
PHYSICAL REVIEW A 91, 063614 (2015)
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The recent Aarhus experiment [Phys. Rev. A 88, 023620 (2013)] produced wave packets by applying amplitude
modulation to a trapped Bose–Einstein condensate (BEC) of 87Rb using an optical lattice. The present paper
renders a theoretical account of this experimental production of wave packets and their subsequent time evolution,
focusing on a one-dimensional noninteracting bosonic system as a fundamental starting point for accurate quantum
analysis. Since experimental manipulation requires efficient wave-packet creation, we introduce the “single-Q
Rabi model” to give a simple and reliable description of the interband transition. As a natural extension, we
demonstrate enhancement of the wave-packet production by the “two-step Rabi oscillation method” using either
one or two frequencies. The subsequent time evolution is affected by the intertwining of Bragg reflection and the
Landau–Zener transition at each band gap, which is analyzed with the aid of a semiclassical theory [Phys. Rev.
Lett. 110, 085302 (2013)].
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I. INTRODUCTION

Ultracold atoms in the optical lattice (OL) [1] have
been eagerly studied since the experimental realization of
Bose–Einstein condensates [2] and quantum degenerate Fermi
gases [3]. Their high controllability and visibility render the
systems suitable for the investigation of quantum vortices [4],
force detectors [5], quantum simulators [6], artificial gauge
fields [7], and so forth. In particular, a great deal of attention has
been drawn to the Bose–(Fermi–)Hubbard model [8,9], which
revealed a plethora of novel quantum phases such as appear in
the Mott insulator superfluid transition [10] in relatively deep
OL potentials. In contrast, the dynamics of ultracold atoms
in rather shallow OLs may be interpreted by analogy to the
valence electrons in crystals.

Experiments employ square-shaped pulse modulation of
the OL amplitude to selectively excite atoms in specific
quasimomentum states. The energy-band structure, a general
consequence of the periodic potential, naturally plays an
important role in coherent manipulation of the matter waves
at band edges via the Bragg reflection and the Landau–Zener
(LZ) transition. Consider a matter wave moving in a particular
band under the influence of an external potential. The Bragg
reflection causes the mean position of the matter wave to
oscillate; namely, the Bloch oscillation [11], which is indeed
observed in the presence of a constant force [12] and may
be used to measure the gravitational acceleration g [13]. The
LZ transition often occurs in the context of an anticrossing
between two quasidegenerate adiabatic states which, in the
present quasiperiodic system, correspond to a pair of adjacent
bands at band edges. LZ transitions may be used to measure the
lattice height [14] and for bifurcating matter wave packets [15].

Recently, there has been a revival of interest in atoms in
combined potentials created by parabolic traps and optical
lattices (parabolic OL hereafter). One interesting feature of
the OL is that some of the eigenstates can be made spatially
localized far away from the center of the parabolic trap
[16–20]. These spatially localized eigenstates (referred to as
SLEs) are candidates for quantum registers [21], for instance,
with unprecedented precision. Moreover, the SLEs may help

realize the Bose–Hubbard model by controlled access and
allow us to investigate novel quantum phases such as the
supersolid state [22].

The recent BEC experiment done in Aarhus [23] first
excites a BEC by lattice amplitude modulation and thus creates
wave packets in a higher energy band. Then, after a few
milliseconds of free propagation, the atoms are deexcited
by a second amplitude modulation at such a timing that the
final wave packets are concentrated in the desired spatial
regions where the trap and OL are energetically balanced.
This situation is similar to the pump-dump (probe) technique
in the field of atom optics which is used in the formation of
ultracold ground-state molecules starting from loosely bound
Fano–Feshbach molecules [24]. An important focus of the
present paper is thus the optimization of population transfer
to specific states. However, no satisfactory theoretical analysis
exists for the parabolic OL system in situations where the net
excitation energy exceeds the height of OL. Experimentally
realized systems being quasi one dimensional (1D) in the sense
that the OL and parabolic potential are aligned, we consider
noninteracting bosonic systems in a one-dimensional parabolic
OL in this paper.

