eqs. (12) and (13), together with
the analogous solution for the situation when P = 0 and the
homogeneous solutions given by E′ and H′, we can now write
the solution to the system consisting of Eqs. (2) and (3), and
the accompanying boundary conditions as

E(r,ω) = E′(r,ω) − 4πP(r,ω)

+
∫

∇ × GH(r,r′,ω) · ∇′ × P(r′,ω)dr′

+ ik0

∫
GE(r,r′,ω) · ∇′ × M(r′,ω)dr′ (14)

and

H(r,ω) = H′(r,ω) − 4πM(r,ω)

+
∫

∇ × GE(r,r′,ω) · ∇′ × M(r′,ω)dr′

− ik0

∫
GH(r,r′,ω) · ∇′ × P(r′,ω)dr′, (15)

where GE differs from GH in the boundary conditions it
satisfies.

Next we will consider the linear response of the electric
and magnetic fields to point sources. For this purpose we will
consider the special case when the magnetization vanishes and
the polarization is of the form

Pn(r,ω) = δn(r − r′
0)P(ω), (16)

where {δn} is a sequence of functions that converges to the
δ function when n → ∞ [18] and P(ω) is a constant (in
position) polarization vector. To ensure convergence of the
expressions in what follows, we take the limit n → ∞, which
makes limn→∞ Pn(r,ω) a point source at r0, only at the end of
our calculations. This referral of limit taking reflects the point
of view that the point source (δ function) is a mathematical
construct corresponding to very small real sources. As before,
the case with no polarization and a nonvanishing magnetization
is completely analogous.

When we introduce the polarization (16) and set the
magnetization to zero in Eqs. (14) and (15), we obtain after
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rearranging the results the representations

En(r,ω) = E′(r,ω) +
{∫

∇ × GH(r,r′,ω)

×∇′δn(r′ − r0)dr′ − 4πIδn(r − r0)

}
· P(ω)

(17)

and

Hn(r,ω) = H′(r,ω) +
{
−ik0

∫
GH(r,r′,ω)

×∇′δn(r′ − r0)dr′
}

· P(ω) (18)

for the electric and magnetic fields, respectively. Linear
response theory now lets us connect the perturbations of the
field with respect to P(ω) to the susceptibility tensors of the
system as [10]

χ ee,n(r,r0,ω) = δ〈En(r,ω)〉
δP(ω)

=
∫

∇ × GH(r,r′,ω) × ∇′δn(r′ − r0)dr′

− 4πIδn(r − r0) (19)

and

χhe,n(r,r0,ω) = δ〈Hn(r,ω)〉
δP(ω)

=−ik0

∫
GH(r,r′,ω) × ∇′δn(r′ − r0)dr′,

(20)

where the argument r0 refers to the location of the to-
be point source. Accordingly, the tensors defined here are
strictly speaking the susceptibility tensors between the source
polarization P(ω) around the point r0 and the fields at the
point r. Only at the limit n → ∞ do these tensors yield the
susceptibility tensors between the field point r and the source
point r0.

The fluctuation-dissipation theory connects the real and
imaginary parts of the susceptibility tensors (of point sources)
to the correlation tensors of the electric and magnetic field
components at different spatial locations [10]. In particular,
we then have

Wee(r,r0,ω) = 〈E(r,ω)E∗(r0,ω)〉
= lim

n→∞
4πa0(ω)

k3
0

Im{χ ee,n(r,r0,ω)}

= lim
n→∞

4πa0(ω)

k3
0

∫
∇ × Im

{
G

(R)
H (r,r′,ω)

}

×∇′δn(r′ − r0)dr′

= 4πa0(ω)

k0
Im

{
G

(R)
H (r,r0,ω)

}

= 4πa0(ω)

k0
Im{GH(r,r0,ω)}, (21)

where we have replaced the tensor GH by its regular form

G
(R)
H during the computation since the singularity stemming

from the δ function in Eq. (11) is fully contained in the real
part of that tensor. We have then used the definition of the δ

sequence {δn} as well as the fact that the regular tensor satisfies
the homogeneous version of the Helmholtz equation (11)
to obtain the final result. In Eq. (21) the angular brackets
denote ensemble averaging and the asterisk denotes complex
conjugation. Observe that the convention in recent papers on
coherence theory is to take the complex conjugate of the first
vector in the angular brackets instead of the second, and hence
our results here are the complex conjugates of results presented
in such papers (including our own). The function a0(ω) is
the spectral distribution of blackbody radiation as given by
Planck’s radiation law (1).

