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Ultracold mixtures of different atomic species have great promise for realizing novel many-body phenomena.
In a binary mixture of fermions with a large mass difference and repulsive interspecies interactions, a disordered
Mott-insulator phase can occur. This phase displays an incompressible total density, although the relative density
remains compressible. We use strong-coupling and Monte Carlo calculations to show that this phase exists for a
broad parameter region for ultracold gases confined in a harmonic trap on a three-dimensional optical lattice, for

experimentally accessible values of the trap parameters.
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I. INTRODUCTION

The advancement of ultracold-atom experiments with both
homonuclear fermionic mixtures [1-6] and heteronuclear
fermionic mixtures [7-9] demonstrates the possibility of
realizing a quantum degenerate binary fermionic mixture with
great mass and/or density imbalance. Previous theoretical
studies have focused on ground-state or low-temperature
phases of the repulsive imbalanced fermion mixtures, in-
cluding discussions of the segregated phase or itinerant
ferromagnetism in density imbalanced systems [4,10-17] and
the crystallization and complex long-range density ordering
in mass imbalanced systems [11,18-23]. These complex
phases are often unstable to thermal fluctuations and the
inhomogeneity of the trapping potential and they have yet to
be realized in experiments because the ordering temperature
is too low. Broadly speaking, many-body phases of atomic
mixtures of bosonic and fermionic species in optical lattices
have attracted a wide range of research interests and have been
shown to display extremely rich many-body ordering, such as
the appearance of the supersolid [24-29], the Fulde-Ferrell and
Larkin-Ovchinnikov phases (see Ref. [30] for a review), and
the paired and counterflow superfluid for both Bose [31-35]
and Bose-Fermi mixtures [36]. These studies are either focused
on the ground state or extremely low temperature. These
phases require, to various degree, the existence of phase
coherence of the superfluid state and are generally susceptible
to large thermal fluctuations and hence only exist at extremely
low temperatures.

It is of great importance to explore new many-body
phenomena that are robust against thermal fluctuations and
inhomogeneity. Here we show an example of such a robust
many-body phase: a disordered Mott-insulator (DMI) phase
in a mixture of localized and itinerant fermions. The DMI
phase corresponds to a situation where the density of each
species of fermions can vary, as long as the total density
is fixed at exactly one. If we ignore any possible ordered
density wave phases, or phase separation, then this phase
would appear as a zero-temperature phase transition in the
ground state as the interspecies interaction is increased beyond
the Mott transition, just like in the Fermi or Bose-Hubbard
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models. At finite temperature, the phase only approximately
exists because the compressibility to the total density becomes
finite [23,37]. Hence, at finite temperature, we always refer
to the system as having a smooth crossover to the DMI
phase. Of course, for most fillings of the fermions (with
the total still equal to one), the system will undergo phase
separation to the segregated phase as the temperature is
lowered [11], precluding the direct observation of the quantum
phase transition for the DMI.

We show that in an inhomogeneous system, the DMI phase
exhibits an incompressible total density while the relative
density is compressible. The DMI also exists in cases of
large number imbalance and asymmetries in the trapping
potentials for the two fermionic species. It can be detected with
procedures similar to those used for detecting a Mott-insulator
phase of fermionic *°K in Refs. [1,38]. The DMI phases we
discussed here can also exist in the Fermi-Bose mixtures,
which have been realized in experiments with 8’Rb-*°K mix-
tures [39—41], which focus on how the impurity of fermions
changes the bosonic superfluid—Mott-insulator transition, and
in 179Yb-13Yb mixtures, where the interaction and filling
induced phases in a strongly correlated Bose-Fermi system
with both repulsive and attractive inter-species interactions are
studied [42]. In the regime of a strongly repulsive interspecies
interaction, a dual Mott insulator occurs where the total
density of bosons and fermions are incompressible, while the
individual density is compressible [42]. This phase is similar to
the DMI phase, although the theoretical study in [42] neglected
the coherent hopping of both fermions and bosons.