Some early studies of the transfer process [25] by amplitude
modulation indicate the presence of Rabi-type oscillatory
behavior in the transition probability. It turns out that the in-
terband population transfer is indeed governed by the coupled
equations akin to those for Rabi oscillations in quantum optics.
This analogy motivates us to borrow technical terms freely
from quantum optics as though the lattice modulation were
equivalent to irradiation of an atom by a laser beam. On the
basis of this argument, we demonstrate that a sequential two-
step excitation with two different frequencies is more efficient
than with one frequency. Moreover, a most enlightening result
of our investigation is that a simple Rabi model adapted
to the Bloch energy-band structure is unexpectedly reliable.
Technical details of this model are given in Appendix A.
A well-designed use of the Rabi oscillation could thus be
exploited for the desired optimization of the transfer process
(Sec. III A).

1050-2947/2015/91(6)/063614(8) 063614-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.023620
http://dx.doi.org/10.1103/PhysRevA.88.023620
http://dx.doi.org/10.1103/PhysRevA.88.023620
http://dx.doi.org/10.1103/PhysRevA.88.023620
http://dx.doi.org/10.1103/PhysRevLett.110.085302
http://dx.doi.org/10.1103/PhysRevLett.110.085302
http://dx.doi.org/10.1103/PhysRevLett.110.085302
http://dx.doi.org/10.1103/PhysRevLett.110.085302
http://dx.doi.org/10.1103/PhysRevA.91.063614


TOMOTAKE YAMAKOSHI AND SHINICHI WATANABE PHYSICAL REVIEW A 91, 063614 (2015)

From Sec. III B onward, we focus on the influence of
the parabolic potential after the lattice modulation is turned
off. The excited wave packet gets accelerated while still
subjected to the dispersion relation governed by the OL. The
Bragg reflection and the Landau–Zener transition continue to
play an important role. Here we find the parabolic potential
causes the position-dependent LZ transition whereas the linear
potential such as the gravitational acceleration is known to
cause the position-independent LZ transition. We employ the
extended semiclassical theory originally applied to fermions
in a parabolic OL in Ref. [26] for the present bosonic system
and treat the Bragg reflection and the LZ transition in Sec. III B
for comparison with the quantum results.

The paper is organized as follows: Section II outlines
the system and its theoretical model, and some additional
background about the experiment. Section III discusses the
population transfer with single- and two-frequency excitations
largely on the basis of our numerical results. Section III A
introduces our “single-Q Rabi model” and analyzes the dy-
namics of the wave packet subject to the amplitude modulation.
Section III B focuses on the LZ transition using classical
mechanics for a simple estimate of the transition rate as well as
for interpretation. Under a special condition, the LZ transition
can lead to the loss of the wave packet’s amplitude in a
quasicontinuum energy band. Discussions of such “collapse”
of the wave packet during a free propagation are given in
Appendix B as a technical topic. Section IV concludes the
paper.

This paper uses the recoil energy Er = �
2k2

r /(2m) for the
unit of energy, the recoil momentum kr = 2π/λ for the unit of
(quasi) momentum, the lattice constant a = 2/λ for the unit of
length, and rescaled time t = Ert

′/� for the unit of time. Here
�, λ, and m correspond to the Planck constant, the wavelength
of the optical lattice, and the mass of the particle, respectively.

II. SYSTEM IN COMBINED POTENTIAL OF OPTICAL
LATTICE AND PARABOLIC TRAP

We begin with the description of the model time-dependent
Hamiltonian H = − �

2

2m
∂2

∂x2 + V0 sin2(krx)[1 + ε0 cos(ω′t ′)] +
1
2mω2

0x
2 where V0, ε0, ω′, and ω0 denote the height of

the optical lattice, the modulation amplitude, the excitation
frequency, and the frequency of the parabolic potential,
respectively [16,18–20]. It can be cast into the following
rescaled Hamiltonian:

H = − ∂2

∂y2
+ s sin2 (y) [1 + ε0 cos (Eωt)] + νy2

= H0 + s sin2 (y) ε0 cos(Eωt), (1)

where y, s, Eω, and ν denote y = krx, s = V0/Er , Eω =
�ω′/Er , ν = mω2

0/(2Erk
2
r ), and H0 = − ∂2

∂y2 + s sin2(y) +
νy2, respectively.

