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Dynamic structure factor and drag force in a one-dimensional
strongly interacting Bose gas at finite temperature
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We study the effect of thermal and quantum fluctuations on the dynamical response of a one-dimensional,
strongly interacting Bose gas in a tight atomic waveguide. We combine the Luttinger liquid theory at arbitrary
interactions and the exact Bose-Fermi mapping in the Tonks-Girardeau impenetrable-boson limit to obtain the
dynamic structure factor of the strongly interacting fluid at finite temperature. Then we determine the drag force
felt by a potential barrier moving along the fluid in the experimentally realistic situation of finite barrier width
and temperature.
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I. INTRODUCTION

Superfluidity is one of the most dramatic manifestations
of quantum many-body physics. The question of whether
a degenerate neutral bosonic fluid should be considered
as superfluid or not is far from trivial, especially in one
dimension, and it is agreed that superfluidity is rather a
collection of phenomena than a well-defined phenomenon.
In the last decades, one-dimensional (1D) systems, in which
the effect of interactions is known to be enhanced compared
to three dimensions (3D), have attracted increasing interest
[1–6]. In particular, cold atomic gases can now be confined
to investigate the effects of low dimensionality [3,7–10].
An issue is the effect of the interactions in the degenerate
fluid on the possibility of a superfluid flow. While several
criteria lead to the same conclusions in 3D [11–17], various
aspects of coherence and superfluidity may be characterized
in one-dimensional systems by different observables. For
instance, there is no Bose-Einstein condensation in 1D owing
to the Mermin-Wagner theorem, yet there may still subsist
off-diagonal quasi-long-range order [18,19].

Among other possibilities, superfluidity can be character-
ized by the absence of a (viscous) drag force acting on a
moving fluid when it encounters an impurity or a potential
barrier. The case of a mobile impurity has been the object
of intense activity in recent years [20–26]. Here we focus on
an external potential barrier driven at constant velocity across
the fluid. In this configuration, the drag force concept has
already been used to probe superfluidity in a two-dimensional
(2D) Bose gas [27]. With an idealized model of a δ potential,
Astrakharchik and Pitaevskii [28] showed that, according to
the drag force criterion, quantum fluctuations give rise to a
breakdown of superfluidity at large interactions in a 1D Bose
gas, while the fluid may well exhibit a behavior close to
superfluid when interactions are small. The calculation of the
drag force in linear-response theory requires the knowledge
of the dynamic structure factor. This itself is an important
measurable quantity which shows the many-body spectrum
of collective excitations in the fluid and is experimentally
accessible by Bragg scattering [9,29–34].

In this work we study the dynamic structure factor and
the drag force under the experimentally relevant conditions of
finite temperature and finite width of the barrier. We describe

the system by the Lieb-Liniger model of interacting 1D bosons
[35], now realizable with experiments with ultracold atomic
gases in a wide range of interaction strengths [36,37]. We focus
on the strongly interacting regime and describe it using two
complementary techniques: the Tomonaga-Luttinger liquid
(LL) and the exact Tonks-Girardeau solution (TG). The LL
approach is valid at low energies and temperatures, for inter-
mediate to strong interactions. The TG exact solution describes
impenetrable bosons with infinite repulsive interactions by
means of a Bose-Fermi mapping.

First, we determine the dynamic structure factor using
the LL and TG methods, thus obtaining its temperature
dependence for an interaction regime where the Bogoliubov
approximation [38] is not applicable. Our approach is partic-
ularly suitable to describe the umklapp region of momenta q

in the vicinity of 2 kF , where kF is the Fermi wave vector
of the mapped Fermi gas. In this region, a random phase
approximation perturbative approach [39–42] is not applicable
and predicts a nonregular behavior for the dynamic structure
factor. Although the dynamic structure factor is amenable
to Bethe-ansatz calculations [43,44], to date the strongly
interacting regime has not been covered by this technique
at finite temperature. In our work, we focus specifically
on the comparison between the results obtained with the
LL and TG approaches. In order to achieve this goal, we
determine the parameters of the LL model by solving the
Bethe-ansatz equations for the Lieb-Liniger model both at zero
and finite temperature. Then, in a linear-response approach, we
determine the drag force behavior as a function of the barrier
velocity, both at zero and finite temperature, including the
effect of a finite width of the barrier.

The paper is organized as follows: in Sec. II we present
the system and the concepts of dynamic structure factor and
drag force; in Secs. III and IV we evaluate them for a Tonks-
Girardeau gas and a Luttinger liquid, respectively.

II. THE SYSTEM, AND CONCEPTS TO PROBE
ITS SUPERFLUIDITY

We consider a system of N0 ultracold spinless interacting
bosonic atoms confined in a 1D waveguide, as described by
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the Hamiltonian

H0 =
∫ L

0
dx

[−�
2

2m
ψ†∂2

xψ+1

2

∫ L

0
dx ′V (x − x ′)n(x)n(x ′)

]
,

(1)

where L is the length of the system, m the mass of an
atom, ψ a bosonic field operator satisfying the commutation
relation [ψ(x),ψ†(x ′)] = δ(x − x ′), and n(x) = ψ†(x)ψ(x)
the density operator. We describe interactions as a zero-range
pairwise interaction potential V (x − x ′) ≡ gδ(x − x ′) [45] as
in the Lieb-Liniger model, with g > 0 to describe repulsive
interactions. We will assume that the system is homogeneous
in the longitudinal direction and adopt periodic boundary
conditions. We focus on the concept of superfluidity as probed
by a weak potential barrier stirred in the Bose fluid. A possible
experimental setup for this barrier is a Gaussian laser beam
whose waist w moves at a velocity v in the frame of the fluid,
leading to a perturbing Hamiltonian,

H1 =
∫ L

0
dx

√
2

π

Ub

w
e
− 2(x−vt)2

w2 ψ†(x)ψ(x). (2)

Factors have been chosen so that, in the limit w → 0, we
recover the results found in [28] for a δ potential. We also
assume that Ub is low enough so that H1 can be treated
perturbatively within the linear-response theory.