It is also worth noting that for many relative densities of
the particles, the system will be susceptible to segregation,
which is usually a first-order phase transition, but occurs at
temperatures too low to be seen with current experimental
technology. But the behavior of the system in the DMI region
is distinctive, with interesting properties which are unlike that
of a noninteracting mixture.

We treat a mixture of Ny heavy and N, light fermions in
a cubic lattice with lattice constant @ and additional isotropic
harmonic potentials, at finite temperature 7 > 0. Due to the
mass asymmetry, My > M,, there is a large difference in the
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hopping energies of the two species. In this work, itis ahopping
imbalance, not a mass difference, that is most critical. A mass
imbalance is the easiest way to achieve a hopping imbalance.
Thus, the system can be effectively described by a model of
localized and itinerant fermions [11,43]. Its Hamiltonian is
written as

H=-J Z cjcjr +Uchcjf/-Tfj

(sJ" J

+ D Ve — ke + Ve —up fl 1 ()
J

where ¢; and f; are the annihilation operators for light and
heavy fermions at lattice site j, J is the hopping energy for the
light fermions, U > 0is the repulsive interaction between light
and heavy fermions, (i o s is the chemical potential for light
or heavy fermions and V, o s, ; is the corresponding harmonic
trapping potential at lattice site j, specifically V.o r; =
(Mcor s/ 2)603, or frjz. where w, o  is the trapping frequency for
heavy or light fermions and r; is the distance of the lattice site
J from the center of the trap. It is convenient to define L. o ¢
through Vior ;= J(rj/Leor f)z_ The total particle number of
each species, N¢ o f, is determined by the chemical potentials
Mcorf-

Although we assume that the heavy species’ hopping is
zero, results given here should directly carry through for small
nonzero hopping, especially in achieving a thermalization of
the heavy species [44]. One might wonder how a system with
vanishing hopping can sample all possible heavy configu-
rations in a thermodynamic sense, when there is no direct
movement of the heavy particles in the Hamiltonian. This
issue already arose in the study of the Ising model, which
has no spin-flip terms in the Hamiltonian, yet averages over
all possible spin configurations having a transition from a
paramagnetic phase to an ordered phase. The Falicov-Kimball
model is dealt with in exactly the same way. From run to run,
we expect the experiment to be sampling the system with a
heavy-atom configuration that is from a high-probability state
in the thermodynamic average of possible states. This can
easily occur during the ramping up of the lattice if the system
maintains thermodynamic equilibrium due to an adiabatic
ramp. Then the system will pick the appropriate heavy-atom
configuration by moving the heavy atoms to the right locations
while the heavy hopping is small but not yet so small that we
can neglect it. The sampling of the experiment will then be
similar to a Monte Carlo sampling over configurations after the
algorithm has thermalized. If the hopping is large enough that
there remains some heavy-atom motion during the experiment,
the heavy atoms should only move between high-probability
configurations, which will continue to maintain the behavior
needed for an experimental realization.

We use both the Monte Carlo (MC) calculations and the
strong-coupling (SC) method [35] to investigate the finite-
temperature phases of these mixtures. The MC calculations
are based on a modified Metropolis algorithm, developed for
interacting systems with both quantum and classical degrees
of freedom. For a given configuration of heavy fermions,
the Hamiltonian is a one-particle Hamiltonian representing
itinerant free fermions in a nonuniform potential defined by
the positions of the heavy fermions. As such, it can be easily
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numerically diagonalized, giving states of the light fermions
and their energy spectrum. In each MC step, the configuration
of the heavy fermions is modified, the Hamiltonian is then
diagonalized, and the resulting configuration is accepted or
rejected according to the Metropolis criterion. In this criterion,
however, the free energy of the fermionic subsystem is
used instead of the internal energy. This method has been
successfully applied to the Falicov-Kimball model and its
details are given in Ref. [45]. The SC formalism is discussed
in Sec. II. In Sec. III, we discuss interesting features of the
disordered MI phase based on the SC and MC calculations and
we show that the SC derivations and the MC calculations are
in excellent agreement for the parameter region considered in
this article. The summary and future directions are in Sec. IV.