In order to grasp the general characteristics of the system,
let us observe the distribution of the static eigenstates of H0 on
a broad energy scale. Figure 1(a) is a “position” representation
of eigenstates lying below 30Er . Because the trap potential
varies very gradually as a function of y, it affects the periodicity
of the OL slowly; the energy-band structure changes only
adiabatically. The periodicity thus plays the major role in
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FIG. 1. (Color online) (a) Eigenenergies of time-independent
Hamiltonian H0 in the range of 0 to 30Er represented in correlation
with position space. The probability density of each eigenfunction
is shade coded here as a function of coordinate y while the vertical
location corresponds to its eigenenergy. The darker the shade, the
higher the probability density. We note that the ground-state energy
is set to 0 in what follows. (b) Energy-band structure of the uniform
lattice system HB . The energy difference at q = 0 between the ground
and second bands �E20

0 (green arrow) and that between the second
and fourth bands �E42

0 (blue arrow) serve as typical modulation
frequencies in this article; specific values are 11.11Er (30.4 kHz)
and 9.82Er (26.8 kHz), respectively. Panel (c) is a conceptual figure
with the aid of the classical phase space showing how a specific
state in the reduced-zone representation is reached from the ground
state. Black solid lines are iso-energy contours in the specific bands.
Initially, the atoms are localized at the center of the ground band,
i.e., the green disk in the lower panel. The amplitude modulation (red
dashed lines with arrows) creates the excited wave packets in a certain
higher band (blue disks) and subsequently they move on the energy
contour surface (blue solid lines with arrows). Likewise, it is possible
to put wave packets into a certain higher or lower band by the second
amplitude modulation with a suitable frequency (yellow chain lines).

governing the dynamics of the system. Let us recall the concept
of quasimomentum in the uniform lattice system governed
by HB = − ∂2

∂y2 + s sin2(y). The eigenstate corresponding to
energy En

q is the Bloch state,

φn
q (y) = eiqy

∑
K

Cn
B(K,q)e2iKy (n = 0,1,2, . . .), (2)

with suitable coefficients Cn
B(K,q) where n, q, and K ∈ Z rep-

resent the band index, quasimomentum, and the corresponding
reciprocal vector, respectively. Diagonalizing HB in the basis
of the Bloch states, Eq. (2), yields banded eigenenergies and
coefficients. Let us call the lowest-energy band with index
n = 0 the ground band hereafter.

With this background, let us briefly consider the coherent
transfer process [23] with the aid of the classical phase-space
maps in Fig. 1(c) in reduced-zone representation. (These
maps actually derive from Eq. (3) below, including the trap
potential, but are meant to serve as a conceptual guide here.
They will serve as a computational tool in Sec. III B.) Here
excitation is regarded as a jump from one map onto another.
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First, the experiment superimposes the unidirectional optical
lattice potential so slowly onto the parabolic trap that the
ultracold atoms follow the deformation adiabatically and
remain localized near the potential minimum [lower panel
in Fig. 1(c)]. After this process, the height of the OL is
modulated periodically [27] with respect to time to get the
excited wave packet [upper panel in Fig. 1(c)]. The OL
modulation couples states in different bands belonging to the
same value of quasimomentum [28] as may be verified by a
first-order perturbation analysis. Therefore, in the phase-space
description in Fig. 1(c), the overlap in both position and
quasimomentum plays an important role in population transfer.

The excited wave packet moves due to the parabolic
potential whether the amplitude modulation is on or off. After
the modulation is turned off, the following Hamiltonian in the
single-band approximation [26] applies:

H (y,q) = En
q + νy2. (3)

The wave packet follows the energy contour in a specific band,
and then the excitation or deexcitation with an appropriate
delay time allows us to obtain the desired localized state.
Roughly speaking, excitation with E > s covers a wide range
of position space, hence the excited wave packet lies in the
quasicontinuum and can travel far to access an arbitrary state,
once suitably deexcited. There stands an obstacle, however.
There are band gaps even in the region where energy exceeds
the height of the OL, thus causing collapse of the wave
packet in addition to the natural dephasing. We analyze the
LZ transition in Sec. III B.

III. NUMERICAL RESULTS AND DISCUSSIONS

References [25,29] used an amplitude-modulated optical
lattice for exciting and probing cold trapped atoms. In the
Aarhus experiment [23], ultracold bosonic atoms in the ground
state were transferred to the fourth band via a two-photon
process with a single modulation frequency, but optimization
was not explored. The primary purpose of this section is to
analyze the Aarhus data but, for a more noteworthy purpose,
we consider how to optimize population transfer from the
ground state to the fourth band not only with one frequency
but also with two different frequencies. In accordance with
the actual experiments using pulse-like modulation, here we
consider the full time-dependent Hamiltonian, Eq. (1). In this
paper, we fix the lattice height to s = 16, the parabolic trap
strength to ν = 5.51 × 10−5, and the modulation amplitude to
ε0 = 0.165, respectively, as in the Aarhus experiment.

