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Fragmented many-body states of a spin-2 Bose gas
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We investigate the fragmented many-body ground states of a spin-2 Bose gas in zero magnetic field. We point
out that the exact ground state is not simply an average over rotationally-invariant mean-field states, in contrast
to the spin-1 case with even number of particles N . While for some certain parameters the exact ground state is
an averaged mean-field state like in the spin-1 case, for other parameters this is not so. We construct the exact
ground states and compare them with the angular-averaged polar and cyclic states. The angular-averaged polar
states in general fail to retrieve the exact eigenstate at N � 6 while angular-averaged cyclic states sustain only
for N with a multiple of 3. We calculate the density matrices and two-particle density matrices to show how
deviant the angular-averaged state is from the exact one.
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I. INTRODUCTION

Since the advancement of optically trapped Bose-Einstein
condensate (BEC) [1], spinor BEC [2] has provided a paradigm
to study magnetism, spin textures, topological excitations,
and quantum dynamics of associated many-body ground
states [3,4]. The quantum phases of spin-f BEC can be
ferromagnetic or polar for f = 1,2 [5,6], or cyclic (f = 2)
[7–9] depending on two-body s-wave scattering lengths aF

of even total spin F ′ up to 2f . Uniaxial and biaxial spin
nematic phases can also be identified in spin-2 case when
the degeneracy in polar phase is lifted by thermal or quantum
fluctuations [10,11]. Higher spin Bose gas can involve even
more complicated phases [12–15]. Rich spin mixing dynamics
has been used to observe the ferromagnetic [16] and antiferro-
magnetic (polar) properties [17], respectively, for spin-1 87Rb
and 23Na Bose gases. In spin-2 cases, polar phase is the likely
phase for 87Rb [18,19]. Recent experimental developments
in spinor BEC involve spin textures [20] and spin dynamics
[21,22] under quadratic Zeeman shift. There are also studies
of quantum phase transitions by Faraday rotation spectroscopy
[23] or adiabatic microwave fields [24] and spin coherence
measurements by Ramsey interferometry [25,26].

A condensate of bosons forms when one of its single-
particle wave functions is macroscopically occupied [27].
The fragmentation of BEC becomes feasible when multiple
macroscopic single-particle densities are degenerate in spinor
Bose gases [28] though it is fragile in the presence of weak
external magnetic fields or symmetry-breaking perturbations
[29]. Lately many interests in fragmented BEC include
dynamical formation of two-dimensional fragmented BEC
[30], quadratic Zeeman effect on spin fragmentation [31,32],
and fragmented many-body ground states with anisotropic
long-range interactions [33] or trapping potentials [34]. It
has been proposed that signatures of fragmentation can be
probed by measuring density-density correlations [35], while
fragmentation resulting from Goldstone magnon instability
[36] and spin-orbit coupling [37] are also investigated.

The fragmented structure of the ground state in spin-1 Bose
gases [29,38,39] originates from the rotational invariance in
spin degrees of freedom. The symmetry-breaking mean-field
(MF) treatment fails in describing the exact ground state for
presumption of single spin coherent condensate. For scattering

lengths obeying a2 > a0, the MF state is polar, but the exact
ground state is fragmented and, for even number of particles
N , can be viewed as a collection of two-particle spin singlets.
This exact ground state has equal populations in the magnetic
sublevels with large number fluctuations of order N [29],
which is very different from MF states. It is claimed [39]
that this exact ground state can be understood as the angular
average of the MF polar states as an analog to the relation
between Fock and coherent states in a double-well system
[39]. This remains the view adopted by the most recent review
articles [3,4]. Is this perspective of angular-averaged states
universal and applicable in constructing the exact ground states
for larger spins? In this paper, we investigate many-body
ground states of a spin-2 Bose gas and demonstrate how
angular-averaged states are unable to construct them except in
certain cases. That the angular averaged MF states is the exact
ground state is just a coincidence in the spin-1 system. We
address the inapplicability of the angular-averaging process
and show how the angular-averaged MF state deviates from the
exact eigenstates by studying the two-particle density matrices.

