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Route to non-Abelian quantum turbulence in spinor Bose-Einstein condensates
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We have studied computationally the collision dynamics of spin-2 Bose-Einstein condensates initially confined
in a triple-well trap. Depending on the phase structure of the initial-state spinor wave function, the collision of
the three condensate fragments produces one of many possible vortex-antivortex lattices, after which the system
transitions to quantum turbulence. We find that the emerging vortex lattice structures can be described in terms
of multiwave interference. We show that the three-fragment collisions can be used to systematically produce
staggered vortex-antivortex honeycomb lattices of fractional-charge vortices, whose collision dynamics are known
to be non-Abelian. Such condensate collider experiments could potentially be used as a controllable pathway to
generating non-Abelian superfluid turbulence with networks of vortex rungs.
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I. INTRODUCTION

For the past two decades, Bose-Einstein condensates
(BECs) of dilute gases [1,2] have been a treasure trove
of theoretical and experimental quantum physics. Among
the gems discovered so far are superfluidity and integer-
quantized vortices, the latter for single-component BECs
being characteristic of a scalar (spin-zero) order-parameter
field [3,4]. Such stringlike quantized vortices puncture the
order-parameter field, defining its topology. The vorticity of
the BEC superfluid is inherently connected to the configuration
of the quantized vortices in the system. Vortices are motile and
their dynamics can be regular, preserving the topology of the
fluid, or chaotic, with topology-changing events mediated by
vortex reconnections and vortex-antivortex pair-creation and
-annihilation processes. The latter type of behavior is prevalent
in quantum or superfluid turbulence [5–8].

Even more complex behaviors occur in spinor BECs, which
are distinguished from the scalar BECs by their internal
spin degree of freedom being unlocked [9–12]. The vector
valuedness of the order-parameter field of spinor superfluids
greatly enriches the landscape of possible topological and mag-
netic structures in such systems [13–17]. In three-component
(spin-1) spinor BECs, skyrmions [18–22], monopoles [23–25],
and vortex sheets [26,27] are among the topological structures
[28] studied. The spin degree of freedom also allows these
systems to possess turbulent spin currents [29–31] in addition
to the turbulent mass currents.

Five-component (spin-2) spinor BECs are predicted to exist
in a variety of ground-state phases [32] and to host fractional-
charge vortices [14,33–36]. Their so-called cyclic state in
the polar phase is particularly interesting. Kobayashi et al.
showed that vortices in the cyclic phase ground state can be
described by a non-Abelian algebra [33–35]. Collisions of such
non-Abelian fractional vortices are topologically constrained
and result in a rung joining the two resulting vortex lines, rather
than the reconnection observed by conventional (Abelian)
vortices in which the association of vortex line endings changes
during the interaction. The non-Abelian character of the vortex
collisions is therefore anticipated to result in a rung turbulence
if the system is driven far out of equilibrium [33–35]. The
non-Abelian fractional vortices in spin-2 BECs are also

intrinsically interesting from the perspective of other con-
structs such as topological quantum information processing
[37], quantum field theories involving a spin-2 graviton [38],
and non-Abelian cosmic string networks [39,40]. However, in
order to study rung-mediated non-Abelian quantum turbulence
experimentally, a method to controllably produce the novel
noncommutative types of vortices is required.

Several techniques exist for producing quantized vortices
in BECs [4] including nucleation by rotating traps [41–43].
Here we focus on vortex production based on multiwave
interference to achieve a controllable and repeatable technique
to generate quantum turbulence. This concept is illustrated
in the schematic Fig. 1. Indeed, interference of three or
more waves can produce lattices of quantized vortices and
antivortices [27,44–47]. Scherer et al. used such a method
and by colliding three Bose-Einstein condensate fragments
they observed quantized vortices in the system [48]. In their
experiment an external potential was used for separating
the condensate initially into three condensate fragments.
Adiabatic removal of the separating potential provided a
statistical prediction of the presence or absence of a vortex
in the resulting condensate, depending on the random relative
phases of the initial condensate components. In contrast
with this experiment, under sufficiently rapid nonadiabatic
removal of the separating potential, three colliding condensate
fragments have been predicted and demonstrated to form
a honeycomb vortex-antivortex lattice, equivalent to two
interleaved Abrikosov lattices—one of vortices and the other
of antivortices [46,49,50]. Similar honeycomb vortex lattices
could also be produced by using aberrated matter wave lensing
technique [51,52]. Moreover, Roberts et al. have developed a
versatile optical tweezer collider for cold atoms [53], which
could be extended to two-dimensional (2D) collision geometry
to achieve generic multiwave condensate collisions with
controllable initial momentum vectors of the wave packets. For
a two-component pseudospin system, three-wave collisions
lead to condensate pseudospin textures [47].

In the remainder of this paper, we extend the three-wave
interference concept to an F = 2 spinor BEC. In particu-
lar, we show that it is possible to use such a multiwave
interference technique to create vortex states that host non-
Abelian fractional vortices which are anticipated to lead
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FIG. 1. Schematic of our numerical experiment showing the
total particle density at three different times of evolution.
(a) The five hyperfine states behind the total density images of the
F = 2 Bose-Einstein condensate are initially confined in a species-
independent triple-well trap, superposed with a global harmonic
potential. (b) Upon removal of the triple-well potential, the three
condensate fragments expand and interfere in the central portion of
the harmonic trap. The multiwave interference of the condensate
fragments produces transient honeycomb vortex-antivortex lattices
in each of the occupied hyperfine spin states. (c) At later times the
system transitions to quantum turbulence.

to novel rung-mediated quantum turbulence. In Sec. II we
outline an analytical method for determining the axisymmetric
vortex types that form in the aforementioned condensate
collisions. In Sec. III we describe the vortex lattices composed
of these vortex types. The simulation results presented in
Sec. IV include regimes of linear dynamics which results in
the nucleation of vortex lattices and the nonlinear dynamics
which is anticipated to lead to non-Abelian rung-mediated
quantum turbulence. We discuss the obtained results in terms
of three key observables: the total condensate particle density,
magnetization density, and spin singlet pair amplitude density.