In the experiment, the excitation frequency employed lies in
the vicinity of the energy difference between the bottom of the
ground and second bands, i.e., �E20

0 ; thus, we also investigate
the same frequency region. On the other hand, Fig. 2 shows the
band population as a function of modulation time comparing
two excitation frequencies, 10.25Er corresponding to an
energy somewhat lower, and 11.35Er somewhat higher than
�E20

0 . From the figure, we extract the following two important
facts:

(I) Figures 2(b) and 2(d) show clear-cut Rabi oscilla-
tions. Differences in excitation amplitude between the two
frequencies reflect the degree of detuning. Such oscillations
were observed in earlier experiments [25,27] and theoretically
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FIG. 2. (Color online) (a) A conceptual diagram for pumping the
third band with 10.25Er modulation in red and the fourth band
with 11.35Er modulation in green. Panels (b)–(d) show the resulting
second-, third-, and fourth-band populations, respectively.

investigated [27], but without the parabolic trap. In addition,
that the Rabi oscillations appear in Fig. 2(d) suggests the
occurrence of two-photon processes.

(II) The band structure without the parabolic trap gives a
reliable estimation of the targeted excitation, because the trap
itself plays a passive role during the pulse-like excitation, being
very loose. Indeed, it plays a preparatory role in the sense that
the excitation process mainly occurs at the trap center where
the ground state is localized.

We also note that more complicated behavior, involving
direct, indirect, and higher-order processes, is found for the
case shown in Fig. 2(c). The analysis of this behavior is
complex and of sufficient interest that it will be published
separately elsewhere.

According to (I), the amplitude-modulated system can be
treated as if it were a “quantum optical” system. A by-product
of this observation is the following approach of optimizing
the fourth-band population by the two-step Rabi oscillation
method with two different frequencies. The idea is to apply
the second pulse at the moment the maximum amplitude of
the second band is attained by the first pulse; that is, by a
pair of π pulses with a well-chosen delay time. Due to the
band structure, the second pulse frequency is chosen to be
smaller than the 1st pulse, which inhibits the coupling between
0th and second bands. The green curve in Fig. 3 shows the
result using the first pulse with energy 11.35Er , and then the
second pulse with energy 10.25Er . The fourth band population
is enhanced threefold by using this technique. This point is
worthy of a special mention, particularly for experiment, since
optimization of transfer can be greatly enhanced by this simple
two-frequency excitation scheme. Manipulation at later stages
becomes considerably easier with the enhanced transfer.

In what follows, we first analyze how these oscillations can
be reproduced accurately by the single-Q Rabi model until
the external field (in this case the trap) takes over. Second,
we analyze the effect of the parabolic trap solely with a
classical approach and see how the classical picture succeeds
remarkably in interpreting its quantum counterpart.
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FIG. 3. (Color online) (a) A conceptual diagram for two-
frequency excitation. The first pulse transfers the population from the
ground to the second band with 0.45 ms modulation. Subsequently,
the second pulse transfers from the second to the fourth band. (b) The
fourth-band population with single-frequency modulation shown in
red and two-frequency modulation with a suitable delay time in green,
respectively. The two-frequency excitation leads to enhancement by
a factor of three.

A. Interband transitions by single- Q Rabi model

Here we propose our single-Q Rabi model in order to
account for the oscillations seen in full numerical calculations
in Figs. 2 and 3. The model is based on time-dependent
perturbation theory, treating the amplitude modulation as the
perturbation term for the Bloch states in Eq. (2). This treatment
gives an important fact that the perturbation term; namely, the
Rabi frequency


nm(q) = ε0s
〈
φm

q

∣∣ sin2(y)
∣∣φn

q

〉
= ε0

[∑
K

Cm
B (K,q) Cn

B (K,q) (q + K)2

]
, (4)

couples two Bloch states in different bands, but only if
the quasimomentum remains unchanged. The parabolic trap
is ignored once the ground state is constructed around the
minimum of the trapping potential.