II. STRONG-COUPLING EXPANSION FORMALISM

We summarize the main results of our derivation. A more
detailed discussion of the derivation can be found in [35]. To
simplify the notation, we introduce fi. j(ny,;) and jis,;j(ny, ;)
for the light and heavy fermions in the atomic limit at site j,

fe iy ) =pe—Vej—Uny; 2

and
Ry jng) = (g —Vijny;. 3)

Here ny; = 0,1 denotes whether there is a heavy particle at
site j. The effective fugacities are written as

@c,j(ny, ;) = explBiic,j(ny,;)] )
and
¢rj(ny;) =explBiiyny; )]l )

After the second-order expansion of the time-evolution oper-
ator of the hopping term, the partition function has two parts:
the atomic-limit partition function Z© and the second-order
expansion term Z? as

2 =200+ 2), ©)
where
20 =127 =10, 1) ¢l + ] @
nyj
and

z0_B5p 1Ptk Pej = Pek ®
2 Jzk Z Z;())Z,io) Hej = Hek

nfinfk

The density and the entropy of light and heavy fermions at
site j can be derived from the partition function. The density
for the light particles is written as

0 2
pe =Pl + PL), ©)
where

o) _ Zn/'/ ¢C]¢f~1
c,j Z;O)

(10)
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The density for the heavy particles is
pri=ppytop (12)
where
)0 2, 170 (Pe i+ Dy a3
1o z©
J
and
o) 2 O Db, jPok be.j — Dok
Prj = ZJ Zﬁ"ff Py) 0205 . — g
NNk Zj Zk ,uc,j M,k
(14)

The local entropy at site j also contains two parts: the
entropy at the site j in the atomic limit,

0 0
SO /kp =1n (2) — Be;. (15)
where €; corresponds to the on-site energy at site j in the
atomic limit,
1 _ _
€ = 20 Z[Mﬁjq&ﬁj(l + Pe.j) + e, jPr 0], (16)
Joong
and the averaged contributions from the hopping at site j,
B’ 2 GriPri L) -
_7 Z J Z é(o) Zk [I’LC J I’LL‘ k]
k

Ty Nk J

S /ky =

X {[@c,j — ety + Apx —€; — €l
+ e, jPe,j — e kPei)- (17)
The double occupancy d; is determined as the joint probability

of having exactly one heavy and one light particle at site j. It
is derived from the density expressions as follows:

dj=d¥ +d?, (18)
where
¢b '¢c 1n i=1
d(O) — s sJ Iy j (19)
j ©0)
Z./'
and

© 2 by Prk © Pe.j — ek
d ZJ Z Z“»Z(O){ _ﬁdj - _ =

w2 Lk Me,j — M,k
+5,,f‘j,1[;3 Y B ek Y, 2“ (20)
‘ Me,j — M,k (ﬁLaj _'lLak)

The average double occupancy is determined as D =
N7 ;dj, where N is the lesser of the total particle numbers
for the light and heavy particles.
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III. RESULTS

A. Main features

An intrinsic feature of ultracold-atom experiments is the
spatial inhomogeneity induced by the existence of a trapping
potential. With the MC calculation, we simulate experimental
in situ images of atoms in trapped systems through snapshots
generated by the MC simulation (after thermalization) [11].
These snapshots show a striking feature of the DMI. Figures 1
and 2 show a series of possible experimental realizations of
the DMI phases for three particular choices of Ny/N.. The
snapshots of the density distribution are generated by a MC
simulation for a two-dimensional lattice in a harmonic trap. We
consider the process of adding heavy fermions as impurities
into an ultracold gas of light fermions, with a strong repulsive
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FIG. 1. Monte Carlo snapshots of the disordered MI phase in a
trapped two-dimensional lattice system of light and heavy mixtures.
The light particle number (right column) is fixed at 200 and the heavy
particle numbers (left column) are (a) 20, (b) 200, and (c) 340. The
interaction U is 50/, the trap frequencies are set by L. = L = 2a,
and the temperature is 2J/kg. The density distribution of the light
and heavy particles appears disordered but the sum of them, i.e., the
total density, remains at unit filling near the center for all of the cases.
This plateau of the total density in the center of the trap remains in
the MI phase.
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FIG. 2. (Color online) Spatial distribution of the total density in
the cases presented in Fig. 1. The number of light fermions is 200;
the number of heavy fermions is (a) 20, (b) 200, and (c) 340.