Similarly to the derivation in Eq. (21) we have

Whe(r,r0,ω) = 〈H(r,ω)E∗(r0,ω)〉
= lim

n→∞(−i)
4πa0(ω)

k3
0

Re{χhe,n(r,r0,ω)}

= lim
n→∞(−i)

4πa0(ω)

k2
0

∫
Im

{
G

(R)
H (r,r′,ω)

}

×∇′δn(r′ − r0)dr′

= i
4πa0(ω)

k2
0

Im{∇ × GH(r,r0,ω)}. (22)

Furthermore, because of the symmetry between the polariza-
tion and magnetization vectors, we completely analogously
have

Whh(r,r0,ω) = 〈H(r,ω)H∗(r0,ω)〉
= 4πa0(ω)

k0
Im{GE(r,r0,ω)} (23)

and

Weh(r,r0,ω) = 〈E(r,ω)H∗(r0,ω)〉
=−i

4πa0(ω)

k2
0

Im{∇ × GE(r,r0,ω)}. (24)

We note that in obtaining these representations we have
sidestepped the singularities in the tensor Green’s functions
by applying their regular counterparts at the critical points
of the derivations. This is made possible by the fact that the
imaginary parts of the original and the regularized tensors are
the same.

III. BLACKBODY RADIATION IN A HALF-SPACE CAVITY

Here we consider only the electric correlation tensor of
Wee in a blackbody cavity, but similar considerations apply
also for the other tensors discussed in the previous section.
In general the functional form of the correlation tensor is
closely connected with the geometry of the blackbody cavity
via the Green’s function, as can be seen from the expres-
sion (21). Indeed, as the Green’s function fully encompasses
the electromagnetically significant geometry of the system
it can be expected to change in general with changes in
the geometry. Nevertheless, in some recent papers [4,14,15]
the free-space blackbody correlation tensor is applied when
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FIG. 1. (Color online) Illustration of the z < 0 half-space black-
body cavity geometry. Here the free-space blackbody field (Wee)
plane waves are denoted by solid (black) arrows and the half-space
correction (�Wee) plane waves that are scattered from the wall at
z = 0 are denoted by dashed (red) arrows. In addition, the radiated
field plane waves in the half space z > 0 are represented by dotted
(red) arrows.

considering the coherence properties of radiation emanating
from a half-space blackbody cavity that is separated from
vacuum by a (conducting) screen or wall with an aperture (see
Fig. 1). In the following we will explore the justification for this
choice and show that, even though the free-space correlation
tensor is not equal to the correlation tensor of the half-space
cavity, it still leads to the correct expressions for the radiated
field.

A. Cross-spectral density tensors

To begin with we note that the electric cross-spectral density
tensor (21) is for blackbody radiation in free space given
by [9,10,19,20]

Wee(r,r′,ω) = 4πa0(ω)

(
I + 1

k2
0

∇∇
)

sin(k0|r − r′|)
k0|r − r′| .

(25)

This cross-spectral density tensor is what is used in several
papers [4,14,15] as the cross-spectral density tensor of the
blackbody field in the half-space cavity depicted in Fig. 1,
with no reference made to the possible effects of the wall at
z = 0. To exactly analyze these effects on the cavity radiation
we must know the material and build of this wall. Although
the wall material is not specified in the referenced papers,
a Planckian analysis of blackbody radiation suggests that
it is sufficient to require that the wall is impermeable to
radiation [1]. Here we follow Planck and take the cavity walls
to be perfect conductors (but as becomes clear later, the choice
is inessential), which are also perfect reflectors, whereby they
cannot be permeable to radiation. Actually, it seems that the
perfect conductor is the only “simple” material that fulfills the
impermeability assumption. Furthermore, the cross-spectral
density of the radiation in a blackbody cavity occupying the
half space z < 0, with a perfectly conducting wall at z = 0,
has already been determined by Agarwal [10], who obtained
the additive correction (which we display here in our notation)

�Wee(r,r′,ω) = −Wee(r,R · r′,ω) · R (26)

to the cross-spectral density tensor Wee of Eq. (25). Here
R = I − 2ẑẑ is a tensor that reflects the vector it operates on
in the plane z = 0.