As in classical physics, the drag force F acting on the fluid
is linked to the mean dissipated energy per unit time by the
definition

〈Ė〉 ≡ −F · v. (3)

In a superfluid displaying frictionless flow, we expect no
energy dissipation and the drag force vanishes in a certain
range of velocities. Notice that energy dissipation can be
directly probed in experiments [27,32,46]. Using linear-
response theory and the fluctuation-dissipation theorem, in
the thermodynamic limit, the most general form of the drag
force in 1D is [47] (see Appendix A for details)

F = 1

2π�

∫ +∞

0
dq|U (q)|2qS(q,qv)(1 − e−β�qv), (4)

where U (q) is the Fourier transform of the barrier potential

U (x) ≡
√

2
π

Ub

w
e
−2 x2

w2 , and

S(q,ω) =
∫ +∞

−∞

∫ +∞

−∞
dxdtei(ωt−qx)〈δn(x,t)δn(0,0)〉0 (5)

is the dynamic structure factor [14], giving the weight of the
excitation spectrum. 〈. . . 〉0 indicates the quantum statistical
average with respect to the unperturbed Hamiltonian H0, and
δn(x,t) ≡ n(x,t) − n0 represents the local fluctuations of the
density operator. The dynamic structure factor is linked to
the Fourier transform of the density-density linear-response
function by the fluctuation-dissipation theorem. In Eq. (4) the
dynamic structure factor is integrated along the line ω = qv

in the wave number–energy plane: if S(q,ω) takes arbitrarily
small values along this line, i.e., no collective excitations are
possible, then the drag force vanishes and the flow is superfluid.
We note that this is a sufficient but not a necessary condition
since there are other factors in the integrand in Eq. (4).

In the following, we shall determine the drag force acting
on the fluid by computing the time-dependent density-density
correlation function, evaluate its Fourier transform with
respect to time and space to get the dynamic structure factor
(5), and eventually use Eq. (4). We expect the drag force
to depend on the stirring velocity v, the temperature T , the
waist w of the barrier and its strength Ub/w, the interaction
between atoms g, and the equilibrium linear density n0. The
strength of boson-boson interactions is expressed through the
dimensionless parameter

γ ≡ Eint

Ekin

= mg

n0�
2
, (6)

the ratio of the interaction to kinetic energy of the atomic gas
in the equilibrium Hamiltonian H0. It can be fine-tuned exper-
imentally by Feshbach or confinement-induced resonances.
We focus on the strongly interacting regime γ � 1. In the
limit γ → +∞ of infinitely interacting bosons we use an
exact solution [48]. At arbitrary interaction strength we use a
low-energy effective Hamiltonian given by the linear Luttinger
model.

III. LIMITING CASE γ → +∞:
THE TONKS-GIRARDEAU GAS

A. Exact Bose-Fermi mapping

The limiting case γ → +∞ is known as the Tonks-
Girardeau gas [48]. A well-known peculiarity of one-
dimensional systems is that in many respects, hard-core bosons
behave like free fermions [48–50]. This phenomenon, related
to statistical transmutation, is due to the fact that infinite
repulsive interactions impose the many-body wave function
to vanish wherever there is a contact between two particles,
which is the same condition occurring in a Fermi gas owing
to antisymmetry of the wave function. Namely, one can write
the many-body wave function of the hard-core Bose gas ψG,
where the superscript G stands for “Tonks-Girardeau,” in terms
of that of a free Fermi gas denoted by ψF , as ψG(x1, . . . ,xN ) =∏

(i,j ) sgn(xi − xj )ψF (x1, . . . ,xN ). The Bose-Fermi mapping
has been also demonstrated at finite temperature [50], namely,
the thermal average of an observable O for the bosonic gas
can be obtained as

〈O〉 = 1

Z

∑
n

wn

〈
ψF

n

∣∣A−1OA
∣∣ψF

n

〉
, (7)

where A = e−iπ
∫ x

−∞ dx ′n(x ′) is the mapping operator expressing
the Jordan-Wigner transformation from bosons to fermions,
wn = e−βEn are the thermal weights, and Z is the partition
function. From Eq. (7) it follows that the particle density
and density-density correlation functions of a Tonks-Girardeau
gas coincide with the fermionic ones, both at zero and finite
temperature, since in this case [O,A] = 0. In the following we
shall exploit this property to determine the dynamic structure
factor of the TG gas.

B. Dynamic structure factor

We recall first the zero-temperature results. Computing
fermionic density-density correlations using Wick’s theorem
yields, after Fourier transform, the well-known result for
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the dynamic structure factor SG of the Tonks-Girardeau gas
[47,51],

SG(q,ω) = m

�|q|	[ω+(q) − ω]	[ω − ω−(q)], (8)

where 	 is the Heaviside distribution and ω+(q) = �

2m
(q2 +

2qkF ), ω−(q) = �

2m
|q2 − 2qkF | are the limiting dispersion

relations bounding the area where particle-hole excitations can
occur, due to energy conservation. Recalling the Bose-Fermi
mapping, it is natural to call the Fermi wave vector the quantity
kF = πn0, with n0 = N0/L.

At finite temperature, the linear density-density response
function for the Tonks-Girardeau gas in the Fourier space is
given by Lindhard’s expression [52],

χnn(q,ω) = 1

L

∑
k

nF (k) − nF (k + q)

�ω + ε(k) − ε(k + q) + i0+ , (9)

where nF (k) = 1
eβ[ε(k)−μ]+1 is the Fermi-Dirac distribution and

ε(k) = �
2k2

2m
the dispersion relation. Using the fluctuation-

dissipation theorem, we deduce from Eq. (9) the expression
of the finite-temperature dynamic structure factor in the
thermodynamic limit:

SG
T (q,ω) =

∫ +∞

−∞
dk

nF (k) − nF (k + q)

1 − e−β�ω
δ[ω − ωq(k)], (10)

where ωq(k) ≡ 1
�

[ε(k + q) − ε(k)], and δ is the Dirac distri-
bution. This is equivalent to

SG
T (q,ω) =

∫ +∞

−∞
dk nF (k)[1 − nF (k + q)]δ[ω − ωq(k)],

(11)
which is easier to interpret physically in terms of particle-hole
excitations. Either of them can be used to obtain

SG
T (q,ω) = m

�|q|
nF

(
�ω−ε(q)
�2q/m

) − nF

(
�ω+ε(q)
�2q/m

)
1 − e−β�ω

. (12)

In order to obtain the finite-temperature dynamic structure
factor, we have first found the temperature dependence of
the chemical potential as detailed in Appendix B. The results
are shown in Fig. 1. S(q,ω) is very sensitive to temperature.
Nonvanishing contributions spread beyond the particle-hole
excitation spectrum boundaries at finite temperature, since
the dynamic structure factor includes thermally activated
excitations. The latter can even occur at ω < 0, meaning
that collective excitations can be emitted. The quasilinear
shape of the spectrum near the origin and the umklapp
point (2kF ,0) at T = 0 fades out at temperatures larger than

0.1TF , where TF ≡ �
2k2

F

2mkB
is the Fermi temperature. Increasing

the temperature contributes to breaking down the imbalance
between the ω > 0 and ω < 0 domains [see panel (d) of
Fig. 1].