interaction between the light and heavy fermions. If no heavy
fermions are present, the light fermions form a band insulator
at the center of the trap as a result of the trapping potential.
When heavy fermions are added, one heavy fermion leads
to the modification of the total wave function of the light
fermions. In the three panels shown in Fig. 1, the individual
density distribution is disordered. But when we compare the
distributions of the two atomic species, they are perfectly
complimentary. Around the center of the trap, the total density
always remains at unit filling, as shown in Fig. 2. The radius
of the MI plateau in the total density increases as more heavy
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FIG. 3. (Color online) Radial distribution of densities, entropy,
and double occupancy for different trapping frequencies in a three-
dimensional (3D) system. The interaction is fixed at U = 50J and
temperature at T = 2J/kp. There are 5 x 10* heavy and light
fermions. The trapping frequencies are the same for both heavy
and light fermions, L, = L; = L. (a)—(c) Radial distribution of the
total density n, (black line), heavy fermions 7 ¢ (red line), and light
fermions 7. (blue line). (d)—(f) Radial distribution of the entropy €(r)
(green line) and the double occupancy d(r) (magenta line). (a),(d)
The trapping frequency is set by L = 16.5a. The system is in the
metallic state and the density is compressible. (b),(e) The trapping
frequency is set by L = 5.0a. A Ml state is developed at the center. A
peak is formed in the entropy distribution €(r) at the edge of the MI
phase because the strong anticorrelation of the MI leads to a reduction
of local entropy. (c),(f) The trapping frequency is set by L = 3.0a. A
band insulator is formed at the center and a ring of the MI exists near
r = 20a. A metallic state exists elsewhere.

particles are added, but the MI plateau remains for a very large
range of particle-number ratios.

This reconfiguration of both fermions is the result of the
strong anticorrelation due to their interactions. If there was no
interaction, the light fermions would still form a band insulator
when heavy fermions are added. The added heavy fermion
will form a separate Fermi gas with either a compressible or
incompressible state, depending on the trapping potential and
particle number. Since there is a tendency at low temperature
for the two species to phase separate in a homogeneous mixture
[46], the inhomogeneity of the trap and the thermal energy at
a finite temperature both act to stabilize this MI phase.

With the SC method, we calculate much larger systems
for three-dimensional inhomogeneous systems. We find that
the inhomogeneity leads to complex spatial dependence of
different phases. In Fig. 3, we show that the radial distri-
butions of the densities, entropy, and double occupancy for
a strongly interacting system undergo different phases as
the trapping curvature changes. Here, the double occupancy,
dj = (cj.cj ij fi), expresses the probability of having both
the light and heavy atom on site j. In Figs. 3(a) and 3(d),
we show the case of a shallow potential (L = 16.5a). The
cloud expands to minimize the kinetic energy and the total
density is less than one. The local entropy changes with the
density and the double occupancy is almost zero due to the
strong repulsive interaction. As the trapping potential becomes
strong, the cloud is forced inwards and the density at the
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FIG. 4. (Color online) Radial density distribution for systems of
asymmetric particle numbers and trap potentials in a 3D system.
The interaction is fixed at U = 50J and temperature at 7 = 2J / kp.
(a)—(c) Changing the light particle number, while keeping the heavy
particle number fixed at 5 x 10* and trap potentials for both fixed
at L, = Ly = L = 5a. The light particle number is (a) 1 x 10, (b)
6 x 10*, and (c) 1 x 10*. Remarkably, the system remains in a MI
phase for all of the range of the particle numbers with the total density
fixed at unity, while the individual densities form a plateau at various
fractional fillings. (d)—(f) Changing the trap potential of the heavy
fermions while keeping the particle number fixed at 5 x 10 for both,
and the trap potential for the light fermions fixed at L. = 5a. The
trapping potential for the heavy fermions is set by (d) L ; = 4.9a, (e)
Lf = 4.50, and (f) Lf =4a.