II. AXISYMMETRIC QUANTIZED VORTICES IN AN
F = 2 CONDENSATE

In the condensate collision experiment under consideration
the relevant dynamics are examined within a transverse
plane of the BEC, which treats vortex phase singularities as
zero-dimensional point objects in the 2D plane, equivalent
to infinitely extended one-dimensional parallel nodal lines in
the three-dimensional complex scalar field. This simplification
means that it is reasonable to restrict the discussion to vortices
whose cores are aligned with the quantization axis perpen-
dicular to the plane of the triple-well potential. Motivated by
this observation, we here restrict the discussion to 2D systems
unless otherwise stated.

A. Axisymmetric vortices

Without a loss of generality, we may express the five-
component order parameter of the F = 2 spinor Bose-Einstein
condensate in the Madelung form

�(r, t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

|ψ2(r, t)|eiS2(r, t)

|ψ1(r, t)|eiS1(r, t)

|ψ0(r, t)|eiS0(r, t)

|ψ−1(r, t)|eiS−1(r, t)

|ψ−2(r, t)|eiS−2(r, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1)

where |ψj (r, t)| and Sj (r, t) are, respectively, the amplitude
and the phase functions of the j th hyperfine spin component of
the spinor wave function �(r, t). A constraint of axisymmetric
superflow mass current around the vortex phase singularities
may be imposed by specifying the spatial phase functions to
be of the form

Sj (r) = wjθ, (2)

where wj is the integer winding number of a phase singularity
in the j th spin state and θ is the polar phase angle. Positive and
negative values of wj in single-component condensates corre-
spond to vortices and antivortices, respectively. Furthermore,
it is convenient to use a winding number notation whereby
a five-tuple (w−2, w−1, w0, w1, w2) can be used to refer to
the axisymmetric vortices. Here, the subscript refers to the
hyperfine state mF . A spin state unpopulated by atoms is
denoted with a × marker. Different winding number tuples
describe different vortex species each with particular orbital
and spin angular momentum quantum numbers � and s,
respectively.

The phase functions Sj of a spinor �(r) can be unwound
by the transformation

�0(r) = e−iγ eiηxfx eiηyfy eiηzfz�(r), (3)

where fi are Pauli spin matrices for a particle with spin f , and
γ and ηi are, respectively, the gauge and spin rotation angles
of the transformation. The axisymmetric vortices only involve
spin rotation about the chosen z quantization axis, such that
ηx = ηy = 0. This constrains the allowed winding numbers wj

of the nearest populated hyperfine spin states j and j + 1 such
that wj+1 − wj = n, where n is an integer. This constraint
allows a graphical representation of the axisymmetric vortices
shown in Fig. 2 as a straight line in the plane spanned
by the hyperfine spin quantum number mF = j and the
winding number w [13,15]. We will further refer to such

mF
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−2 −1
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FIG. 2. (Color online) Selection of axisymmetric vortices in an
F = 2 spinor condensate represented in terms of the winding numbers
w of each hyperfine spin state mF of the condensate. Circles mark
hyperfine spin components with nonzero condensate population. In
this graphical notation each vortex corresponds to a straight line.
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TABLE I. Selection of axisymmetric vortices in the F = 2 spinor
condensate. We refer to the vortices using either the orbital and spin
angular momentum quantum numbers (�,s) or the winding number
tuple. A winding number of × indicates a zero population of particles
in that spin state. Vortices indexed with ∗ belong to one of the four
non-Abelian vortex classes.

(�, s) Winding number tuple

(1, 0) (×, × , 1, × , ×)
(−1, 0) (×, × , −1, × , ×)
(− 2

3 , 1
3 )

∗
(×,−1, × , × , 0)

( 1
2 , 1

2 ) (×, 0, × , 1, ×)
(− 1

2 , 1
2 ) (×, −1, × , 0, ×)

( 1
2 , 1

4 ) (0, × , × , × , 1)
(− 1

2 , 1
4 ) (−1, × , × , × , 0)

( 1
3 , − 2

3 ) (×, 1, × , × , −1)
( 1

3 , 1
3 )

∗
(×, 0, × , × , 1)

(0, 1)∗ (−2, × , 0, × , 2)
(0,−1) (×, 1, × ,−1, ×)
(0, − 1

2 )
∗

(1, × , 0, × , −1)

axisymmetric vortices by a pair of numbers (�, s) where
� = γ /2π and s = ηz/2π quantum numbers are related to
the orbital angular momentum and spin angular momentum of
the vortex, respectively.

B. Vortex structures

In Table I we have listed a few axisymmetric vortex types.
The vortex (1, 0) is a scalar vortex with pure mass circulation
(� = 1) and vanishing spin current (s = 0). A complementary
example is the vortex (0, 1), which has pure spin current and
no mass current. In addition to these integer vortices, a generic
fractional vortex may have a mixture of mass and spin currents,
in which case the values of � and s can be rational numbers.
The ( 1

2 , 1
2 ) vortex has a half quantum of both mass and spin

winding and is the spin-2 analog of the half-quantum vortex
[54]. Three further examples of fractional vortices are ( 1

2 , 1
4 ),

( 1
3 , 1

3 ), and (− 2
3 , 1

3 ), with the latter two existing in the cyclic
ground state of the F = 2 condensate.