C. Drag force

Using the exact expressions for the dynamic structure
factor, the next step is to compute the drag force. We start
recovering the known result in the case w = 0, T = 0.
Combining Eq. (4) and Eq. (12), we find, in agreement

FIG. 1. (Color online) Dynamic structure factor SG
T (q,ω) of

the Tonks-Girardeau gas in the thermodynamic limit, in units
of SG(2kF ,0), for several dimensionless temperatures, T/TF =
0.1,0.5,1 and 4, in panels (a), (b), (c), and (d), respectively, where
TF is the Fermi temperature. Frequencies ω are expressed in units
of ωF ≡ εF /�, where εF = �

2k2
F /2m is the Fermi energy, and wave

numbers q in units of the Fermi wave vector kF . Black solid lines
correspond to the limiting dispersion relations ω+ and ω−, in units of
ωF , defining the excitation domain at T = 0.

with [47],

FG(v) = 2U 2
b n0m

�2

[
	(v − vF ) + v

vF

	(vF − v)

]
, (13)

where vF ≡ �kF

m
is the Fermi velocity. The drag force is linear

with the barrier velocity if v < vF and saturates if v > vF . As
we will see below, this saturation is an artifact due to several
theoretical simplifications. Equation (13) shows that the drag
force never vanishes if the velocity of the perturbing potential
is finite, meaning that energy dissipation will occur as long as
a barrier is driven across the fluid. Hence, the Tonks-Girardeau
gas is not superfluid according to the drag force criterion.

We next generalize our calculations to the case of a finite
laser waist, still assuming that T = 0. The Fourier transform
of the potential in Eq. (2) reads

U (q) = Ube
− q2w2

8 , (14)

so that the drag force is readily obtained as

Fw(v) = U 2
b

2π�

∫ +∞

0
dqe− q2w2

4 qS(q,qv). (15)

For the Tonks-Girardeau gas, this yields the analytic expres-
sion at T = 0,

FG
w (v)

FG(vF )
= 1

2wkF

{
h

[
wkF

(
1+ v

vF

)]
− h

[
wkF

∣∣∣∣1− v

vF

∣∣∣∣
]}

,

(16)

where h(x) ≡ ∫ x

0 due−u2
.
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FIG. 2. (Color online) Drag force F G
wT (v) in units of F G(vF ) in

a Tonks-Girardeau gas as a function of the dimensionless barrier
velocity v/vF . Solid lines stand for a dimensionless waist wkF = 0,
dashed lines for wkF = 0.5, and thick lines for wkF = 1. For a given
set of curves, temperature increases from 0 to 0.1TF to 0.5TF from
top to bottom, in black, red, and blue, respectively.

We next discuss thermal effects on the drag force. We first
treat the limit case of an infinitely thin barrier (w → 0) at finite
temperature. The drag force reads

FG
T

FG(vF )
= 1

2

√
T

TF

∫ βmv2/2

0

dε√
ε(eε−βμ(T ) + 1)

. (17)

The integral can easily be evaluated numerically. Notice that,
at very low temperatures, it is very close to the Fermi integral
F−1/2(βεF ) [53,54]. The most general case of finite waist and
temperature is obtained by inserting Eqs. (12) and (14) in
Eq. (4) and then evaluating it numerically. Figure 2 shows
the drag force as a function of the potential barrier velocity
for several values of the temperature and waist. As a main
result, thermal effects broaden the curves around the Fermi
velocity, and at low velocity the drag force remains linear. If
w = 0, F (v 
 vF ) � v

vF

1
1+e−βμ , thus measuring the slope near

the origin yields the chemical potential. The finite width of the
laser beam should be compared to the interparticle distance:
the drag force decreases at increasing wπn0. The saturation of
the drag force disappears at finite barrier width.

Now we proceed to study the case of finite but large
interaction strengths.

IV. FINITE INTERACTION STRENGTH γ :
THE LUTTINGER LIQUID MODEL

A. The model

The Luttinger liquid model was introduced to describe
interacting fermions in 1D, where the Fermi liquid paradigm
breaks down [19,55–60]. Owing to statistical transmuta-
tion, the same approach handles one-dimensional interacting
bosons as well [61,62]. At T = 0, Luttinger liquids belong
to the universality class of 1D systems with gapless, linearly
dispersive excitations. The Lieb-Liniger model belongs to this
class at low enough energy, since its dynamic structure factor
can be linearized around the origin and the umklapp point in
the (q,ω) plane. Therefore we describe the bosonic fluid by
the effective Tomonaga-Luttinger Hamiltonian [61],

HLL = �vs

2π

∫ L

0
dx

[
K(∂xφ)2 + 1

K
(∂xθ )2

]
, (18)

FIG. 3. (Color online) Luttinger parameters vs in units of vF

(blue circles) and K (dimensionless, purple squares) as a function
of the dimensionless interaction strength γ at T = 0. The solid lines
are the asymptotic expansions at large interactions.

where the superscript LL will hereafter denote quantities
computed for a Luttinger liquid. In Eq. (18), φ(x) is the phase
field in the phase-density representation of the bosonic field
operator ψ(x) ≡ √

n(x)eiφ(x), and θ (x) is a field related to the
number of particles between the origin and the position x and
whose derivative has a peak whenever a particle is encountered,
satisfying the commutation relation [∂xθ (x),φ(x ′)] = iπδ(x −
x ′). The isothermal sound velocity vs and the dimensionless
Luttinger parameter K = �πn0/mvs are taken as an input of
the theory. They can be extracted experimentally since they
are linked to measurable quantities (compressibility, density),
or from a microscopic model whose low-energy limit is the
Luttinger liquid we consider.

For 1D bosons described by the Lieb-Liniger Hamiltonian
(1), we have obtained the Luttinger parameters by numerically
solving the Bethe-ansatz equations (cf. Appendix C) both
at zero [35] and finite temperature [50]. Results at zero
temperature are shown in Fig. 3, together with the asymptotic
expansion at large interactions, vs(γ )/vF � 1 − 4

γ
+ 12

γ 2 +
(π2 − 6) 16

3γ 3 − (2π2 − 3) 80
3γ 4 [63]. The Tonks-Girardeau gas

limit γ → +∞ treated in the previous section corresponds
to the values K = 1 and vs = vF in the Luttinger liquid
description at zero temperature. For bosons with repulsive
interactions, one has K > 1, whereas for repulsive fermions
K < 1. The case K = 1 corresponds to both infinitely inter-
acting bosons and free fermions, owing to the Bose-Fermi
mapping.