center of the trap increases. When the total density reaches
unit filling, the Hubbard band gap prevents it from increasing
its density further and a plateau of unit filling is formed. In
this region, the cloud size stays largely unchanged as the trap
curvature increases. In Figs. 3(b) and 3(e), we show the case
of an incompressible MI phase at the center of the trap. It is
important to note that in this MI phase, the incompressibility
only applies to the total density and the individual densities
can still be compressible, which is further demonstrated in
Fig. 4. The unit filling of the total density is not the result of
each species forming an incompressible phase at half filling,
but the strong anticorrelation between the light and heavy
particles that guarantees there is always either a light or a
heavy particle. This anticorrelation leads to a reduction of the
local entropy, which is most noticeable at the edge of the MI
plateau. At the edge, there is a MI and metallic state for almost
identical densities. However, the entropy in the metallic state
is much higher because the light and heavy particles are less
correlated. This leads to a peak in the entropy distribution about
the edge. In Figs. 3(c) and 3(f), we discuss the case where the
trapping potential is strong enough to force the particle to fill
in the upper Hubbard band and a band insulator is formed for
both species at the center of trap. Away from the center, there
is a secondary plateau that corresponds to the MI phase. In
Fig. 3(f), we show distinct behavior of the entropy and double
occupancy for different phases. From the center of the trap, the
band-insulator state is characterized by a sharp increase of the
double occupancy to one and a sharp decrease of the entropy
to zero. The metallic state is characterized by an increase of
the local entropy. The MI state is characterized by a plateau
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of the local entropy which is reduced from the entropy of
the surrounding metallic state. The double occupancy in both
the metallic and the MI state is extremely low as a result of the
strong interaction.

The anticorrelation between the particles in the MI phase
is further illustrated under asymmetric conditions. First, we
consider the case of large particle-number asymmetry. As is
shown in Fig. 1 of the MC calculation of the 2D lattice, the MI
phase is robust for large number asymmetry. The robustness is
confirmed in the SC calculation for 3D systems. We change the
light particle number from 1 x 10* to 1 x 10°. Remarkably,
the system always self-organizes into the MI phase, even under
extreme particle-number asymmetry. In Figs. 4(a)-4(c), we
show the radial density distribution for the cases of N, =
1 x 10°,6 x 10*, and 1 x 10*. In all three cases, a MI plateau
is present at the center of the trap. The plateau is signaled
by unit filling of the total density. The radius of the plateau
is different in each case because the total particle number
is different. For N. = 1 x 10, the individual density forms
a plateau at n. ~ 0.65 and ny ~ 0.35. For N. = 6 x 10, the
individual density forms a plateau atn, ~ 0.55andn ; ~ 0.45.
For N. = 1 x 10*, the individual density forms a plateau at
ne ~0.15 and ny ~ 0.85. The same behavior is observed
when we fix the light particle number while changing the
heavy particle number. The remarkable robustness of such
MI phases also points to a possibility of creating a density
plateau at any fractional filling of a species by changing the
other species’ particle number. We next consider the case of
trap frequency asymmetry by varying the trap potential for the
heavy particles while keeping the light one fixed via the choice
L ¢ = 5a. In the case of asymmetric traps, the difference of the
trap potential causes particles to reorganize to minimize their
energy. Because the relative density remains compressible, it
changes, responding to the difference in the local chemical
potential. This is the case for Figs. 4(d) and 4(e). When the
difference of the trap potentials is too large, the particles are
spatially separated. This is the case in Fig. 4(f), where the
center of the trap becomes a band insulator of only heavy
particles and the light particles are forced outside the band
insulator. Note that this phase separation is different from the
phase separation at much lower temperature, which happens
for symmetric traps and particle numbers [11]. This phase
separation is induced by the asymmetry of the trap potential.

