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Spontaneous formation of a doubly quantized vortex in the anomalous component
of a trapped Bose gas
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We study the behavior of an unusual doubly quantized vortex in a harmonically trapped Bose gas at nonzero
temperatures by using the time-dependent Hartree-Fock-Bogoliubov equations. This structure, which exhibits
nontrivial features, generates spontaneously in the anomalous fraction when phases corresponding to the singly
charged vortex are imposed in the condensed and the anomalous components of the gas. Our numerical
calculations show that at low temperature, condensed atoms tend to fill the core of the anomalous vortex.
We demonstrate that the decay of this vortex is attributed to dissipation induced by the anomalous fluctuations.
Excitation frequency and the radius core of the anomalous vortex are also investigated.
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I. INTRODUCTION

The creation of vortices in Bose-Einstein condensates
(BECs) [1–3] sparked many theoretical and experimental
investigations of the formation of vortices in Bose gases
at finite temperature [4–14]. However, in the majority of
these works, the vorticity appears concentrated in a number
of singly quantized vortices. This is a consequence of the
fact that multiply quantized vortices are dynamically unstable
[15–20] and decay into singly quantized vortices. The splitting
instability of doubly quantized vortices is, indeed, due to
several factors: (i) interatomic interactions, as observed in the
experiments of Shin et al. [16]; (ii) trap geometry, as was
suggested in Ref. [15]; and (iii) thermal fluctuations, which
can be another source of instability of the doubly quantized
vortex [18,19].

Our aim in this paper is to investigate the formation
of a different kind of vortex in a trapped cigar-shaped
condensate at finite temperature using our time-dependent
Hartree-Fock-Bogoliubov (TDHFB) formalism. Basically, the
TDHFB theory is a nonperturbative and nonclassical field
approach. It was derived from the so-called Balian-Vénéroni
time-dependent variational principle [21]. The main difference
between this approach and earlier variational treatments is
that, in our variational theory, we do not minimize only the
expectation values of a single operator such as the free energy
in the variational HF and HFB approximation. Conversely,
our variational theory is based on the minimization of an
action in addition to a Gaussian variational ansatz (i.e., a
Gaussian time-dependent density-like operator). The action
to minimize involves two types of variational objects: one
related to the observables of interest and another that is akin to a
density matrix [21,22]. This leads to a set of coupled nonlinear
time-dependent mean-field equations for the condensate, the
thermal cloud, and the anomalous average.

The numerical simulation of these equations shows that an
unusual doubly quantized vortex can be imprinted willingly
in the anomalous fraction of Bose gas without any external
perturbations when the condensed and the anomalous phases
are inserted into the system. The properties of these vortices
are quite different from ordinary quantized vortices. First of
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all, the anomalous double vortex is surprisingly formed with
an angular momentum equal to 1 (� = 1). Second, it decays
into two single vortices in an analogous manner to the usual
doubly quantized vortex, due to the dissipation caused by
the anomalous fluctuations. In addition, the anomalous vortex
disappears at higher temperatures due to the large thermal
fluctuations, and it does not exist for a very weakly interacting
regime. Another interesting feature of this structure is that
it remains robust, i.e., it does not decay with increasing
interactions.

After establishing the main features of anomalous vortices
in BECs, we may ask the following naive question: How
are these vortices physically relevant? Indeed, the study
of anomalous vortices provides important insight into the
problem of rotations, a subject of great interest in the physics
of superfluids. It is worth remarking that superfluidity cannot
occur in Bose gases if the anomalous density was neglected,
which is in fact natural since both quantities are caused by
atomic correlations [23–25]. Moreover, anomalous vortices
might give hints about the superradiance phenomenon in
ultracold atoms. Superradiance, which is closely related to
Hawking radiation (a sonic black hole) [26,27], means that
when sound waves are reflected from a vortex, they are
reflected with a higher energy than they came in with.
One can expect that when a quantized vortex is present in
the condensed and anomalous components, this effect will be
diminished. In addition, the presence of anomalous vortices in
two-dimensional geometry leads to stable quantum Hall states
for large interparticle interaction strengths at zero temperature.
This can be explained from the fact that the anomalous density
is induced by the interacting condensate and grows with in-
creasing interaction strength [28,29], and hence the anomalous
vortex becomes robust in such a case (see below). Furthermore,
these vortices are analogous to those observed in a Bardeen-
Cooper-Schrieffer (BCS) state of strongly interacting Fermi
gas [30] since the anomalous density itself characterizes
pairing correlations in the noncondensed component of the
field. Therefore, this may help to understand the properties
of vortices in Fermi gases and superfluidity in the context of
neutron stars. Anomalous vortices may also play a key role in
the dissipation of transport in superfluids.