The spin degree of freedom allows for a variety of vortex
core structures to exist [13,15,16]. The vortex states present
in scalar (spin-zero) condensates have vanishing condensate
particle density in the vortex core, although they can be
partially filled by quantum depletion and thermal atoms [55–
58]. In contrast, in spinor condensates the void left by a vortex
in one spin component may be filled by condensate particles in
other spin components. The core structure of a generic vortex
in F = 2 condensate may be conveniently characterized in
terms of three functions. These are the total particle density
[12]

n(r) = |ψ2|2 + |ψ1|2 + |ψ0|2 + |ψ−1|2 + |ψ−2|2, (4)

the magnetization density

M(r) = 2|ψ2|2 + |ψ1|2 − |ψ−1|2 − 2|ψ−2|2, (5)

and the spin singlet pair amplitude

A(r) = 1√
5

(
2ψ2ψ−2 − 2ψ1ψ−1 + ψ2

0

)
. (6)

C. Non-Abelian vortices

Each spinor vortex can be associated with a topological
charge which satisfies either Abelian or non-Abelian algebra
[34]. If the multiplication of two topological charges is
noncommutative then the vortices and their interactions are
described as non-Abelian. Such non-Abelian behavior is
manifest in their collision dynamics. When two non-Abelian
vortices collide it is topologically forbidden for them to
undergo a reconnection. Instead, a rung vortex emerges at
the interaction site bridging the two vortex lines [34]. The
cyclic ground state of the F = 2 condensate is symmetric
under rotations in the non-Abelian tetrahedral group. Vortices
formed in the cyclic ground state of such spinor condensates
have a topological charge corresponding to one of these
group elements and such vortices inherit the non-Abelian
property of the tetrahedral group. It is therefore interesting
to investigate if such non-Abelian vortices could be generated
experimentally in spin-2 BECs for studies of rung-mediated
quantum turbulence. The non-Abelian vortices relevant to this
work are marked in Table I by an asterisk.

III. THREE-WAVE INTERFERENCE YIELDS
HONEYCOMB VORTEX-ANTIVORTEX LATTICES

The destructive interference of two wave packets produces
dark stripe solitons, each of which may subsequently disin-
tegrate due to nonlinear interactions into rows of alternating
vortices and antivortices [59–62]. However, the destructive
interference of three waves may produce lattices of vortices
and antivortices in predictable regular honeycomb lattice
structures [27,44–47]. Armed with this insight, we will
first consider a collision of three single-component scalar
condensates and thereafter extend the results to the multi-
component spinor condensates. Our aim is to use three-wave
interference technique to deterministically produce vortices
and antivortices of non-Abelian kind to ignite rung-mediated
quantum turbulence.

A. Collision of three scalar condensates

In the absence of external potentials and magnetic fields
the Hamiltonian density of the F = 2 condensate may be
expressed as [12]

H = T (r) + c0

2
n2(r) + c1

2
|F(r)|2 + c2

2
|A(r)|2, (7)

where the single-particle term T (r) =
− �

2

2m

∑
j ψ∗

j (r)∇2ψj (r); the spin vector F(r) =∑
ij ψ∗

i (r)fijψj (r), where fij are the elements of the
spin-2 Pauli matrices; the total particle density n(r) and spin
singlet pair amplitude A(r) were defined in Sec. II B; and ci

are coupling constants.
If the kinetic energy of the three colliding condensate

components is much larger than any of the interaction terms
the system may be considered to be weakly nonlinear and we
may set ci = 0. Under such circumstances the resulting spinor
wave function on short time scales can be estimated via the
superposition principle of linear waves. While the condensate
fragments are modeled as three symmetrically arranged wave
packets of equal initial population and shape, on a local scale
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their interference may be modeled as that of three plane waves.
This approximation is represented by the wave function

ψ(r) =
3∑

j=1

eiζj (r), (8)

where ζj (r) = kj · r + φj . The kj are momentum vectors
of equal magnitude |k| of the three colliding condensate
fragments and φj specifies the phase of the j th condensate
fragment at the origin. For the rest of this section φ1 = 0.

The quantized vortices are nodal lines of the complex valued
wave function and are identified as singularities of the phase
function arg(ψ). For destructive three-plane-wave interference
the locations of the vortices, r+

n,m, and antivortices, r−
n,m, are

given by the simple geometric relations

r+
n,m = 4π

3|k| [n + m/2 + 1/2π (φ2 + φ3)] êx

+ 2π√
3|k| (m + φ2/π )êy,

r−
n,m = 4π

3|k| [n + m/2 + 1/2π (φ2 + φ3) + 1/2] êx

+ 2π√
3|k| (m + φ2/π + 1/3)êy (9)

describing a honeycomb lattice, as illustrated in Fig. 3(a). The
êi are Cartesian basis vectors. In comparison, by treating the
colliding wave packets as Gaussian functions the interference
is described by the wave function [46,63]

ψ(r, t) =
√√√√ π− 1

2
�p

�

1 + i
(�p)2t

m�

3∑
j=1

exp

(
−(

�p

�

)2|r − rj |2
2
[
1 + i

(�p)2t

m�

] + iφj

)
,

(10)

(a) (b) (c)

mF = 0 mF = −1 mF = 1 mF = −2 mF = 2mF = 0

+ + +

FIG. 3. Structure of vortex lattices with black and white circles
corresponding to the locations of vortices and antivortices, respec-
tively. (a) A honeycomb lattice structure due to three-plane-wave
interference in a single spin state of a condensate. (b) AB stacking
of two honeycomb lattices. (c) ABC stacking of three honeycomb
lattices.