B. Experimental detection

In experiment, the MI phase can be detected from both
the mixture’s cloud size and the double occupancy following
procedures similar to previous experiments with a single
species of atoms [1,38]. In addition, the in sifu radial density
profiles discussed previously can also be measured either
through selecting a specific 2D plane using a magnetic
resonance imaging approach [47] or through the inverse Abel
transforms [48,49]. The cloud size of the mixture is determined
based on the total radial density profile as

J

R = \/(NL. + N (). 1)
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FIG. 5. (Color online) Cloud size R, of Eq. (21) as a function of
the trapping frequency for (a) different interaction U and (b) different
temperatures 7. The trapping frequencies w, o s for light and heavy
fermions are \/2Ja? /(M. ; L?). The particle number of each species
is fixedat 5 x 10*. (a) Temperature is fixed at 2J, and U changes from
10J to 50J. The black dots correspond to the MI and band insulator
cases in Fig. 3. (b) Interaction U is fixed at 50J and temperature
varies from 2J /kp to 10J / kp.

Figure 5 shows the cloud size as a function of the trapping
frequency for different interaction strengths and different
temperatures for a system of 5 x 10* light and heavy particles.
In Fig. 5(a), we consider the dependence of the MI phase on
the interaction strengths at a given temperature 7 = 2J /kp.
When the interaction is relatively small (U = 10J), the cloud
size decreases as the trap potential increases until a band
insulator is formed at the center. When the interaction is
large (U = 30J,50J), there exists a plateau in the cloud size
that corresponds to the MI phase formed at the center of
the trap. The plateau appears around U = 30J and grows
for stronger interactions. In Fig. 5(b), we consider the MI
phase at different temperatures with U = 50J. We find that
the critical temperature is around 7' = 5J. Above T =5/,
the cloud size decreases smoothly with an increase of the trap
potential. When T < 5J, the decrease is slowed down and
corresponds to the MI phase. For T = 2J/kp, a plateau is
clearly present.

Due to the repulsive interaction, the double occupancy
remains very small for low densities and in the MI phase.
Without the existence of the Hubbard band, the double
occupancy began to change gradually as the total particle
number increases and the density at the center of the trap
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increases. The effect of the Hubbard band or the MI phase
is to suppress the double occupancy and the change of the
double occupancy becomes more abrupt as the density at the
center of the trap starts to fill in the upper Hubbard band,
rather than the gradual increase when the MI is not present.
This abrupt change of the double occupancy is captured in
the double-occupancy rate, dD/dN. The double occupancy
reaches one where the two individual band insulators are
formed. In Figs. 6(a) and 6(b), we show our calculation of the
average double occupancy as a function of the particle number
with a fixed trapping potential and for various interaction
strengths. In the case of small interaction (U = 10J), under
the same trap potential, the increase of the particle number
increases the density of the cloud and the double occupancy
increases smoothly as the individual density increases to unity.
As the interaction increases further (U > 30J), the density
increase is suppressed when the MI begins to develop at the
center of the trap. This suppression leads to more than an order
of magnitude difference in the average double occupancy for
systems where a MI plateau is developed. In Fig. 6(c), we
show the double-occupancy rate with regard to the particle
number as a function of the interaction. The derivative reduces
to almost zero at around U = 30J. It signals that a MI plateau
is formed for U > 30J.

It is worth noting that the critical interaction and temper-
ature indicated in our calculation of a trapped system is not
quantitatively the same as those calculated for a homogeneous
system. This is because in the trapped system, the Hubbard gap
needs to be compared with the potential-energy gradient of the
trap. If the gap is so small that the energy difference between
neighboring sites at the center of the trap and the thermal
fluctuations is sufficient to overcome the gap, a MI plateau will
not form. Hence, the measurement of macroscopic quantities,
such as the cloud size and average double-occupancy rate,
is more appropriate to detect the existence of a collective
MI region in the trapped system, instead of a measuring
of the critical interaction strength for the corresponding
homogeneous system.