Since �Wee does not vanish identically, it confirms our
previous notion that the cavity geometry in general affects
the cross-spectral density operator of blackbody radiation. To
better understand how this additive correction might influence
the field at the (yet to be opened) aperture, we turn our attention
to the plane-wave representations of the cross-spectral tensor
Eqs. (25) and (26).

B. Plane-wave representations

The cross-spectral density tensor in Eq. (25) also describes
a uniform distribution of uncorrelated, unpolarized plane
waves [19,21] and hence it can be expressed in the form (see,
for example, [4])

Wee(r,r′,ω) = a0(ω)
∫

α

∫
α

�(û′ − û)(I − ûû′)

× exp[ik0(û · r − û′ · r′)]dûdû′, (27)

where the function � is the spherical delta function [22]
and α denotes the region of solid angles of interest, which
here is the complete spherical shell S. When we use the
representation (27) in Eq. (26) we get

�Wee(r,r′,ω) = a0(ω)
∫

α

∫
α

�(R · û′ − û)(ûû′ − R)

× exp[ik0(û · r − û′ · r′)]dûdû′, (28)

where we have made the change of integration variables
û′ → R · û′.

Let us now divide the plane waves in the expressions (27)
and (28) into two groups, those propagating in the negative
z direction and those propagating in the positive z direction
in Fig. 1. In the free-space blackbody correlation tensor in
Eq. (27) all the fields are mutually uncorrelated regardless
of their propagation directions, which is reflected in the fact
that the �-function argument in that representation vanishes
only when û′ = û. The additive correction given by Eq. (28),
however, introduces correlations between fields propagating
in directions that are reflections of each other in the z direction
as mediated by the tensor R. Hence for the half-space cavity
in Fig. 1 there are with respect to the free-space blackbody
correlations (or lack thereof) additional correlations between
the fields scattered in the negative z direction by the wall and
the fields propagating in the positive z direction. Crucially,
however, the transition into a half-space cavity by introducing
the wall at z = 0 does not introduce any new correlations
between plane-wave components propagating toward the
z > 0 half space with respect to z = 0. Thereby, in particular,
the cross-spectral density tensor of the fields that eventually
propagate through the aperture that is placed in the wall and
radiate outside the cavity is the same for both the free-space and
the half-space blackbody cavities. This suggests that the results
obtained when the free-space cross-spectral density tensor is
used to represent the blackbody radiation in the half-space
cavity [4,14,15] are actually valid. Indeed, as we discuss next,
this property is unique to the half-space geometry, where the
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effects of the aperture on the field inside the cavity can also be
ignored.

C. Comparison of free-space and half-space blackbody fields

Next we compare the free-space blackbody field with the
half-space blackbody field, represented by the solid, and by
the solid and dashed arrows in Fig. 1, respectively. We consider
the general situation where the composition of the wall at z = 0
is not specified. Thereby the (symmetry) properties specifically
relating to the situation when the wall is a perfect conductor
(perfect reflector) and contained in the representation (28) will
not be addressed specifically since they are not of particular
interest here.