Now, we represent the time-dependent wave function in
terms of Bloch states as ψ(y,t) = ∑

n,q Cn
Q(q,t)φn

q (y)e−iEωt .
We consider the time evolution of the coefficients {Cn

Q(q,t)}.
Their equation of motion reads

d

dt

⎛
⎜⎜⎜⎜⎝

C0
Q (q,t)

C2
Q (q,t)

C3
Q (q,t)

C4
Q (q,t)

⎞
⎟⎟⎟⎟⎠ = − i

2

⎛
⎜⎜⎜⎝

2�02 
02 0 0


02 0 
23 
24

0 
23 −2�23 0

0 
24 0 −2�24

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

C0
Q (q,t)

C2
Q (q,t)

C3
Q (q,t)

C4
Q (q,t)

⎞
⎟⎟⎟⎟⎠ , (5)

where the rotating wave approximation is employed. Here,
the detuning �nm(q,ω) = (Em

q − En
q ) − Eω and the nth-band

population Bn is given by Bn(t) = ∑
q |Cn

Q(q,t)|2. The cou-
pling matrix, Eq. (5), has the following features: First, the
ground-state component couples strongly with only the second
band via a one-photon process due to energy conservation.
On the other hand, the second-band component couples with
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FIG. 4. (Color online) The band populations with 11.35Er ex-
citation as in Fig. 2. Panels (a)–(c) show the resulting second-,
third-, and fourth-band populations, respectively. Solid curve and dots
show the result of the Rabi model and direct numerical simulation,
respectively. The model succeeds in reproducing the band populations
closely until the LZ transition driven by the parabolic potential occurs
at t = 1.2 ms in panels (b) and (c).

the ground state, third, and fourth bands. We thus retain the
ground, second, third, and the fourth bands under the single-Q
condition �q = 0 while ignoring the 1st band entirely. See
Appendix A for technical details.

Figure 4 compares results of the single-Q Rabi model with
those of direct numerical calculations for 11.35Er . The Rabi
oscillations appear clearly in both results, and the agreement
lasts for about two oscillations as in Figs. 4(b) and 4(c). This
visible disagreement starting at t = 1.2 ms results from the
acceleration due to the parabolic potential neglected in Eq. (5)
which couples different q states and causes the excited wave
packet to undergo a sudden change. Conversely, it suggests
that the excited wave packet remains relatively narrow both
in position and quasimomentum spaces up to the breakdown
time. One interesting feature is that the numerical result of the
third- and fourth-band populations departs from the model at
almost the same time, one going up and the other going down.
The moment t = 1.2 ms corresponds to the LZ transition at
the narrow band gap between third and fourth band. However,
in the presence of the amplitude modulation, it is difficult
to isolate the transition between two neighboring bands.
Therefore, let us consider the LZ transition quantitatively with
the amplitude modulation turned off.

B. The Landau–Zener transition at band edges

In the current situation, the parabolic potential acts on each
atom causing the LZ transition and/or the Bragg reflection
at the band edge. To interpret the phenomenon at the third
and fourth band gap, here we follow the dynamics of the
fourth-band wave packet created with a pulse of energy
11.35Er and duration of 0.45 ms. Figures 5(a) and 5(b)
show the motion of the excited wave packet in position and
quasimomentum spaces, respectively. Since the wave packet
in quasimomentum space spreads symmetrically to either
negative or positive values of q, the wave packet moves away
from the center in either positive or negative direction almost
linearly in time. (Note only the positive branch is shown here
in the extended-zone representation with 3kr < q < 4.5kr .)
At about t = 1.1 ms later since the beginning of the free
propagation, the wave packet in the fourth band crosses the
boundary between the third and fourth bands [Fig. 5(a)]. At
this moment, part of the wave packet suddenly changes its
direction in position space [Fig. 5(b)] corresponding to the

063614-4



WAVE-PACKET DYNAMICS OF NONINTERACTING . . . PHYSICAL REVIEW A 91, 063614 (2015)

time(ms)

po
si

tio
n(

la
tti

ce
 s

ite
)

 0  1  2

-100

 0

 100

(b) (a)  (c) 

 0

 0.08

 0.16

 0  1  2

no
rm

al
iz

ed
 p

op
ul

at
io

n

time(ms)

4th
3rd

time(ms)
qu

as
im

om
en

tu
m

   
 (u

ni
ts

 o
f k

r)
 0  1  2

 3

 3.5

 4

 4.5

FIG. 5. (Color online) Free propagation of the excited wave
packet after the pulse of energy 11.35Er and duration of 0.45 ms
is applied. Time t = 0 marks the end of the first excitation pulse.
Time propagation in position and quasimomentum in extended-zone
representation are shown in panels (a) and (b), respectively. Panel
(c) represents the third- and fourth-band populations as a function of
time.