C. Comparison with quantum Monte Carlo calculation

Based on the SC calculations, we use the MC method to
verify our findings. One of the main advantages of the MC
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FIG. 6. (Color online) (a),(b) Average double occupancy as a function of the interaction for different temperature. (c) Double-occupancy
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N. The MI phase occurs at around U = 30J when d D /9N reduces to zero (black arrow).
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method is that it operates in real space and therefore it can
show not only average density distributions, but also particular
configurations of the light and heavy fermions. This is useful to
distinguish between disordered phases and phase separation.
It also allows us to calculate the density-density correlation
functions. From the snapshots of the configurations of the
light and heavy fermions, it is easy to calculate the correlation
function and demonstrate that the distributions of the light and
fermions are strongly anticorrelated, i.e., there are no light
fermions on sites occupied by heavy fermions, and vice versa.
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This, however, does not directly determine the total density,
which in the case of the MI should be equal to one. Therefore,
in Fig. 2, we show the total density, where the plateau with
unit total filling is clearly visible in the center of the system.
This modified MC method allows us to study much larger
systems than the fully quantum MC methods. Nevertheless,
since in each MC step the Hamiltonian has to be diagonalized,
it is much more resource demanding than the traditional MC
method for purely classical systems. Moreover, the calculation
of the free energy requires the full spectrum of the Hamiltonian
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FIG. 7. (Color online) Comparison of the MC (red stars) and SC (blue line) density profiles p(r) of the light and heavy fermions calculated
for U = 1J and U = 10J for different trap frequencies. The trapping frequency for light and heavy fermions are the same, L, = L, = L. The
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J in rows 1 and 2 and to 10J in rows 3 and 4. The temperature is 2.J.

063624-7



HU, MASKA, CLARK, AND FREERICKS

0.8
0.6
Q e
o4 U=10J SC
' A x * U=10JMC
| == U=30JsC
02 S| v x U=30JMC
~- U=50JSC
P x * U=50JMC
0.0 L -
0.0 0.2 0.4 0.6 0.8 1.0
Ja* | I?
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for U = 10J, 30J, 50J in the same lattice system as in Fig. 7.

and therefore selective sparse matrix diagonalization methods
such as the Lanczos method cannot be used. As a result, the
maximum number of fermions is limited to a few hundred,
which is much less than the number of atoms used in real
experiments. Therefore, we use the MC approach mainly
to show the validity of the SC calculations in the regime
of the DMI phase. Since the MI transition is expected for
rather strong interaction at temperatures much larger than
the ordering temperature, we expect that SC calculations to
give accurate results. The comparison with the MC results
confirms this assumption. In Fig. 7, we present density profiles
calculated with the help of both of the methods and one can see
there that even for relatively weak interaction U = J, there is
no difference between these two approaches.

Since the cloud size is directly related to the density pro-
files, this comparison guarantees also that the trap-curvature
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dependence of the cloud radius will be the same in both
approaches. We also compared the other parameter that is used
to determine the Mott transition, i.e., the number of doubly
occupied sites D. Also in this case, we can observe that the
dependence of the double occupancy on the trap curvature
calculated in the SC approach is the same as that found in the
MC calculations. The comparison is presented in Fig. 8.

IV. SUMMARY

In summary, we have demonstrated that despite the fragility
of the magnetic or charge density wave ordering in mixtures
of atoms with large mass differences, the Mott phase exists
at a relative high temperature and in a parameter region
that is quite achievable in realistic experimental settings.
This phase has demonstrated remarkable robustness against
asymmetries, particularly large number imbalance. It points
to different ways of realizing novel incompressible densities
at fractional fillings with complementary fillings between
the species of atoms as the result of strong anticorrelation.
Our calculation also shows several possible measurements to
detect the MI phase. These calculations are based on previous
experiments on MI phases and we considered system sizes
comparable to realistic experimental systems. In addition to
the Fermi mixtures, similar MI phases can exist for mixtures
of heavy-light Bose-Fermi and Bose-Bose atoms in the region
where the intraspecies bosonic interaction is stronger than the
interspecies interaction.
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