When we consider the fields in the two geometries in
terms of their plane-wave representations, we observe that
in the free-space geometry fields are sourced in both the z < 0
(negative) and the z > 0 (positive) half spaces, whereas in
the half-space geometry there are sources only in the negative
half space, but with the wall at z = 0 scattering the fields
propagating in the positive z direction into fields propagating
in the negative z direction. This means that in general the fields
propagating in the negative z direction inside the negative
half space will have different correlation properties in the two
geometries. In contrast, the fields propagating in the positive
z direction in this half space will have exactly the same
sources in both geometries and hence their correlation prop-
erties are also identical. This conclusion follows when we
note that in neither geometry are the fields propagating in
the negative z direction reflected into fields propagating in
the positive z direction. Thus in terms of only the correlations
between fields propagating in the positive z direction, the
free-field cross-spectral density tensor and the half-space
blackbody cross-spectral density tensor are identical, whatever
the structure of the wall at z = 0. Particularly, the wall can
include an arbitrary number of arbitrarily shaped apertures.

The fact that apertures in the wall z = 0 do not change the
correlation properties of the fields propagating in the positive
z direction means that the aperture can be treated as simply
diffracting the fields from the negative half space into the
positive half space. Therefore the blackbody field radiated (into
the positive half space) can be determined from the free-space
cross-spectral density function of the field by any method that
can be used to compute the diffracted field. For example, in [4]
we used the Rayleigh diffraction formula for this purpose with
the assumption that the wall was impenetrable to radiation
away from the aperture.

Finally, we note that the result presented here concerning
the validity of the use of the free-space cross-spectral density
tensor in place of the actual half-space cross-spectral density
tensor for outgoing fields strictly holds only for the specific
geometry of a half-space cavity, where space is divided by
one perfectly planar wall of infinite extent. If the cavity wall
is curved or the blackbody cavity has other wall segments
at finite distances, the shielding effect of these walls and the

fields scattered from them will in general change the field at
the aperture(s) and thereby cause it to be different from the
free-space blackbody field therein.

IV. CONCLUSIONS

In this work we have shown that the free-space cross-
spectral density function can successfully be used to determine
the radiation emanating from the aperture of a half-space
blackbody cavity. Specifically, we have shown that for fields
propagating in the positive z direction the free-space cross-
spectral density tensor exactly matches the cross-spectral
density tensor of the half-space cavity. Furthermore, the fields
propagating in the negative z direction in the half-space cavity
will not be converted into fields propagating in the positive z

direction, and hence in the half-space cavity geometry, when
only the properties of the field radiated into the half-space
z > 0 are of interest, any aperture in the cavity wall can be
successfully modeled as only diffracting the radiated field,
having no other effects.

Our results validate this procedure, which has been em-
ployed without comment by us and by others in previous
papers, where the radiation from blackbody cavities has been
studied. However, we also show that the cross-spectral density
tensors are in general dependent on the cavity geometry, which
means that the free-space approach is not generally valid.

Finally, it is of interest to note that no evanescent waves are
present in either of the plane-wave representations (27) or (28).
That is, neither the all-space (free-field) blackbody radiation
nor the blackbody radiation due to a half-space cavity with
a perfectly conducting wall has evanescent contributions at
locations inside the cavity z < 0. For the all-space case this
can be explained by the fact that the field at any point in the
cavity consists of contributions from every spatial location
in all space and these contributions together overwhelm the
evanescent contribution when the total field is normalized to
finite intensity (energy) in the limit of no absorption (see, for
example, [20]). This explanation remains valid in the half-
space case as well. The lack of evanescent waves, however,
implies that no local sources contribute to the field anywhere
in the cavity, which is of course somewhat bizarre. In view of
the aforementioned normalization of the electromagnetic field
we must conclude, that the sources are present, but that the
energy related to any one source location is vanishingly small
in the fluctuation-dissipation formalism when it is applied to
infinite cavities. Indeed, that evanescent waves are present in
finite cavity geometries can be seen, for example, by perusing
the results Agarwal has obtained for cavities consisting of two
parallel plates at a finite distance from each other [10].

ACKNOWLEDGMENTS

This work was funded by the Academy of Finland (Projects
No. 268705 and No. 268480) and by Dean’s Special Support
for Coherence Research at the University of Eastern Finland
(Project No. 930350).

[1] M. Planck, The Theory of Heat Radiation, 2nd ed. (P. Blakiston’s
Son & Co., Philadelphia, PA, 1914).

[2] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, UK, 1995).

063805-5
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