Bragg reflection at the third-fourth band gap, and the other
part goes to the third band due to the LZ transition. Figure 5(c)
clearly shows a flow of population from the fourth to the third
band due to the LZ transition.

Let us turn to the classical Hamiltonian, Eq. (3), for
quantitative comparison. In this treatment, the classical particle
moves along the constant-energy contour in phase space
depicted in Fig. 6(b). Here the third and fourth bands
are shown in extended-zone representation, but the others are
suppressed [Fig. 6(a)]. When the classical atom reaches the
Brillouin zone boundary qb = 4 or −4, it either jumps to the
other band by the LZ transition or stays in the same band by
Bragg reflection. In order to estimate τc classically, assume that
the classical atom at the fourth band is located at position y = 0
and quasimomentum q = qi as in Fig. 6 when the excitation
pulse is turned off, and then it crosses the boundary qb = 4 at
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FIG. 6. (Color online) (a) Energy-dispersion relation within a
limited region in partially-reduced-zone representation. Quasimo-
mentum corresponds to the extended-zone representation, thus the
dispersion curves are actually parted at q = 3 and q = −3 in
extended-zone representation. (b) Iso-energetic lines represented in
phase space. The classical trajectories move along these lines under
the classical Hamiltonian, Eq. (3). Typical initial points in the fourth
band (red circles) follow red solid arrows. When the classical point
reaches the edge of the third or fourth band, the trajectory branches off,
either going smoothly to the other band (red solid) or jumping to the
other side (green dashed) of the same band by the Bragg reflection.
(c) LZ transition rate between third and fourth bands shown as a
function of position [Eq. (8)].

t = τc. The initial quasimomentum qi is estimated by the en-
ergy conservation of the direct two-photon excitation process,
namely E4

qi
− E0

qi
= 2Eω. Once qi is calculated, the critical

time τc and the position at the critical time y(τc) are given by

τc (qi) = 1

2
√

ν

∫ qi

qb

1√
En

qi
− En

q

dq, (6)

and

y (τc) =
√

En
qi

− En
qb

ν
. (7)

These formulas yield τc = 1.1 ms and y(τc) = 177
(corresponding to the 56th lattice site) with qi = 4.23.
These values are in good agreement with the numerical
simulation in Figs. 5(a) and 5(b).

Next, we turn to the semiclassical estimation of the LZ
transition rate. In accordance with the Zener’s formula [30],
the LZ transition rate is given approximately by

Pt (n,y) = exp

(
−ac (n)

a (y)

)
= exp

(
− πδ2

n

16nν|y|
)

, (8)

where ac(n), a(y), and δn represent the critical acceleration
at the band gap, the acceleration at position y induced by
the external potential, and the rescaled energy gap between
the nth and (n − 1)st band. It is worth pointing out that, in the
case of the quadratic potential, the acceleration at the point
of the crossing in quasimomentum depends on the position y

whereas it does not in the case of a linear external potential such
as gravity. Reading off the LZ transition rate from Fig. 5(c) as
the ratio of the population of the third band at t � 1.1 ms to
that of the fourth band at t = 0, we get roughly Pt = 0.78. This
agrees with the value of 0.82 calculated by Eq. (8) to about
4% with δ4 = 0.2. We have also checked that the LZ transition
rate in the case of two-color 11.35Er + 10.25Er excitation
with 0.7 ms pulse duration. These formulas lead to τc = 0.58
and Pt = 0.68 with qi = 4.07. Additionally, it agrees with the
numerically obtained LZ transition rate 0.71 to about the same
accuracy. These representative examples confirm the validity
of the present picture.

Making use of this classical approach, the breakdown time
of the single-Q Rabi model due to the LZ transition can be
easily estimated in systems with similar band structures. Let
us close this section by noting that the LZ transition lowers
the brightness of the wave packet, eventually leading to the
collapse that takes place faster than with natural dephasing. A
specific example is worked out in detail in Appendix B for the
wave packet excited to a quasicontinuum such as the fourth
band.