The remainder of the paper is organized as follows: In
Sec. II, we review the main features of the TDHFB equations,
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which constitute a relevant model to investigate the properties
of vortices in Bose gas at finite temperature. In Sec. III, we
present the numerical simulation of our TDHFB equations.
We show in particular that a doubly quantized vortex is
spontaneously formed in the anomalous component of a
trapped Bose gas at intermediate temperature. This structure
decays at higher temperature due to dissipation induced by
the anomalous fluctuations. Our formalism, on the other hand,
predicts an important and somehow unexpected result is that
the condensed atoms look to occupy the core of the anomalous
vortex when including only the anomalous phase in the system
without imposing the singly quantized vortex on the condensed
phase. Moreover, we discuss the effects of temperature and
interactions on the excitation spectrum and on the radius core
of the condensed and anomalous vortices. In Sec. IV, we focus
on the experimental realization of the anomalous density and
its related vortex. Our conclusion and outlook are presented
in Sec. V.

II. FORMALISM

At finite temperature, the dynamics of dilute Bose gases is
accurately described by the TDHFB equations [31,32], which
govern the time evolution of the condensate wave function
�(r) = 〈ψ̂(r)〉, the noncondensed density ñ = 〈ψ̂+(r)ψ̂(r)〉 −
�∗(r)�(r), and the anomalous density m̃ = 〈ψ̂(r)ψ̂(r)〉 −
�(r)�(r):

i��̇ =
[
− �

2

2m
� + Vext(r) + g(βnc + 2ñ)

]
�, (1a)

i� ˙̃m =
[
− �

2

2m
� + Vext(r) + 2g(Gm̃ + n)

]
m̃, (1b)

where m is the atom mass, g = 4π�
2a/m is the coupling

constant, with a being the s-wave scattering length, and
n = nc + ñ is the total density in a BEC, with nc(r) = |�(r)|2
being the condensed density. The dimensionless parameter
β = U/g, where U = g(1 + m̃/�2) is the renormalized cou-
pling constant [31–33] and G = β/4(β − 1). For β = 1, i.e.,
m̃/�2 = 0, Eq. (1a) reduces to the HFB-Popov equation,
which is safe from all ultraviolet and infrared divergences
and thus provides a gapless spectrum. For 0 < β < 1, G is
negative and hence m̃ has a negative sign. For β > 1, G is
positive, and thus m̃ becomes a positive quantity. For β = 2,
the gas becomes highly correlated and strongly interacting
since m̃ = �2. Therefore, to guarantee the diluteness of the
system, β should vary as β = 1 ± ε, with ε being a small
value.

Throughout this paper, the trapping potential is assumed to
be of the form

Vext(r) = 1
2mω2

ρ(ρ2 + λ2z2), (2)

where ρ2 = x2 + y2, and λ = ωz/ωρ is the ratio between the
trapping frequencies in the axial and radial directions, so that
when λ > 1, the atomic cloud resembles a pancake, and when
λ < 1 it is cigar-shaped.