The Luttinger parameters generally depend on temperature.
To illustrate this, we compute the temperature dependence of
the sound velocity in the Tonks-Girardeau regime as extracted
from the static structure factor [41] S(q) ≡ ∫ +∞

−∞ dωS(q,ω)
according to the compressibility sum rule [13]

lim
q→0

ST (q) = 2kF

kBT

�2n0

(
∂n0

∂μ

)
T

= 2kF

kBT

mv2
s

, (19)

where SG
T (q) is evaluated numerically using Eq. (12) and

the temperature dependence of the chemical potential (see
again Appendix B). Then we use the relation Kvs = �πn0

m
,

stemming from Galilean invariance, hence also valid at finite
temperature, to obtain the Luttinger parameter K . We also
extract vs analytically from the Sommerfeld expansion of the
chemical potential at low temperature, yielding for T 
 TF :
vs (T )
vF

� 1 − π2

24 ( T
TF

)
2 − 31π4

576 ( T
TF

)
4
. Our results are shown in

Fig. 4. Note in particular that for T � 0.5TF , one has K > 1.
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FIG. 4. (Color online) Temperature dependence of the Luttinger
parameters vs in units of vF (blue circles) and K (dimensionless,
purple squares) in the Tonks-Girardeau regime. Solid lines are low-
temperature asymptotical expansions, extracted from the Sommerfeld
expansion.

Although the effect is small at low temperatures, as we
shall see in Sec. IV D below it is important to include the
temperature corrections in the Luttinger parameters in order
to find agreement with the Tonks-Girardeau exact solution.

We proceed by diagonalizing the Luttinger Hamiltonian
(18), using a mode expansion of θ and φ over bosonic fields
obtained for periodic boundary conditions [61],

θ (x) = θ0+πx

L
(N−N0) +

∑
q �=0

∣∣∣∣ πK

2qL

∣∣∣∣
1
2

e− ε|q|
2 (eiqxbq+H.c.)

(20)
and

φ(x) = φ0+πx

L
J+

∑
q �=0

sgn(q)

∣∣∣∣ π

2KqL

∣∣∣∣
1
2

e− ε|q|
2 (eiqxbq+H.c.),

(21)
where H.c. means hermitian conjugated, with bq a bosonic
field operator satisfying the commutation relation [bq,b

†
q ′ ] =

δq,q ′ , and ε is a model-dependent high-momentum cutoff. The
zero-mode terms in Eqs. (20) and (21) contain, respectively,
the particle number operator N and the topological number
operator J , which we shall drop as we do not describe angular-
momentum carrying states, as well as their conjugate zero-
mode fields θ0 and φ0. Although the latter may play a role
in finite-size systems [64,65], they do not contribute to the
correlation function of interest here. Once diagonalized, the
Luttinger Hamiltonian (18) reads

HLL =
∑
q �=0

�ω(q)b†qbq, (22)

with ω(q) = |q|vs , i.e., the bosonic field obeys a linear
dispersion relation. These phonons are collective oscillations
of the phase and density fields and well describe the excitations
of the bosonic fluid at low momentum. We proceed to compute
the density-density correlations, the dynamic structure factor,
and the drag force.

B. Density-density correlations

We start by recovering the zero-temperature result.
Using the bosonized expression of the density operator,
n(x) = 1

π
∂xθ (x)

∑+∞
m=−∞ e2im(θ(x)−πn0x) [61], and the mode

expansion (20), we obtain, in agreement with [61,66], up to

leading orders in the index m,

〈δn(x,t)δn(0,0)〉LL

n2
0

�

− K

4k2
F

[
1

(x − vst + iε)2
+ 1

(x + vst − iε)2

]

+A1(K)
cos(2kF x)

n2K
0 [(x − vst + iε)(x + vst − iε)]K

, (23)

where A1 is a nonuniversal parameter. We can express it
as A1(K) = 2(εn0)2K , where the cutoff ε depends on the
interaction strength γ and thereby on the Luttinger parameter
K . As we shall see below, the first term is related to the
dynamic structure factor near the origin in the (q,ω) plane,
while the second one has a finite contribution in the vicinity
of the umklapp point (2kF ,0). The algebraic decay of the
correlations is a signature of quasi-long-range order. We have
kept only the two leading terms, since larger orders decay with
an increasingly large coefficient Km2, with m a non-negative
integer. This expression does not depend on the statistics
except through the values of K and vs , which span different
ranges for repulsive fermions and bosons.

Using the same approach, we generalize the previous result
to finite temperature (details are found in Appendix D):

〈δn(x,t)δn(0,0)〉LL
T

n2
0

�

− K

4k2
F

π2

L2
T

{
1

sinh2
[

π(x−vs t)
LT

] + 1

sinh2
[

π(x+vs t)
LT

]}

+ 2 cos(2kF x){ L2
T

π2ε2 sinh
[

π(x−vs t)
LT

]
sinh

[
π(x+vs t)

LT

]}K
, (24)

where LT ≡ β�vs is a thermal length. This expression is valid
in the limit x ± vst,vst,LT � ε and agrees with [62]. Here
again we have kept only the two leading terms in the dynamic
factor because of the exponential decay of higher-order terms
with a Km2 exponent.

C. Dynamic structure factor

At T = 0, the Fourier transform of Eq. (23) yields the
dominant terms of the dynamic structure factor. Since the latter
is symmetric with respect to the ω axis, we write the result for
q > 0,

SLL(q,ω) = K|q|δ[ω − ω(q)]

+B1(K)
[
ω2 − (q − 2kF )2v2

s

]K−1

	 [ω − |q − 2kF |vs]

≡ SLL
0 (q,ω) + SLL

1 (q,ω), (25)

where B1(K) ≡ A1(K)
(2n0vs )2{K−1}

π2

�(K)2
1
vs

is a nonuniversal coeffi-
cient. In the dynamic structure factor, S0 displays a sharp
feature in correspondence to the linear dispersion ω(q) =
qvs . There are also two linear limiting dispersion relations
described by S1, symmetric with respect to the q = 2kF line,
forming a triangular shape at the umklapp point (2kF ,0). The
slopes of the limiting dispersions in S0 and S1 depend on
the interaction strength via the interaction-dependent sound
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FIG. 5. (Color online) Definition domain of the dynamic struc-
ture factor at T = 0 in the plane (q,ω) in units of (kF ,ωF ). We
superimposed the result for a Tonks-Girardeau gas to the result in
the Luttinger liquid framework for dimensionless parameters K = 1,
vs/vF = 1. In the latter, the area consists in a line starting from the
origin, and the area included in the triangle starting from the umklapp
point (0,2kF ). The upper energy limit of potential validity of the
Luttinger liquid model is approximately given by the dashed line.

velocity. Hence, measuring them for the Lieb-Liniger gas is a
way to determine vs .