where �p defines the momentum uncertainty or the width of
the initial condensate fragments and |r − rj | is the distance
between the center of the j th Gaussian and an observation
point. The subsequent vortex and antivortex locations, derived
in detail by Ruben et al. [46], are, respectively,

r ′+
n,m = 1

2

(
r − βM(m)

r

)
êx

+ 1

2
√

3

(
r − β[2N (n) − M(m)]

r

)
êy,

(11)

r ′−
n,m = 1

2

(
r − βM ′(n)

r

)
êx

+ 1

2
√

3

(
r − β[2N ′(m) − M ′(n)]

r

)
êy,

where r is the separation between the centers of each
condensate fragment and β = 2[(�t)2 + m2(�/�p)4]/3m�t .
The integers n and m index the lattice points via the functions

M(m) = 2π

[
1 + 3

(
m − φ2

2π

)]
,

N (n) = 2π

[
2 + 3

(
n − φ3

2π

)]
,

(12)

M ′(n) = 2π

[
2 + 3

(
n − φ2

2π

)]
,

N ′(m) = 2π

[
1 + 3

(
m − φ3

2π

)]
.

Interestingly, also the Gaussian wave-packet model,
Eq. (11), produces a uniform honeycomb vortex lattice and
hence the vortex lattice vectors of Eqs. (9) and (11) can be
mapped onto each other at any time. Here we use destructive
three-plane-wave interference as an analytical model for
comparison with the numerical results.

B. Collision of three spinor condensates

Within the weak interaction approximation of three-source
interference of spinor condensates, the structure of the vortex
lattice formed in each hyperfine spin state is independent of
influence from the condensate particles in other spin states.
The vortex lattice structure in each hyperfine spin state is thus
equivalent to that produced by three source interference in a
scalar condensate. Hence the semianalytical three-plane-wave
interference model can be extended to a spinor wave function
by modeling each spinor component as a scalar wave function.
The spinor wave function describing the lattice structure local
to the trap center is then

�(r) =
3∑

j=1

⎛
⎜⎜⎜⎜⎜⎜⎝

|ψ2(r)|eiζ2j (r)

|ψ1(r)|eiζ1j (r)

|ψ0(r)|eiζ0j (r)

|ψ−1(r)|eiζ−1j (r)

|ψ−2(r)|eiζ−2j (r)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (13)

where |ψi(r)| is constant and ζij (r) = kj · r + φij . The phase
at r = 0 of the j th condensate fragment in the ith hyperfine
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spin component is denoted by φij , while the magnitude of
the momentum vector kj determines the vortex lattice spacing
and is used as a free parameter for matching the semianalytical
description and the numerical results. Similarly to the scalar
case, the phases φij determine the positions of the vortices
nucleated in the spinor condensate [see Eq. (12)].

At every point in space, each condensate spin component
may have a vortex or an antivortex or be vortex free (see Fig.
3). The relative positions of the vortices in different spin states
determine which spinor-vortex types are generated in the
spinor condensate. By controlling the spinor phases during
preparation of the initial condensate any desired alignment of
the vortex lattices in different spin states may be achieved [47].
The various stackings of these vortex lattices are analogous to
those in multilayer graphene structures [64]. Figure 3(a) shows
a honeycomb vortex lattice structure in a single-component
scalar (spin-zero) condensate. Frame (b) shows an AB
stacking of two honeycomb lattices and frame (c) shows an
ABC stacking of three-layer honeycomb lattices. Both (b) and
(c) yield three different kinds of axisymmetric vortices in the
global order parameter and the same is true for ABA and BAB
stackings. Unshifted stackings such as AA and AAA all result
in two different kinds of vortices only, which are equivalent to
the scalar condensate vortices and antivortices shown in (a).
Populating four or all five spin components further increases
the complexity and the variety of possible vortex states.

As shown in the case of colliding scalar condensate frag-
ments, the outcome is a honeycomb vortex lattice irrespective
of the initial phases of the condensate fragments. In such a case
the collision itself acts as a measurement process determining
the relative phases between the condensate fragments [65].
Similarly for a spinor case the collision will result in a
vortex lattice but this time the vortex types nucleated in
the lattice will depend on the phase structure of the full
spinor wave function. In the numerical simulations the initial
phases φij can be set explicitly without loss of generality. In
experiments, the relative phases within a given spin state could
be controlled using Laguerre-Gauss laser modes to imprint
any order vortex phase winding [20,66]. It is feasible that the
different diffraction orders of a single Laguerre-Gauss beam
could potentially be used to control each φij . However, to
determine the vortex positions it is sufficient to fix only the
relative winding numbers between the hyperfine spin states.
This is because the relative phases between the spin states
cause a local rotation of the spin but leave the alignment of the
vortex lattices unchanged. Alternatively, suitable initial states
could be generated by imprinting the desired spin textures
using spin-engineering techniques similar to those used in
Refs. [21,25,67]. Furthermore, the production of non-Abelian
vortices is robust even in the presence of fairly large phase
fluctuations because any such uncertainties would only act to
translate the vortex positions in each hyperfine spin state and
small shifts in the vortex positions are not sufficient to destroy
the topology of the non-Abelian vortices.

A list of interesting initial states and their corresponding
lattice vortices is presented in Table II. In all cases, the resulting
lattice has a net zero winding number. This follows since the
honeycomb lattice in each populated component has equal
numbers of vortices and antivortices and hence a net-zero
winding number for each component.

TABLE II. A list of initial vortex states along with the vortices
present in the lattice after the three source interference, corresponding
to those defined in Table I. All vortices are represented by their orbital
and spin angular momentum quantum numbers (�,s).