In our formalism, the normal and the anomalous densities
are not independent. By deriving an explicit relationship

between them, it is possible to eliminate ñ [29,34,35]:

I = (2ñ + 1̂)2 − 4|m̃|2, (3)

where 1̂ is the unit operator.
One can easily check by direct substitution that once Eq. (3)

holds initially, it remains true during the dynamical evolution.
At zero temperature, I = 1̂ [35], and hence Eq. (3) reduces to

ñ(ñ + 1̂) = |m̃|2. (4)

Equation (4) is in good agreement with that obtained in
Refs. [36,37] using the generalized coherent state represen-
tation and the Bogoliubov inequality, respectively. Solving (4)

for ñ, one finds ñ =
√

|m̃|2 + 1
4 1̂ − 1

2 1̂. This expression not
only renders the set (1) close but also enables us to reduce the
number of equations, making the numerical simulation easier.
It is also possible to show that Eq. (3) holds if we work in
the Bogoliubov quasiparticle space: âk = ukb̂k − vkb̂

†
−k − βk,

where b̂
†
k and b̂k are operators of elementary excitations

and uk,vk are the standard Bogoliubov functions. In the
quasiparticle vacuum state, ñ and m̃ may be written as
ñ = ∑

k [v2
k + (u2

k + v2
k )Nk] and m̃ = −∑

k [ukvk(2Nk + 1)],
where Nk = [exp(εk/T ) − 1]−1 are occupation numbers for
the excitations. Employing the orthogonality and symmetry
conditions between the functions u,v and using the fact that
2N (x) + 1 = coth(x/2), we obtain

Ik = (2ñk + 1)2 − 4|m̃k|2 = coth2

(
εk

2T

)
. (5)

where εk is the excitation energy of the BEC.
At T = 0, the relation (5) can be shown to be identical to

Eq. (4). Physically, I allows us to calculate in a very useful
way the superfluid fraction for d-dimensional Bose gas as ns =
1 − (2/dT n)

∫
EkIkd

dk/(2π )d with Ek = �
2k2/2m [23].

The wave function �, ñ, and m̃ are normalized according to∫
dr|�(r)|2 = Nc,

∫
dr ñ(r) = Ñ , and

∫
dr m̃(r) = M̃ , where

Nc, Ñ , and M̃ are the condensed number of particles, the
number of thermal atoms, and the anomalous integrand,
respectively, with N = Nc + Ñ being the total number of
particles. The full details of this self-consistent approach were
presented in Refs. [23,29,31,34].

Among the advantages of the TDHFB equations (1),
they satisfy the total number of particles and the energy
conservation law, and they provide a gapless spectrum [31,32].
Furthermore, the numerical simulation of our equations is
relatively easy and is not time-consuming even for large
numbers of particles (they do not contain any summation over
modes-k) compared to earlier time-dependent HFB equations
of Refs. [33,38]. These latter become rapidly unstable for
higher modes and for increasing temperatures. For fermionic
systems, evidently Eq. (1a) has no analog, while the corre-
sponding equation (1b) is the gap equation.

For a given stationary solution �0 and m̃0 of the TD-
HFB equations (1) with eigenvalue μ, the small-amplitude
excitations of the whole system are defined through the
random-phase approximation (RPA) as

� = �0 + [
uc

k(r)e−iεk t/� + vc
k(r)eiεkt/�

]
e−iμt/�,

m̃ = m̃0 + [
um̃

k (r)e−iεk t/� + vm̃
k (r)eiεkt/�

]
e−iμt/�. (6)
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We then obtain the extended Bogoliubov–de Gennes equations (BdG):

⎛
⎜⎝
L + 2g(β|�|2 + ñ) M 0 0

−M −L − 2g(β|�|2 + ñ) 0 0
0 0 L + 2g(2Gm̃ + n) 0
0 0 0 −L − 2g(2Gm̃ + n)

⎞
⎟⎠

⎛
⎜⎜⎝

uc
k(r)

vc
k(r)

um̃
k (r)

vm̃
k (r)

⎞
⎟⎟⎠ = εk

⎛
⎜⎜⎝

uc
k(r)

vc
k(r)

um̃
k (r)

vm̃
k (r)