In Fig. 5 we plot the definition domain of the dynamic
structure factor of a Luttinger liquid with parameters K = 1
and vs = vF , superimposed on the result found in the previous
section for a Tonks-Girardeau gas (8). The comparison shows
the domain in the (q,ω) plane where the Luttinger liquid
description is valid, namely, at low energy, at small q, and
for q � 2kF , close to the umklapp point, where the curvature
of the dispersions ω±(q) can be neglected. By comparing
Eq. (25) with Eq. (8), we notice that SLL(q,ω) close to the
umklapp point does not reproduce the 1/q behavior found in
the exact model, yet there is quantitative agreement with less
than 10% error all the same, provided that ω � 0.33ωF . This
result coincides with the limiting domain found graphically
in Fig. 5 by looking at the curvature. In this analysis, the
cutoff ε is estimated by stating that the matching is optimal on
the q = 2kF line, yielding B1(K = 1) = 1

2vF
and ε(K = 1) =

1
2kF

, respectively.
We derive next the dynamic structure factor of a Luttinger

liquid at finite temperature. The term SLL
0T (q,ω) is more easily

computed in one step rather than by evaluating the real-space
density-density correlation functions as an intermediate result.
Bosonizing from scratch at finite temperature, we find the first
contribution to the dynamic structure factor (details can be
found in Appendix E):

SLL
0T (q,ω) = K|q|

1 − e−β�ω(q)
{δ[ω − ω(q)]

+ e−β�ω(q)δ[ω + ω(q)]}. (26)

By comparing with the exact results found in Sec. III B, we
can now discuss the issue of the temperature range over which
a Luttinger liquid may yield results close to those found
with the Lieb-Liniger model. Equation (26) shows that in the
Luttinger liquid framework the dynamic structure factor at
finite temperature remains linear near the origin and has two
branches. The one corresponding to ω < 0 has a lower weight
than the ω > 0 one and disappears at T = 0. This behavior is

observed in the Tonks-Girardeau limit at low temperature (see
again Fig. 1), yet the linear Luttinger liquid theory does not pre-
dict the thermal broadening of the dispersion relation, which
becomes more and more relevant at increasing temperature,
nor the broadening and the curvature due to nonlinearities.
We estimate that in the infinitely interacting regime, the
Luttinger liquid predictions for the dynamic structure factor
around the origin are satisfactory for temperatures lower than
approximately 0.15TF . At larger temperatures, it is not relevant
to linearize the Tonks-Girardeau dynamic structure factor
around the origin because the broadening is too pronounced.
Furthermore, combining Eq. (26) with the linearization at
small q of the exact dynamic structure factor, we verify that the
temperature dependence of the sound velocity is small at low
temperature: for T � 0.15TF , we find 0.97 � vs/vF � 1.00,
in agreement with Fig. 4.

The expression of the backscattering term SLL
1T (q,ω)

in the dynamic structure factor is obtained from the
Fourier transform of the density-density correlations. Using
the property [67] �(− yz+xi

2y
)�(1 + z) = (2i)z+1y�(1 +

yz−xi

2y
)
∫ +∞

0 dte−tx sinz(ty),Re(yi) > 0,Re(x − yzi) > 0,
where � is the complex Euler � function, after some algebra,
we obtain (for more details, please refer to Appendix E)

SLL
1T (q > 0,ω) = C(n0,vs,ε,T )e

β�ω

2

B

[
K

2
+ i

β�

4π
(ω + q̃vs),

K

2
− i

β�

4π
(ω + q̃vs)

]

B

[
K

2
+ i

β�

4π
(ω − q̃vs),

K

2
− i

β�

4π
(ω − q̃vs)

]
, (27)

where C(n0,vs,ε,T ) ≡ ( LT

2πε
)
2{1−K} (n0ε)2

2vs
, q̃ ≡ q − 2kF , and

B[x,y] = �[x]�[y]
�[x+y] is the Euler β function. The case K = 1

can be computed separately, leading to

SLL
1T (q > 0,ω)|K=1

= (kF ε)2

2vs

eβ�ω/2

cosh
[

LT

4vs
(ω + q̃vs)

]
cosh

[
LT

4vs
(ω − q̃vs)

] , (28)

in agreement with the general case since �[z] = �[z] and
|�[ 1

2 + iy]|2 = π
cosh[πy] .

As we did for S0, for the backscattering term S1 too we can
assess the regime of validity of the Luttinger liquid description
at finite temperature by comparing with the Tonks-Girardeau
results. Figure 6 shows the dynamic structure factor of a Tonks-
Girardeau gas at temperature T = 0.1TF and the one computed
for a Luttinger liquid with the appropriate Luttinger parameters
at this temperature. The cutoff ε(0.1TF ) is chosen so that the
matching is optimal on the q = 2kF line, i.e., they coincide
exactly at low energy. Around the umklapp point we find that
the Luttinger liquid reproduces quite well the exact thermal
broadening, provided that the energy is low enough so that
nonlinear effects can be neglected, as was already the case at
T = 0.

D. Drag force

Once the dynamic structure factor is known, we can
compute the drag force. First, we address the limit T = 0,
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FIG. 6. (Color online) Dynamical structure factor in units of
S(2kF ,0)T =0 at T = 0.1TF in the plane (q,ω) in units of (kF ,ωF ) in
the vicinity of the umklapp point, as predicted for a Tonks-Girardeau
gas (left panel) and a Luttinger liquid for dimensionless parameters
K = 1.005,vs/vF = 0.995 (right panel). The exact temperature
dependence is quite well reproduced by the Luttinger liquid model;
differences come mostly from the nonlinearities, which are not taken
into account in the Luttinger liquid framework.

w = 0, which yields

FLL(v) = U 2
b

2π�

∫ +∞

0
dq qSLL(q,qv)

= U 2
b

2π�

B1(K)

v2
s

√
π�(K)(2kF vs)2K

�(K + 1/2)

× (v/vs)2K−1

[1 − (v/vs)2]K+1
, (29)

in agreement with the result found in [28] in the limit v/vs 

1: at low velocities, the drag force scales as a power law v2K−1.
A comparison with the Tonks-Girardeau result at K = 1 leads
to the determination of the constant B1(K = 1) = 1

2vF
.