Initial vortex Lattice vortices

( 1
2 , 1

2 ) (− 1
2 , 1

2 ), ( 1
2 , 1

2 ), (0,−1)

(0, 1) ( 1
2 , 1

4 ) + (−1, 0), (− 1
2 , 1

4 ) + (1, 0), (0, − 1
2 )

( 1
3 , 1

3 ) ( 1
3 , 1

3 ), (− 2
3 , 1

3 ), ( 1
3 , − 2

3 )

C. Generating non-Abelian lattice vortices

For collisions of condensates with population in two
hyperfine spin states the ( 1

3 , 1
3 ) vortex corresponds to one of

the possible initial configurations and in the semianalytical
model is achieved by setting φ−1j = 0 and φ2j = 0, 2π

3 , 4π
3

for the j = 1, 2, 3 condensate fragments, respectively, with
the other spin components left empty. The ( 1

3 , 1
3 ) is also one

of the non-Abelian vortex types of the cyclic ground state.
The lattice vortices produced in this case are ( 1

3 , 1
3 ), (− 2

3 , 1
3 ),

and ( 1
3 , − 2

3 ) as detailed in Tables I and II and Fig. 4(c). The
( 1

3 , − 2
3 ) vortex is unstable in the cyclic phase [35]. However,

collisions between ( 1
3 , 1

3 ) and (− 2
3 , 1

3 ) vortices are expected to
be non-Abelian, resulting in rung formation [35]. Therefore, as
the vortex lattice produced by the ( 1

3 , 1
3 ) initial state breaks up

and enters the nonlinear regime in its evolution, it is anticipated
that new rung-mediated quantum turbulence may be initiated
this way [34].

IV. GROSS-PITAEVSKII DYNAMICS

To confirm the validity of the semianalytical model for
vortex lattice generation when particle interactions are ac-
counted for, we have simulated the collisions of three F = 2
condensate fragments using the mean-field theory. We model
the system in two dimensions using a five-component F = 2

w

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2
−2

−1

0

1

2 (c)(a) (b)

−1
2
,

1
2

1
2
,

1
2

(0, −1)

1
3
,

1
3

1
3
, −2

3

−2
3
,

1
3

0, −1
2

mF mF mF

−1
2
,

1
4

+ (1, 0)

1
2
,

1
4

+ (−1, 0)

FIG. 4. (Color online) The lattice vortices of a selection of initial
states represented in terms of the winding numbers w of each
hyperfine spin state mF of the condensate. Circles mark hyperfine spin
components with nonzero condensate population. In this graphical
notation each axisymmetric vortex corresponds to a set of nodes for
each populated spin state joined by a straight line, and is labeled using
the naming convention listed in Table I. (a)–(c) show the vortices that
emerge in the lattice when using an initial-state vortex ( 1

2 , 1
2 ), (0, 1),

and ( 1
3 , 1

3 ), respectively.
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spinor Gross-Pitaevskii equation [12]:

i�∂tψ±2 =
(

−�
2∇2

2m
+ Vext + c0n ± 2c1Fz − μ

)
ψ±2

+ c1F∓ψ±1 + c2√
5
Aψ∗

∓2,

i�∂tψ±1 =
(

−�
2∇2

2m
+ Vext + c0n ± c1Fz − μ

)
ψ±1

+ c1

(√
6

2
F∓ψ0 + F±ψ±2

)
− c2√

5
Aψ∗

∓1,

i�∂tψ0 =
(

−�
2∇2

2m
+ Vext + c0n − μ

)
ψ0

+ c1

√
6

2
(F+ψ1 + F−ψ−1) + c2√

5
Aψ∗

0 , (14)

which govern the dynamics of the spinor condensate. Here ψi

for i = (0,±1,±2) denotes a single hyperfine spin component
of the spinor, F± are the angular momentum raising and
lowering operators, and Fz is the z component of the spin-
density vector. The terms c0, c1, and c2 are the effective
coupling constants and μ is the chemical potential. The
coupling constants depend on the scattering lengths of the
particle interaction channels, which for 87Rb are a0 = 87.4aB,
a2 = 92.4aB, and a4 = 100.5aB [68] in units of the Bohr radius
aB. The number of particles in the system is N = 5.0 × 104.
The simulations are performed on a Cartesian numerical grid
with 2048 × 2048 points using the XMDS2 [69] differential
equation solving package.

The trapping potential is a combination of a harmonic os-
cillator potential with a frequency ω = 2π × 4.9 Hz and a sum
of three localized Gaussian terms. This produces a triple-well
potential, Vext = mω2r2/2 + ∑3

i=1 P exp (− 1
2 (r − ri)2/σ 2),

where P = 300 �ω and σ = 18.8 aosc are the potential height
and standard deviation of the Gaussian potentials centered at
positions ri . The unit of distance aosc = √

�/2mω. The initial-
state densities are produced numerically using imaginary time
propagation and the initial-state spinor is chosen to represent
one of the possible axisymmetric vortex states from Sec. II. The
vortex phase windings are initialized by setting the phases φij

as described in Sec. III. This is achieved through a phase mask
which specifies a value of either zero, 2nπ

3 , or − 2nπ
3 , where n is

the winding number of the vortex, to each one-third fraction of
the grid containing a condensate fragment. In the following,
we present simulation results for three representative initial
states ( 1

2 , 1
2 ), (0,1), and ( 1

3 , 1
3 ), respectively, referred to as the

half-half vortex, zero-one vortex, and third-third vortex.