⎞
⎟⎟⎠, (7)

where L = (−�
2/2m)� + Vext(r) − μ and M = gβ|�|2. For

β = 1, Eqs. (7) reduce to standard BdG equations.
Since the problem is cylindrically symmetric and the system

has an angular momentum κ per particle, the excitations can be
labeled by an angular momentum quantum number � relative
to that of the condensate and the anomalous density, such that

uk(ρ,θ,z) = ei(κ+�)θuk(ρ,z),

vk(ρ,θ,z) = ei(κ−�)θ vk(ρ,z). (8)

The Bogoliubov eigenvalue problem thus splits up into a block-
diagonal matrix where the blocks corresponding to different �

are decoupled. This allows us to treat each � value separately.
For the problem at hand, � = 1.

III. RESULTS AND DISCUSSIONS

Before analyzing the doubly anomalous vortex, it is conve-
nient to shed some light on the behavior of the singly anoma-
lous vortex and looking how the condensed atoms behave?
Including the centrifugal potential related to the anomalous
density in Eq. (1b) without imposing the singly quantized
vortex on the condensed phase. The centrifugal potential forces
the solution of m̃ to be zero along the z axis for nonzero angular
momentum. We have then performed the numerical simulation
by scaling the length with a0 = √

�/mωρ and energy with
�ωρ . One obtains dimensionless TDHFB equations, which
we discretize using the finite-difference method. The trap
parameters are the same as in the experiment of Ref. [16],
i.e., the radial trap frequency is ωρ = 220 Hz and the axial
frequency is ωz = 3 Hz. The number of particles is 1.5 × 106

23Na atoms, and the interaction strength is anz = 5.6.
Figure 1 shows that the anomalous density forms a local

minimum in the center of the trap and appears as a tornado
(vortex) surrounds the condensate. It is easy to see that the
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FIG. 1. (Color online) Condensed density (blue dotted lines) and
anomalous vortex (red dashed lines) vs the radial distance for Nc/N =
60% and for β = 1.05 (left panel). Two-dimensional (2D) densities,
integrated along the z direction for the condensed atoms (red/dark
blue) and anomalous vortex (green/yellow) (right panel).

anomalous vortex preserves the same shape as the usual
vortex. Importantly, we observe that the condensed atoms
are located in the core of the anomalous vortex. In fact, the
formation of the anomalous vortex occurs first due to the
centrifugal forces on the gas and to the correlations between
pairs of condensed and noncondensed atoms. Note that these
interactions between pairs lead also to the formation of a dip
in the anomalous density and in the thermal cloud near the
edge of the condensate, even in the absence of centrifugal
forces [29,39].

We turn now to investigate the behavior of the anomalous
double vortex. To this end, we solve our TDHFB equations
with the same experimental values keeping fixed the phases in
both the condensate fraction and in the anomalous density. The
resulting equations contain centrifugal potentials that force the
solution of � and m̃ to be zero along the z axis.

As is shown in Fig. 2, a doubly quantized vortex spon-
taneously forms in the anomalous fraction of the Bose gas
even with � = 1, as we have already expected. The process
starts precisely at intermediate temperature (Nc/N = 55%),
where the anomalous density reaches its maximal value. At
this range of temperature, the quantized vortex starts to decay,
which explains the lower energy cost of gathering particles
from the vortex to its surrounding bath. Consequently, the
centrifugal force associated with the anomalous fraction leads
to the nucleation of a supplementary vortex on the anomalous

t 7ms

1.0 0.5 0.0 0.5 1.0

t 20ms

1.0 0.5 0.0 0.5 1.0

t 35ms

1.0 0.5 0.0 0.5 1.0

t 50ms

1.0 0.5 0.0 0.5 1.0

FIG. 2. (Color online) Time evolution of the nucleation process
of a doubly quantized vortex in the anomalous component at
Nc/N = 55%. Axial images for interaction strength anz = 5.6.
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FIG. 3. (Color online) Radii of vortex cores as a function of the
reduced temperature. Parameters are the same as in Fig. 1.

component. In addition, it is clearly seen from the same figure
that, at t = 20 ms, the generation of the anomalous double
vortex has already begun, and at t = 35 ms the vortex cores
begin to disentangle. Not that at very low temperature, the
condensed vortex dominates the anomalous one, and thus it
will be difficult to detect such a double vortex. At higher
temperatures when the system ends with only a thermal cloud,
this vortex decays and disappears. The decay is attributed to
dissipation induced by the anomalous fluctuations, in contrast
to the case of a quantized vortex, where the decay is mainly a
consequence of dynamical instability [16,17].