IV. CONCLUSIONS

We investigated the dynamics of ultracold bosonic atoms
in a parabolic OL system for the major purpose of producing
dense and robust wave packets. To this end, we studied the
excitation process and subsequent dynamics of the excited
wave packet with numerical simulations and a semi-analytical
method.

We analyzed how the energy bands get populated during
the production of wave packets. The intensity of the current
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experimental amplitude modulation is actually very high,
figuratively comparable to the laser acting on an atom so
that multiphoton-type excitation can occur as in the so-called
strongly coupled regime of the matter-light interaction. Thus,
using the language of quantum optics, we introduced the
single-Q Rabi model to account for the time dependence of the
Bloch-band population. Although simple, the proposed model
indeed showed good agreement with the rigorous numerical
calculations. We also considered the two-frequency excitation
procedure for enhancing wave-packet production in a most
straightforward way; namely, with two successive π pulses
separated in time such that the second pulse was applied right
at the moment the intermediate state reached its maximum
population by the first pulse. The confirmed enhancement
factor reached about three for the demonstrated example; a
very promising result.

We checked the subsequent dynamics and how the energy
band gaps affect the wave packet. One feature we observed is
that the relatively small gap behaves as an imperfect transmitter
and causes the collapse of the wave packet. In this context, the
well-known semiclassical formula for the LZ transition rate is
verified to yield a reasonable estimate. An intriguing feature
is that the LZ transition rate in the parabolic potential depends
both on the position and band gap, thus specific values of the
excitation parameters are affected by the LZ transition. Such
complex manifestation of effects due to the band gaps suggests
paradoxically that suitable control of the OL parameters may
enable us to manipulate matter waves at will. For instance,
Ref. [15] produces a chain of coherent wave packets via
successive bifurcations.

The present analysis works very well with a quasi-1D
system, i.e., the tight confinement in all but the direction of
the OL. We now mention some aspects to be examined more
closely in the future. The present treatment should be extended
to a realistic three-dimensional system. Moreover, to analyze
the real experiments, the experimental initial conditions need
to be recreated. Such experimental knowledge is currently
only incompletely available. In this work, we presumed the
initial state to be the ground state at absolute zero temperature.
Instead, we may theoretically simulate various initial states
to infer the experimental initial condition. In addition to
the dimensionality, the nonlinearity is an interesting issue as
well [31]. We checked the previously reported comportment
of the system [32] and verified that a weak nonlinearity in the
mean-field approximation leads to stabilizing the wave packet
via deformation of the classical separatrix. As the nonlinearity
increases, the wave packet becomes irreparably unstable in a
sudden manner.

The parabolic OL system is said to have a wide variety of
applications, not limited to registering quantum information. In
the case of fermionic atoms, the amplitude modulation can cre-
ate particle-hole pairs in analogy with photoconductivity [26].
There is still much to be explored on the basis of the insights
gained from the present linear system.
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APPENDIX A: THE SINGLE- Q RABI MODEL

The model exploits the tight-binding Hamiltonian [17] for
constructing the ground state of the parabolic OL. Usually, the
eigenstates of the tight-binding Hamiltonian are expressed in
terms of the spatially localized Wannier states. So, reexpress-
ing the ground state in terms of the quasimomentum states of
Eq. (2), we get

χ0 (y) ∼= 1
4
√

πα

∑
q

e−q2/2αφ0
q (y) , (A1)

where φ0
q(y) is the ground-band Bloch state defined by Eq. (2)

and α = [ν/(π2J )]1/2. The approximation for the ground state
is only valid when π2J/ν � 1. Here the ground-band hopping
parameter J is obtained by the approximate formula, Eq. (8) of
Refs. [33,34]; namely, J = 4√

π
s3/4e−2

√
s (s � 1). Therefore,

the initial condition is C0
Q(q,0) = Ae−q2/(2α), and the other

coefficients are 0. The normalization coefficient A is A =
(
∑

q |e−q2/α|)−1/2. The Rabi frequency thus strongly depends
on the lattice depth s.

We comment on experimental parameter values before
showing an illustrative example. Experimental groups working
on the wave-packet creation and detection use rather similar
parameter values [23,26]. All the values in this paper are from
the Aarhus experiment [23] so that s = 16, ν = 5.51 × 10−5,
and J = 6.06 × 10−3. The Hamburg group varies ν and
s; their representative values are s = 10, ν = 2.83 × 10−5,
and J = 2.27 × 10−2. Both experiments satisfy the condition
π2J/ν � 1, thus the single-Q Rabi model is applicable.