A. Half-half vortex initial state

We initialize the ( 1
2 , 1

2 ) vortex state (0, 1, 0, exp (iθ ), 0)
by setting the phases φ−1j = 0 and φ1j = 0, 2π

3 , 4π
3 for the

j = 1, 2, 3 condensate fragments, respectively, with the other
spin components empty. The semianalytical model of Eq. (13)
is initialized similarly. The initial probability density and phase
map for the two nonzero population hyperfine spin states is
presented in Fig. 5 showing the 2π phase winding across the
three condensate fragments in the mF = +1 spin component.

mF = +1mF = −1

(a) (b) 1

0
π

0

−π

(c) (d)

FIG. 5. (Color online) Initial state of the ( 1
2 , 1

2 ) vortex. (a) and
(b) show the probability densities in the mF = 1 and −1 spin states
normalized to the maximum density. (c) and (d) show the phases of
the two spin states where the phase has been set to zero for regions
of low density. In all figures the range of the colorbar is from the
minimum to maximum value of the observable in arbitrary units. The
field of view of each frame is (23.4 × 23.4) aosc.

For clarity the phase is set to zero in the regions of low density.
In all figures the range of the colorbar is from the minimum
to maximum value of the observable in arbitrary units. Both
the magnetization and spin singlet pair amplitude density are
initially zero.

After the triple-well component of the external potential
is switched off, the three condensate fragments collide and
a honeycomb lattice is formed in the condensate interior of
each spin state, Figs. 6(a)–6(d), while the exterior regions,
where initially only two of the three condensate fragments
have collided, are dominated by interference fringes. The
vortex lattice consists of the three fractional vortex types
(− 1

2 , 1
2 ), ( 1

2 , 1
2 ), and (0,−1) as referenced in Table II and shown

in Fig. 4(a). The total particle density n(r), magnetization
density M(r), and spin singlet pair amplitude density |A(r)|
are shown in Figs. 6(e)–6(g), respectively. The densities in the
two populated spin components develop prominent spiral arms
with opposite chirality, preserving the threefold symmetry in
the total density.

Figures 7(a)–7(c) show an expanded view of Figs. 6(e)–6(g)
local to the trap center. These frames should be compared with
the respective frames Figs. 7(d), 7(e), and 7(f) showing the
corresponding densities calculated using the semianalytical
model. From such comparison it is evident that the semian-
alytical noninteracting model is in good agreement with the
full Gross-Pitaevskii simulation, as far as the predicted lattice
structure is concerned, with the produced vortex types being
identical.

The ( 1
2 , 1

2 ) initial state contains equal population of atoms
in both spin states mF = ±1. Therefore the magnetic cores
of the half-half type vortices have a magnetization of equal
magnitude but opposite sign as shown in Fig. 7(b). The
(0,−1) vortex has a zero particle density core structure and
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1

0

0

π

−π

1

−1
1

0

(a) (b) (e)

(g)

(f)

(c) (d)

FIG. 6. (Color online) The lattice for the ( 1
2 , 1

2 ) vortex initial state from a Gross-Pitaevskii simulation. (a)–(d) show the probability density
of the mF = −1 and 1 spin states normalized to the maximum density and the corresponding phases. (e)–(g) show the total particle density,
magnetization density, and the spin singlet pair amplitude density. The field of view of each frame is (23.4 × 23.4) aosc and the images are for
a time τ = 0.55 1/ω after the triple-well trapping potential is switched off. See also movies S1–S14 in Ref. [70].

consequently zero magnetization and spin singlet amplitude.
In contrast, the particle density at the cores of half-half
type vortices is nonzero. The magnetization density in
Fig. 7(b) shows a honeycomb pattern of maxima and minima,
coinciding with the locations of the (− 1

2 , 1
2 ) and ( 1

2 , 1
2 ) vortex

cores, respectively. From both the magnetization and the spin
singlet pair amplitude we note that the cores of the half-half
type vortices have a triangular core structure in comparison
to the circular structure of the (0,−1) vortex. The spin
singlet pair amplitude density in Fig. 7(c) displays distinctly
different lattice structure when contrasted with the particle
and magnetization densities. For the phase and particle density
information for each occupied spin state see movies S1–S14
in Ref. [70].

1

0
1

0

1

−1
1

−1

1

1

0

0

(b)

(e) (f)

(c)(a)

(d)

FIG. 7. (Color online) An expanded view, local to the trap center,
of the lattice for the ( 1

2 , 1
2 ) vortex initial state. (a)–(c) The results

from a Gross-Pitaevskii simulation showing the total particle density,
magnetization density, and spin singlet pair amplitude density for a
time τ = 0.55 1/ω after the triple-well trapping potential is switched
off. (d)–(f) The corresponding observables calculated from the
semianalytical spinor in Eq. (13) where φ−1j = 0 and φ1j = 0, 2π

3 , 4π

3
for j = 1, 2, 3, with the other spin components empty. The locations
of the ( 1

2 , 1
2 ), (− 1

2 , 1
2 ), and (0, −1) lattice vortices are denoted by

colored dots of red, pink, and green, respectively. The field of view of
each frame is (2.3 × 2.3) aosc. For corresponding movies S12–S14,
see Ref. [70].

B. Zero-one vortex initial state

Consider next a condensate with three spin components
populated with condensate particles, which leads to the ABC
stacking of vortex lattices. For this we initialize the (0, 1)
vortex state ( i

2 exp (−2iθ ), 0,
√

2
2 , 0, i

2 exp (2iθ )) by setting
the phases φ−2j = 0, 8π

3 , 4π
3 , φ0j = 0, and φ2j = 0, 4π

3 , 8π
3

for the j = 1, 2, 3 condensate fragments, respectively, with
the other spin components empty. The semianalytical model
of Eq. (13) is initialized similarly. The initial particle density
and phase map for the three nonzero population spin states
are presented in Ref. [70].