Then, we generalize the expression of the drag force to
finite laser waist w. For the case K = 1 we find the following
analytical expression:

FLL
w,K=1(v) = U 2

b n0m

2�2k2
F w2

[
e
− w2k2

F

(1+v/vF )2 − e
− w2k2

F

(1−v/vF )2
]
. (30)

We use Eqs. (13), (16), (29), and (30) to plot the curves in
Fig. 7, showing that the Luttinger liquid model is able to
reproduce exact results in the Tonks-Girardeau regime at low
velocities. The drag force is all the better approximated as the

FIG. 7. (Color online) Drag force in units of F G(vF ) as a function
of the velocity v (in units of vF ), as predicted for a Tonks-Girardeau
gas (dashed lines) and a Luttinger liquid model at dimensionless pa-
rameter K = 1 (solid lines), at T = 0. Thin black curves correspond
to a dimensionless waist wkF = 0 and thick red curves to a finite
waist wkF = 0.5.

FIG. 8. (Color online) Drag force in units of F G(vF ) as a function
of the velocity v (in units of vF ), as predicted for a Tonks-Girardeau
gas (dashed lines) and a Luttinger liquid (solid lines), at w = 0. Thin
black curves correspond to T = 0 and thick blue curves to T = 0.1TF .

potential is wide. It is always linear near the origin, with a
slope depending on w.

At arbitrary interactions, the expression of the drag force
for the case of a finite-width potential is given by

FLL
w (v) = U 2

b

2π�

B1(K)

v2
s

√
π�(K)(2kF vs)2K

�(K + 1/2)

(v/vs)2K−1

[1 − (v/vs)2]K

×
+∞∑
k=0

(−1)k

k!

(
wkF

1 + v
vs

)2k+1

2F1

×
(

− 1 − 2k,K; 2K; − 2v

vs − v

)
, (31)

where 2F1 is the hypergeometric function. We have verified
that for wkF � 1, truncating the sum at low orders yields a
very good accuracy.

The effect of temperature on the drag force is obtained by
integrating numerically Eq. (4) with the input of Eqs. (26) and
(27). We have plotted in Fig. 8 the drag force at T = 0 and finite
temperature as a function of the velocity for a Tonks-Girardeau
gas as obtained from the exact solution and the Luttinger
liquid approach, where the value of the cutoff ε is chosen
by enforcing that the results should coincide at the origin. We
note that we find an excellent agreement at lox velocities by
taking into account finite-temperature corrections of the LL
parameters while the use of zero-temperature values would
yield a less precise agreement (not shown) The predictions of
the Luttinger liquid and the Tonks-Girardeau gas start differing
at the same velocity whether temperature is taken into account
or not, essentially due to nonlinearities of the Tonks-Girardeau
dispersion.

As a main result, we have shown that in the regime of
very large interactions, the Luttinger liquid theory is able to
reproduce the exact results of the Tonks-Girardeau gas in terms
of dynamic structure factor around the umklapp point and
drag force at low velocities, even for a potential barrier with a
finite width. This allows us to use the Luttinger liquid theory
to predict the generic behavior of the drag force at large-to-
intermediate interactions, thus complementing the Bogoliubov
approach at weak interactions.

V. SUMMARY AND OUTLOOK

We have used the concepts of dynamic structure factor and
drag force to explore theoretically the superfluidity of a system
of strongly interacting bosons in 1D, stirred by a Gaussian laser
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beam. We have studied the limiting case of infinite interaction
strength using the exact Bose-Fermi mapping and compared
it to the predictions of the linear Luttinger liquid model.
We have obtained various analytical expressions generalizing
known results to finite temperature and finite laser beam
width. The Luttinger liquid model predictions are limited by
the nonlinearity of the real physical system which are not
taken into account within this model. As seen in the exact
Tonks-Girardeau solution, at higher energies or at intermediate
wave vectors q � kF , beyond-linear Luttinger liquid effects
will appear [68–71]. These have been experimentally observed
[32]. Yet our work shows that the effects of temperature on
the dynamic structure factor around the umklapp point (q =
2kF ,ω = 0) and on the drag force are well taken into account.
Our results lead to precise estimates for the low-energy
behavior of the dynamic structure factor at finite temperature.
Generalizations of the drag force to a finite-size potential
barrier show that this parameter has a dramatic impact, which
is well reproduced by use of the Luttinger-liquid model to treat
the Tonks-Girardeau regime. We conclude that, provided that
the temperature is low enough and the velocities small, the
Luttinger liquid theory can be used to test the superfluidity
of the Lieb-Liniger gas according to the drag force criterion.
Moreover, our results are expected to describe a wide range of
systems whose low-energy description is a Luttinger liquid, for
instance, the Calogero-Sutherland model [72,73]. The barrier
potential we have chosen may be realistic to describe future
experiments, yet to be even more realistic, finite-size effects,
e.g., in ring traps, should be taken into account, as well as the
possible local nonhomogeneity of the fluid, e.g., in harmonic
traps [74].
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APPENDIX A: DRAG FORCE IN THE
LINEAR-RESPONSE THEORY

In quantum physics, if a system is described by a Hamilto-
nian H = H0 + Hpert ≡ H0 + ∫

ddrA(r)U (r,t), where A is
a linear operator and U a weak local perturbation, then the
average of any observable B coupled to A in the presence of
the perturbing potential reads

〈B(r,t)〉U = 〈B〉0 −
∫ +∞

−∞
dt ′

∫
ddr ′U (r ′,t ′)χBA

× (r − r ′,t − t ′) (A1)

to first order, defining the B − A linear-response function,
denoted by χBA. Using the interaction representation (denoted
by a subscript I ) and Liouville equation for the density matrix,
one can show that if the system without perturbation is Galilean
invariant, then

χBA(r − r ′,t − t ′) = i

�
	(t − t ′)

〈
[BI (r − r ′,t − t ′),A]

〉
0.

(A2)

Let A = B = n be the density operator. The ensemble average
dissipated energy per unit time reads

〈Ė〉 =
〈

d

dt

∫
ddrU (r,t)n(r,t)

〉
U

. (A3)

Using the continuity equation and the definition of the
density-density response function, with the convention for the
Fourier transform f (q,ω) ≡ ∫ +∞

−∞
∫ +∞
−∞ dxdtei(ωt−qx)f (x,t),

we obtain

〈Ė〉 =
∫

ddr

∫
dω

2π
iωe−iωt

∫
ddq

(2π )d
eiqrU (q,ω)

×
∫

dω′

2π
e−iω′t

∫
ddq ′

(2π )d
eiq ′rχnn(q ′,ω′)U (q ′,ω′).

(A4)

We then compute the time average, use the property U (−q, −
ω) = U ∗(q,ω), and decompose the Fourier transform of the
response function into its real and imaginary parts: χnn(q,ω) ≡
χ ′

nn(q,ω) + iχ ′′
nn(q,ω). The real part is an even function of its

arguments, while the imaginary part is odd. Together with the
fluctuation-dissipation theorem, this yields

〈Ė〉 = −
∫ +∞

0

dω

π

∫
ddq

(2π )d
|U (q,ω)|2S(q,ω)

ω

2�
(1−e−β�ω).