In Fig. 3, we compare the radius core of the anomalous
vortex with that of the quantized vortex; we find that the former
is larger than the latter at temperatures T � 0.5Tc. One can see
also that the radius of the anomalous vortex is decreasing with
temperature and has a minimum at T ∼ 0.5Tc, which is indeed
natural since at such a temperature the anomalous fraction
reaches its maximum. At higher temperature (T > 0.5Tc),
both radii increase and confront each other near the transition.
This can be attributed to the fact that the anomalous density
is proportional to the condensed density. Both densities tend
to zero, and hence their contribution becomes automatically
negligible at T ∼ Tc [23,29]. Since the anomalous density
subsists only in a narrow regime and its vortex core radius is too
small (∼10−7 m), direct in situ observation of these vortices
is difficult. Note that even the radius core of a quantized
vortex is small for direct visual direction. On the other
hand, one can expect also that the condensed vortex becomes
widespread as interactions rise due to the dissipation, unlike
the anomalous vortex core. This latter becomes narrower
and deeper for strong interactions. We can conclude that
anomalous vortices, regardless of their charge (singly, doubly,
or multiply), grow with interactions. In noninteracting gases,
these vortices cannot survive anymore.

For completeness, we restrict ourselves now to analyzing
the frequency of vortices by explicitly solving the extended
BdG equations (7). Figure 4 displays the vortex frequency as
a function of the reduced temperature. The observed increase
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FIG. 4. (Color online) Frequency of the anomalous vortex as a
function of the reduced temperature. Parameters are the same as
in Fig. 1. Solid line, β = 1.05; red dashed lines, β = 1 (HFB-
Popov approximation). Here we have followed the method outlined
in [29,33,39] to calculate the reduced temperature.

ωv with rising T is consistent with results obtained using the
related HFB-Popov [33] at very low temperature, i.e., T <

0.3Tc. At T � 0.3Tc, our result deviates from those of the
preceding theory due to the inclusion of the anomalous density.

Figure 5 clearly depicts that the frequency of the anomalous
vortex is decreasing with the anomalous fraction, which means
that pair correlations may enhance the vortex frequency. One
should mention at this level that the vortex frequency has never
been explored before in terms of the anomalous fraction.
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FIG. 5. Vortex frequency as a function of the anomalous fraction.
Parameters are the same as in Fig. 1.
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IV. EXPERIMENTAL REALIZATION

Let us now discuss the feasibility of observing the obtained
results experimentally. It was shown in Refs. [40,41] that
the anomalous correlations of either bosonic or fermionic
(pairing states) systems can be detected using two different
schemes of interference experiments. The first one is based
on the phase-sensitive detection employed earlier in the
condensed-matter systems, and the other technique deals with
two superfluids weakly coupled by interlayer tunneling. In
the case of bosonic superfluids, the anomalous correlations
play a crucial role in their occurrence [see Eq. (3)] [25,31],
and they have an unusual property is that they increase with
the separation between quasiparticles [41]. The anomalous
average also influences a number of observables, including
almost all thermodynamic characteristics, the phase-transition
order, and dynamical properties. Moreover, the anomalous
density manifests itself into a second-order correlation func-
tion as G(2)(r) = 〈ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)〉 = n2