The phase structure of the (0, 1) initial state defines a
double quantum vortex and antivortex at the center of the
trap in the mF = 2 and −2 spin states, respectively. Prior
to the collision of the condensate, the double quantum
vortex and antivortex split into two singly charged vortices
and antivortices, respectively. These leave the system to be
replaced with an antivortex and vortex at the center of the trap
in the mF = 2 and −2 states, respectively. The condensate
collision (see movies S15–S32 in Ref. [70]) produces the
lattice vortices (0,− 1

2 ), ( 1
2 , 1

4 ) + (−1, 0), and (− 1
2 , 1

4 ) + (1, 0)
as presented in Table II and the vortex diagram Fig. 4(b). As is
evident from Fig. 4(b) the last two vortices cannot be described
as single axisymmetric vortices, rather we interpret them
to be two-vortex superposition states of the ( 1

2 , 1
4 ), (− 1

2 , 1
4 ),

(1, 0), and (−1, 0) vortices defined in Table I. The core of the
(0,− 1

2 ) vortex has M = 0 and nonzero particle density. Both
(− 1

2 , 1
4 ) + (1, 0) and ( 1

2 , 1
4 ) + (−1, 0) have magnetized cores

with M = 1 and −1, respectively, and both have a nonzero
particle density at the vortex core.

An expanded view, local to the trap center, to the vortex
lattice structures in each of the three observables is shown in
Fig. 8 while full lattices for each spin state are presented
in Ref. [70]. As shown in Fig. 8(b) magnetization density
emerges due to the nucleation of vortices with magnetic core
structures, which changes the topology of the condensate. The
total particle density, see Fig. 8(a), does not vanish anywhere
although the magnetization density remains nearly identical
to that in Fig. 7(e). The spin singlet pair amplitude density in
Fig. 8(c) has maxima aligned with the (0,− 1

2 ) vortices creating
a pattern distinctly different to that in Fig. 7(c).
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(a) (b) (c)

(d) (e)

1

0 −1
1

0

1

−1

1

1

0
1

0

(f)

FIG. 8. (Color online) An expanded view, local to the trap center,
of the lattice for the (0, 1) vortex initial state. (a)–(c) The results
from a Gross-Pitaevskii simulation showing the total particle density,
magnetization density, and spin singlet pair amplitude density
for a time τ = 0.55 1/ω after the triple-well trapping potential
is switched off. (d)–(f) The corresponding observables calculated
with the semianalytical spinor in Eq. (13) where φ−2j = 0, 8π

3 , 4π

3 ,
φ0j = 0 and φ2j = 0, 4π

3 , 8π

3 for j = 1, 2, 3, with the other spin
components empty. The locations of the (0, − 1

2 ), (− 1
2 , 1

4 ) + (1, 0),
and ( 1

2 , 1
4 ) + (−1, 0) lattice vortices are denoted by colored dots of

green, yellow, and purple, respectively. The field of view of each
frame is (2.3 × 2.3) aosc. See also movies S30–32 in Ref. [70].

Comparing Figs. 8(a)–8(c) with Figs. 8(d)–8(f), the
(0,− 1

2 ), ( 1
2 , 1

4 ), (− 1
2 , 1

4 ), (1, 0), and (−1, 0) vortices have
nucleated in the spinor wave function in complete agreement
with our semianalytical model. The triangular structure of
the spin singlet pair amplitude density differs from the
semianalytical prediction of a snowflake pattern illustrating
the sensitivity of the spin singlet pair amplitude to the local
phase structure of the order parameter [see Eq. (6)]. The total
particle and magnetization densities are not similarly sensitive
to these relative phases. The lack of agreement between the
semianalytical and Gross-Pitaevskii models, in this instance,
does not invalidate the applicability of the former. Rather, any
agreement between the two models on the spin singlet pair
amplitude would be fortuitous.

C. Third-third vortex initial state

We initialize the ( 1
3 , 1

3 ) vortex state

(0,

√
2
3 , 0, 0, 1√

3
exp (iθ )) by setting the phases φ−1j = 0 and

φ2j = 0, 2π
3 , 4π

3 for the j = 1, 2, 3 condensate fragments,
respectively, with the other spin components empty. The
semianalytical model of Eq. (13) is initialized similarly. The
initial probability densities and phases of the two occupied
spin states are shown in Ref. [70]. The AB stacking produces
the lattice vortices ( 1

3 , 1
3 ), (− 2

3 , 1
3 ), and ( 1

3 ,− 2
3 ) as presented

in Table II and Fig. 4(c). The vortex lattices in each spin state
are also presented in Ref. [70]. Importantly, this simulation
confirms that, as anticipated, the ( 1

3 , 1
3 ) initial state does indeed

create a lattice of non-Abelian vortices and antivortices.
The particle densities at the cores of the ( 1

3 , 1
3 ), (− 2

3 , 1
3 ), and

( 1
3 ,− 2

3 ) vortices are n = 2
3nmax, 1

3nmax, and zero, respectively,
where nmax is the peak total particle density. Thus the ( 1

3 ,− 2
3 )

vortex has a zero particle density core while the ( 1
3 , 1

3 ) and

1

0 −1
1

0

1

−1

1

(a)

(c)

(b)

(d)

FIG. 9. (Color online) An expanded view, local to the trap center,
of the lattice for the ( 1

3 , 1
3 ) vortex initial state. (a) and (b) The results

from a Gross-Pitaevskii simulation showing the total particle density
and magnetization density for a time τ = 0.55 1/ω after the triple-
well trapping potential is switched off. (c) and (d) The corresponding
observables calculated with the semianalytical spinor in Eq. (13)
where φ−1j = 0 and φ2j = 0, 2π

3 , 4π

3 for j = 1, 2, 3, with the other
spin components empty. The locations of the ( 1

3 , 1
3 ), (− 2

3 , 1
3 ), and

( 1
3 , − 2

3 ) lattice vortices are denoted by colored dots of cyan, yellow,
and brown, respectively. The field of view of each frame is (2.7 × 2.7)
aosc.