(A5)
One then specializes to the 1D case and uses the fact that if the
perturbing potential is a function of x − vt , then its Fourier
transform contains δ(ω − qv) due to energy conservation, to
find, eventually, Eq. (4) with U (q,ω) ≡ 2πU (q)δ(ω − qv).

APPENDIX B: CHEMICAL POTENTIAL OF THE
TONKS-GIRARDEAU GAS AT FINITE TEMPERATURE

In Fig. 9 we show the temperature dependence of the
chemical potential of the Tonks-Girardeau gas, which coin-
cides with the one of a one-dimensional ideal Fermi gas.
We note in particular that at low temperature, due to the
reduced dimensionality, the chemical potential increases with
temperature, different from the three-dimensional case.

FIG. 9. (Color online) Chemical potential μ of the Tonks-
Girardeau gas in units of the Fermi energy εF as a function of
the reduced temperature T/TF , where TF = �

2k2
F /(2mkB ) and kF =

πn0. The red solid line stands for Sommerfeld’s low-temperature
expansion to order 4: μ/εF = 1 + π2

12 (T/TF )2 + 7π4

192 (T/TF )4, blue
points are the numerical result. The position (T0/TF ,0) of the isolated
point was computed analytically, stating that μ should vanish at
this temperature, yielding T0/TF = 4/π [(

√
2 − 1)ζ (1/2)]2 � 3.48,

where ζ is the Riemann ζ function.
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FIG. 10. (Color online) Chemical potential μ in units of εF as
a function of the inverse dimensionless interaction strength 1/γ , at
T = 0 (blue circles) and T = 0.1TF (red squares).

APPENDIX C: SOLVING THE BETHE-ANSATZ
EQUATIONS OF THE LIEB-LINIGER MODEL

In [50] the Lieb-Liniger Hamiltonian for N bosons is
written as

H = −
N∑

i=1

∂2

∂x2
i

+ 2c
∑
i>j

δ(xi − xj ). (C1)

The Bethe-ansatz solution for the equation of state at finite
temperature in the thermodynamic limit is obtained by solving
a system of three coupled equations:

ε(k) = −μ(c,T ) + k2 − T c

π

∫ +∞

−∞

dq

c2 + (k − q)2

× ln

{
1 + exp

[
− ε(q)

T

]}
, (C2)

2πρ(k)

{
1 + exp

[
ε(k)

T

]}
= 1 + 2c

∫ +∞

−∞
dq

ρ(q)

c2 + (k − q)2
,

(C3)

and

∫ +∞

−∞
dk ρ(k) = n0, (C4)

where the k are quasimomenta, ρ is the quasimomentum
distribution function, and exp[ε(k)/T ] ≡ ρh/ρ, with ρh the
quasihole distribution function. With the correspondence c ≡
γ n0, we extract μ(γ,T /TF )/εF from this set of equations.
To find the chemical potential at a given reduced temperature
and interaction strength, we proceed as follows. We guess the

FIG. 11. (Color online) Chemical potential μ in units of εF

as a function of the dimensionless temperature T/TF for a
Tonks-Girardeau gas (blue circles), for a dimensionless interaction
strength γ = 1000 (red squares), and γ = 100 (yellow diamonds),
respectively.

value of μ and self-consistently solve Eq. (C2) by iteration
to find the function ε(q). Once ε is found with enough
accuracy, we inject it in Eq. (C3) and find ρ by iteration. When
fluctuations become low enough to be neglected, we check if
Eq. (C4) is verified up to the chosen accuracy. Most probably,
the initial guess for μ is not precise enough, so this procedure is
repeated as many times as needed within a simplex algorithm
to find μ with the chosen accuracy. A few steps are enough to
find μ/εF with less than 0.5% error. Our results are shown in
Figs. 10 and Fig. 11. The chemical potential depends both on
the temperature and the interaction strength. When the latter is
decreased, the chemical potential increases, while it increases
with the reduced temperature.

APPENDIX D: DETAILS OF THE CALCULATION OF THE
DENSITY-DENSITY CORRELATIONS IN THE LUTTINGER

LIQUID FRAMEWORK AT FINITE TEMPERATURE

Here we sketch the derivation of Eq. (24). Using n(x) =
1
π
∂xθ (x)

∑+∞
m=−∞ e2im[θ(x)+kF x] we have

〈n(x,t)n(0,0)〉 = 1

π2
〈∂xθ (x,t)∂xθ (0,0)〉 + 1

π2

1∑
m,m′=−1,�=(0,0)

× e2imkF x〈e2imθ(x,t)e2im′θ(0,0)〉 + · · · , (D1)

which will lead to the zero-order and first-order terms, re-
spectively. To find the first-order term we introduce a generat-
ing function: Gm,m′ (x,t ; 0,0) ≡ e2imθ(x,t)e2im′θ(0,0). To evaluate
〈Gm,m′ (x,t ; 0,0)〉 we use the identity eA+B = eAeBe− 1

2 [A,B],
valid for any pair of operators A and B commuting with
their commutator, and the property 〈eA〉 = e

1
2 〈A2〉, valid for

any linear operator A, together with the mode expansion of
the field θ (20) and the bosonic commutation relations. After
some algebra, we find

〈Gm,m′ (x,t ; 0,0)〉 = e2i(m+m′)θ0e
− ∑

q �=0 | πK
qL

|[(m+m′)2+2mm′{ei[qx−ω(q)t)]−1}]

× e
− ∑

q �=0 | πK
qL

|[(m+m′)2+2mm′{cos[qx−ω(q)t]−1}]nB (q)
, (D2)

where nB(q) = 1
eβ�ω(q)−1 is the Bose-Einstein distribution for the phonons. In the thermodynamic limit the nonvanishing

contributions are those where m = −m′. We find

〈Gm,m′ (x,t ; 0,0)〉 = δm,−m′e
−2Km2

∫ +∞
q=0

dq

q
e−εq {1−e−iqvs t cos(qx)+2[1−cos(qx) cos(qvs t)]nB (q)}

≡ δm,−m′e−2Km2F (x,t). (D3)
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To compute F (x,t), one can rewrite 1
q

= ∫ Y→+∞
0 dye−qy ,

yielding

e2F (x,t) = (x + vst − iε)(x − vst + iε)

ε2

+∞∏
n=1

[
1 + (x + vst)2

(ε + nLT )2

] +∞∏
m=1

[
1 + (x − vst)2

(ε + mLT )2

]
.