Figure 7 exhibits the Rabi frequency 
nm(q) for the relevant
combinations of m and n. Since the initial-state distribution
is concentrated near q = 0, we discuss the region q ∼ 0.
The Bloch coefficients Cn

B(K,q) for the even (odd) band
are symmetric (antisymmetric) with respect to K at q = 0.
Therefore, at q = 0, the Rabi frequencies between even and
odd bands are 0. This is nothing but the standard parity
argument. This symmetry-based behavior is concentrated near
q = 0 and then quickly taken over by the smoother averaged

063614-6



WAVE-PACKET DYNAMICS OF NONINTERACTING . . . PHYSICAL REVIEW A 91, 063614 (2015)

 0

 10

 20

 30

-4 -2  0  2  4

en
er

gy
(u

ni
ts

 o
f E

r)

 quasimomentum
             (units of kr)

(ii)

(i)

 0
 1

 2

 3

 4

FIG. 8. (Color online) Energy-dispersion relation in extended-
zone representation for s = 16. The encircled region (i) corresponds
to the band gap between third and fourth ∼0.2Er which is quite
small. On the contrary, the band gap between second and third in the
encircled region (ii) is ∼1.4Er which is too large for the LZ transition.
At (ii), we consider only the Bragg reflection schematically shown
by the dashed green line joining the q = −3 and q = 3 states.

behavior. An important point is that 
02 (red) and 
24

(light blue) completely overcome 
04 (blue) in the current
situation. Therefore, the combined effect of 
02 and 
24

makes the population transfer faster and less susceptible to the
acceleration due to the parabolic potential. The two-photon
zeroth-fourth transfer rate is thus seen to be better than its
single-photon counterpart. The single-Q Rabi model thus
seems to provide a promising scheme of population transfer.

APPENDIX B: COLLAPSE OF WAVE PACKET DURING
FREE PROPAGATION

A narrow band gap could serve simultaneously as a mirror
and a beam splitter. The gap between the third and fourth bands
for s = 16 is such a special case. We demonstrate the instability
of the wave packet excited to the fourth band. Time evolution
after the amplitude modulation is straightforward, the time
dependence being given by Ck(t) = Ck(0)e−iEkt . Despite this
simplicity, the wave-packet motion displays nontrivial features
because of a large number of Bloch states involved.

We discuss dynamics of the wave packet excited to the
fourth band in the manner of Sec. III B. Let us argue that the
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FIG. 9. (Color online) Free propagation after excitation by the
11.35Er modulation. Panel (a) represents the quasimomentum distri-
bution and panel (b) shows the fourth-band population in time. The y

axis of panel (b) is scaled by the initial fourth-band population. Both
figures show complicated structure after one period of oscillation due
to the LZ transition.

wave packet excited to the fourth band is confined in the third
and fourth bands during free propagation in the case of s = 16
as seen in the Aarhus experiment [23]. Figure 8 shows the
energy band in the extended-zone representation. The region
marked (i) corresponds to the narrow gap between the third
and fourth bands now located at q = 4. In contrast, the band
gap between the second and third [region marked (ii)] is quite
large, and the wave packet crosses the band edge of the second
and third bands typically at y = 300; thus, we get a negligibly
small LZ transition rate Pt (n,y) = 6 × 10−4 by Eq. (8). In
addition, there holds the energy conservation, thus the wave
packet can neither go to the lower bands nor to the higher
bands.

As seen in Fig. 9(a), the excited wave packet with 11.35Er

excitation evolves into a very complicated structure in time.
Let us define the time period T corresponding to the time for
the wave packet to return to its initial quasimomentum |qi |
after the first Bragg reflection at the second-third band edge.
The wave packet bifurcates every time it reaches the band
edge, thus the population at t = mT is simply Pt (n,y)2m times
the initial population [cf. Eq. (8) for the definition of Pt (n,y)].
The population estimated at m = 1 equals 64% which is in
good agreement with the simulated fourth-band population
[Fig. 9(b)]. However, the population reduction to 45% at m =
2 does not agree very well with a simple estimate possibly
because of the more complex bifurcation sequence. The fact
suggests that, from the viewpoint of creating dense and robust
wave packets, the excitation to the bottom of the fourth band
may not be advisable for s = 16.
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