c + m̃2 + 2ñ2 +
4ñnc + 2m̃nc [24,42]. In our opinion, this latter quantity
constitutes the best candidate to measure the anomalous
density experimentally. To illustrate this, Perrin et al. [43,44]
have pointed out that the experiment using four-wave mixing
of the collision of two BECs of metastable helium atoms,
which produces a cloud of scattered atoms, may yield detailed
information about the atomic pair correlations. In such an
experiment, the Raman transition transfers the atoms into
an untrapped magnetic substate. The transferred atoms thus
expand freely, falling onto a microchannel plate (MCP)
detector that allows the three-dimensional reconstruction of the
position of single atoms. Knowing the positions of individual
atoms, the initial momenta and the second-order momentum
correlation function of the cloud of scattered particles can
be computed. In this sense, anomalous correlations can be
extracted or even observed, although indirectly.

With regard to vortices associated with the anomalous
fraction, these structures can be nucleated during a controlled
merging of three independent BECs with uncorrelated phases,
which is analogous to the Kibble-Zurek mechanism [45–47].
This mechanism, which has been successfully utilized to
create the thermal vortex [48], is appealing because of its
potential for characterizing a wide variety of phase transitions,
irrespective of the microscopic processes involved. The main
difference between the thermal vortex observed in [48] and
the anomalous vortex predicted in the present paper is that the
former is generated during the condensation process when the
temperature is somehow higher, whereas the anomalous vortex
is generated at intermediate temperatures, as we have already
shown in Sec. III. Anomalous vortices can be formed also
by considering a self-localization of a neutral impurity atom
embedded in a dilute Bose gas. This can be realized using a
species-selective dipole potential [49], giving rise to spatially
localizing the impurities in the center of the BEC, exhibiting
a vortex-like behavior in both condensate and anomalous

components. Our recent analytical and numerical results based
on the TDHFB equations (1) [32,50] showed that impurities
distort the anomalous density and form a vortex in the case
of repulsive impurity-host interaction. Despite the fragility
of these vortices, and the difficulties inherent in observing
them, they can be stabilized by a suitable localized pinning
potential or the addition of quartic confinement. Numerical
simulations based on the Gross-Pitaevskii equation revealed
that these techniques are also efficient to stabilize ordinary
multiply charged vortices [51,52].

V. CONCLUSION

In this paper, we have studied the properties of the
anomalous double vortex in a trapped Bose gas at nonzero
temperatures by solving numerically the TDHFB equations.
The outcomes of our simulation are numerous. First of all,
we have shown that the condensed atoms fill the core of the
anomalous vortex when only the anomalous phase is inserted
into the system without imposing the singly quantized vortex
on the condensed phase. In addition, the anomalous double
vortex is generated spontaneously in Bose gases if phases
corresponding to the singly charged vortex are imposed in the
condensed and anomalous components. We have demonstrated
that the vortex decay is mainly driven by dissipation caused by
anomalous fluctuations, thus enabling a better understanding
of the splitting process. At higher temperatures, this vortex
disappears. As a result, the decay time of such a vortex depends
on the temperature. Furthermore, we have found that the core
of the quantized vortex increases with both interactions and
temperature. In contrast, the size of the anomalous vortex
core decreases at low temperature and for strong interactions.
Moreover, we have pointed out that pair correlations may
enhance the spectrum frequency of the anomalous vortex.

It is worth stressing that our formalism permits us to
investigate, in a useful manner, the formation of vortices
in the thermal cloud component, since this component is
related to the anomalous fraction via Eq. (3). However, this
vortex remains largely unexplored both theoretically and
experimentally. Our continuing work will investigate in greater
detail the static properties and dynamics of the thermal vortex.

Finally, the experimental realization of the anomalous
vortex is of immense interest for a very broad scientific
community striving to gain more insight into what is indeed
happening regarding this type of vortex. Theoretically, the
results obtained in this paper are important since they clarify
the generation and the decay process of these vortices in terms
of temperature and interactions.
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[23] A. Boudjemâa, Phys. Rev. A 86, 043608 (2012).
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[31] A. Boudjemâa, Phys. Rev. A 88, 023619 (2013).
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