(D4)

The property | �(x)
�(x−iy) |

2 = ∏+∞
k=0 [1 + y2

(x+k)2 ] yields

e2F (x,t) = x2 − (vst − iε)2

ε2

1

1 + (x+vs t)2

ε2

1

1 + (x−vs t)2

ε2

×
∣∣∣∣∣

�
[

ε
LT

]
�

[
ε

LT

(
1 − i x+vs t

ε

)]
∣∣∣∣∣
2∣∣∣∣∣

�
[

ε
LT

]
�

[
ε

LT

(
1 − i x−vs t

ε

)]
∣∣∣∣∣
2

,

(D5)

and then in the limit vst,x ± vst,LT � ε, the properties
�(x) �x→0

1
x

and |�(iy)| = π
y sinh(πy) yield Eq. (24) after a

few rearrangements.

APPENDIX E: DETAILS OF THE CALCULATION OF THE
DYNAMIC STRUCTURE FACTOR IN THE LUTTINGER

LIQUID FRAMEWORK AT FINITE TEMPERATURE

Here we sketch a derivation of Eqs. (26) and (27). To prove
Eq. (26), we split SLL

0T (q,ω) into two contributions:

SLL
0T (q,ω) ≡ S

LL,T =0
0 (q,ω) + S

LL,T
0 (q,ω), (E1)

where the first part is the result at T = 0 and the second
is a purely thermal part. We focus on S

LL,T
0 (q,ω), which is

more easily computed starting from an intermediate result in
the calculation of the density-density correlations. In order to
compute

S
LL,T
0 (q,ω) = K

4π2

∫ +∞

−∞

∫ +∞

−∞
dxdtei(ωt−qx)

×
∫

q �=0
dq|q|nB (q)(ei[qx−ω(q)t] + e−i[qx−ω(q)t]),

(E2)

we perform the change of variables u = x − vst and v = x +
vst . After some algebra we find

S
LL,T
0 (q,ω) = K|q|

eβ�ω(q) − 1
{δ[ω − ω(q)] + δ[ω + ω(q)]},

(E3)

thus

SLL
0T (q,ω) = K|q|δ[ω − ω(q)] + K|q|

eβ�ω(q) − 1
×{δ[ω − ω(q)] + δ[ω + ω(q)]}, (E4)

yielding Eq. (26). To prove Eq. (27), we start from the second
contribution in Eq. (24) and compute its Fourier transform,
yielding

SLL
1T (q,ω) ∝ I1(a)I1(b), (E5)

where I1(x) ≡ ∫ +∞
−∞ due−ixu sinh(u)−K , a ≡ β�

2π
[ω +

(q − 2kF vs)], and b ≡ β�

2π
[ω − (q − 2kF vs)]. Using∫ +∞

0 due−ixu sinh(u)−K = 2K−1�(K+ix
2 )�(1 − K)/�(1 +

ix−K
2 ) and treating the branch cut carefully, we find

SLL
1T (q > 0,ω) =

(
β�vs

π

)2(1−K)

ε2K n2
0

2vs

22(K−1)�(1 − K)2

×
[

�
(

K+ia
2

)
�

(
1 − K−ia

2

) + e−iKπ
�

(
K−ia

2

)
�

(
1 − K+ia

2

)]

×
[

�
(

K−ib
2

)
�

(
1 − K+ib

2

) + eiKπ
�

(
K+ib

2

)
�

(
1 − K−ib

2

)]
,

(E6)

and then after some algebra, using twice the property
�(z)�(1 − z) = π

sin(πz) , we finally obtain Eq. (27). In the case

K = 1, the property
∫ +∞
−∞ dx e−μx

1−e−x = π [i + cotan(πμ)],0 <

Re(μ) < 1 yields Eq. (28) in a few lines of algebra.

APPENDIX F: DETAILS OF THE CALCULATION OF THE
DRAG FORCE IN THE LUTTINGER LIQUID
FRAMEWORK AT FINITE BARRIER WIDTH

Here we derive Eq. (31). We need to evaluate:∫ q+
q−

dq q(q − q−)K−1(q+ − q)K−1 exp (− q2w2

4 ). We split it
into two parts using q = q − q− + q−, then expand the expo-
nential as a power series, exp(x) = ∑+∞

k=0
xk

k! , and expand once

again according to q2k = (q − q− + q−)2k = ∑2k
m=0

(2k

m

)
(q −

q−)mq2k−m
− . To eliminate the remaining integrals, we use the

property
∫ b

a
dx(x − a)μ−1(b − x)ν−1 = (b − a)μ+ν−1B(μ,ν),

where B is the Euler β function, then after a resummation
and using Pascal’s triangle, we are left to evaluate W ≡∑2k+1

m=0 ( 2v/vs

1−v/vs
)
m
B(K + m,K), which can be interpreted as the

sum of a series with all its terms equal to 0 from rank 2k + 2
on. We express it in terms of the hypergeometric series 2F1,
which converges since −2k − 1 is a negative integer:

W = 21−2K
√

π�(K)

�(K + 1/2)
2F1

(
− 1 − 2k,K; 2K;

−2v

vs − v

)
.

(F1)
This readily yields Eq. (31).
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Phys. Rev. Lett. 92, 130403 (2004).
[10] Y.-A. Chen, S. D. Huber, S. Trotzky, I. Bloch, and E. Altman,

Nat. Phys. 7, 61 (2011).
[11] A. J. Leggett, Rev. Mod. Phys. 71, S318 (1999).
[12] A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).
[13] P. Nozières and D. Pines, The Theory of Quantum Liquids:

Superfluid Bose Liquids (Addison-Wesley, Redwood City, CA,
1990).

[14] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation
(Clarendon, Oxford, 2003).

[15] G. B. Hess and W. M. Fairbank, Phys. Rev. Lett. 19, 216
(1967).

[16] J. R. Abo-Shaeer et al., Science 292, 476 (2001).
[17] E. Hodby, G. Hechenblaikner, S. A. Hopkins, O. M. Marago,

and C. J. Foot, Phys. Rev. Lett. 88, 010405 (2001).
[18] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
[19] F. D. M. Haldane, Phys. Rev. Lett. 47, 1840 (1981).
[20] D. M. Gangardt and A. Kamenev, Phys. Rev. Lett. 102, 070402

(2009).
[21] J. Bonart and L. F. Cugliandolo, Europhys. Lett. 101, 16003

(2013).
[22] J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio,

F. Minardi, A. Kantian, and T. Giamarchi, Phys. Rev. A 85,
023623 (2012).

[23] T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauss,
S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross,
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