(− 2
3 , 1

3 ) vortex cores have dimensionless magnetizations − 2
3

and 2
3 , respectively. An expanded view of the lattice structures

present in the total particle density and magnetization density
is shown in Figs. 9(a) and 9(b), while the spin singlet pair
amplitude density is zero across all space. Note that the vortex
cores in both of the nonzero observables have a prominent
triangular structure. The vortex lattices and the total density
and magnetization density structures are indistinguishable
from those predicted by the semianalytical model. For the
movies corresponding to the evolution of the system in each
observable see movies S33–S44 in Ref. [70].

Based on these three examples, it is clear that the multiwave
interference technique can be used to deterministically produce
desired vortex lattice topologies in spinor Bose-Einstein
condensates.

D. Route to non-Abelian quantum turbulence

As shown in the previous subsection, the ( 1
3 , 1

3 ) third-third
vortex initial states can be used for generating vortex lattices
of non-Abelian vortices and antivortices. Keeping the global
harmonic trapping potential turned on and only switching
off the triple-well potential will cause the condensate to
undergo breathing mode oscillations in the harmonic trap.
Figures 10(a)–10(e) show snapshots of such a simulation and
the frames (f)–(j) show the enlarged images zoomed to the
trap center. Despite the initial threefold symmetry, the chaotic
dynamics of the vortices rapidly leads to the loss of such
symmetry and a transition to turbulence as shown in (c) and
(d). A movie of the full simulation is included in Ref. [70].
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 10. (Color online) Emergence of non-Abelian two-dimensional quantum turbulence showing a selection of snapshots from the ( 1
3 , 1

3 )
initial-state simulation. (a)–(e) The total probability density of the condensate including the initial state, lattice, and turbulent regime. The field
of view of each frame is (29.2 × 29.2) aosc. (f)–(j) The same frames as in (a)–(e) but with a field of view of (2.92 × 2.92) aosc. The colored
dots of blue, red, green, and yellow denote the vortices (blue and green) and antivortices (red and yellow) in the mF = 2 and −1 spin states,
respectively. See also movies S33–S44 in Ref. [70].

The instability of the ( 1
3 ,− 2

3 ) vortex becomes apparent in
the movie at τ = 0.50 1/ω when it splits into an antivortex
and a vortex in the mF = 2 and −1 hyperfine spin states,
respectively. The uncoupled antivortex typically annihilates
with the ( 1

3 , 1
3 ) vortex, though both vortices later reform to

produce scalar vortex bound states with the (− 2
3 , 1

3 ) and
the uncoupled vortex, respectively. The ( 1

3 , 1
3 ) vortex at the

origin is the only exception to this annihilation process. The
decoupling of the ( 1

3 ,− 2
3 ) vortex replaces the interleaved

triangular lattice with a hexagonal lattice of scalar vortices.
We have also performed preliminary fully three-

dimensional calculations for the third-third vortex initial states
and have verified that the non-Abelian vortex lattices are
also produced in this case. In three-dimensional systems the
Crow instability [71,72] of vortices and antivortices leads
to the generation of Kelvin waves [73–75]. The growth of
Kelvin waves may trigger the vortex collisions leading to
the formation of rung vortex networks and three-dimensional
non-Abelian quantum turbulence.

V. DISCUSSION

We have studied computationally the generation of quan-
tized vortex lattices and quantum turbulence in spin-2 vector
Bose-Einstein condensates by simulating collisions of three
condensate fragments. We have shown that the structure of
the resulting honeycomb vortex lattices can be predicted
by modeling each of the spinor wave-function components
independently in terms of linear superposition of three waves.
The lattice states thus produced correctly predict the structure
of fractional-vortex lattices observed in full simulations of the
spinor Gross-Pitaevskii equation.

We have shown that using realistic initial-state preparation
honeycomb lattices of non-Abelian vortices and antivortices
can be produced using three-wave interference technique.
The generated non-Abelian vortex lattices are robust in the

sense that fluctuations in the initial phases of the condensate
fragments only deform the vortex positions in the lattice but
do not affect the topology of the non-Abelian vortices. This
technique is anticipated to open a route to experimental studies
of non-Abelian quantum turbulence in vector Bose-Einstein
condensates. Despite the relatively short lifetimes of the F = 2
Bose-Einstein condensates, the dynamical method presented
for creating the honeycomb vortex lattices and their subsequent
decay to turbulence should allow sufficiently long time scales
for observations of non-Abelian quantum turbulence to be
made. The resulting vortex configurations could potentially be
observed using the vortex gyroscope imaging method [76] in
combination with Stern-Gerlach imaging.

The main simulations presented here were performed using
two-dimensional systems and are ideally suited for further
studies of two-dimensional non-Abelian quantum turbulence.
Applying the three-wave interference technique for gener-
ating quantum turbulence to three-dimensional condensates
should allow non-Abelian vortex lines to collide generating
rung networks and three-dimensional non-Abelian quantum
turbulence. There remain many open questions in this context,
including the following: can evaporative heating of fractional
vortices lead to the emergence of Onsager vortices of non-
Abelian kind? [77,78]; is two-dimensional non-Abelian quan-
tum turbulence characterized by a non-Kolmogorov power
law of the incompressible kinetic-energy spectrum?; and does
magnetization cascade emerge in these systems alongside
incompressible kinetic energy and enstrophy cascades? These
important questions are left as topics for further studies.
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