II. SPIN-2 BOSE GAS

For a spin-f Bose gas at low temperature, the two-body
particle interaction involves only scattering channels of even
total hyperfine spin F ′ states up to 2f [5]. We shall consider
the single-mode approximation (SMA) where the spatial part
of the wave function is the same for all spin sublevels such that
the field operator ψ̂m(r) = √

ρ(r)âm with the density ρ(r) and
spinor operator âm. Since the spatial part is frozen, the effective
Hamiltonian (in a zero magnetic field, to which we shall limit
ourselves) involves only the interaction V , which reads [7]

V = 1

2

∫
drρ2

⎛
⎝ 2∑

m,m′=−2

αâ†
mâ

†
m′ âm′ âm

+
2∑

m,n,m′,
n′ = −2

βâ†
mâ

†
m′ fmn · fm′n′ ân′ ân

+
2∑

m,n,m′,
n′ = −2

5γ â†
mâ

†
m′ 〈2m; 2m′|00〉〈00|2n; 2n′〉ânân′

⎞
⎠, (1)
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where the coefficients are α = (4g2 + 3g4)/7, β = (g4 − g2)/
7, and γ = (g0 − g4)/5 − 2(g2 − g4)/7. Here the interaction
parameters gF ≡ 4π�

2aF /M with the mass of the atom
M and s-wave scattering length aF , and 〈00|2n; 2n′〉 is the
Clebsh-Gordan coefficient for the overlap between the states
with two spin-2 bosons of mz = n,n′ and the spin singlet |00〉.

In MF theory, bosons condense. Particles macroscopically
occupy a single quantum state which can be described by a
spin-2 wave function (ϕ−2, . . . ,ϕ2). In our case, there are three
phases characterized by two order parameters of magnetization
〈f̂ 〉 ≡ ∑2

m=−2 mϕ∗
mϕm and spin-singlet pair amplitude 〈	̂2〉

[7,8], where

	̂2 ≡
2∑

m=−2

√
5〈00|2m; 2 − m〉âmâ−m

= 2â2â−2 − 2â1â−1 + â2
0 (2)

is an operator which annihilates a singlet pair. That is, we
have 〈	̂2〉 = ∑2

m=−2(−1)mϕmϕ−m. There are three phases.
The ferromagnetic (F) phase has a finite 〈f̂ 〉 and zero 〈	̂2〉,
while the polar phase (P) has 〈	̂2〉 = 1 without 〈f̂ 〉. When
β, γ > 0, the cyclic (C) phase has the lowest mean-field
energy for both zero 〈	̂2〉 and 〈f̂ 〉, breaking the time-reversal
symmetry. The phase boundary between F and polar phases
is delineated by the line 4β = γ . The phase diagram is
as shown in Fig. 1(a) [7,8]. Representative wave functions
are (1,0,0,0,0) for F; (1,0,0,

√
2,1), which is equivalent by

rotation to (1,0,
√

2,0,−1) for C [14]. Within the mean field,
the polar phase P can have wave functions P0 = (0,0,1,0,0) or
P2 = (1,0,0,0,1), or any real linear combinations thereof [40]
(apart from rotations). This degeneracy, however, is lifted by

fluctuations [10,11]. The resulting phase diagram, which we
shall call the mean-field-plus (MF+) phase diagram, is shown
in Fig. 1(a). We note that P0(2) can be also represented by the
polynomial forms via spherical harmonics as (2z2 − x2 − y2)
and (x2 − y2), respectively [14,40]. For ease of referral later,
we shall call the regions in (β,γ ) parameter space occupied by
the F, C, P phases as F, C, P regions.

III. MANY-BODY GROUND STATES

Let us now discuss the many-body ground states of a spin-2
Bose gas in zero magnetic field with SMA [8,41,42]. For
a given N , the many-body ground states are characterized
by two quantum numbers F and τ . F is the total spin, and
the integer quantum number τ can be interpreted as the
number of particles other than spin-singlet pairs; therefore
τ is given by 3n30 + λ [8,42] where n30 is the number
of spin-singlet trios and the integer λ indicates particles
other than spin-singlet pairs and trios. These states are also
eigenstates of the operator �̂ ≡ 	̂

†
2	̂2 with eigenvalues � =

N (N + 3) − τ (τ + 3) = (N − τ )(N + 3 + τ ), from which τ

can be evaluated. The exact ground state energy is proportional
to βF (F + 1) − γ τ (τ + 3) aside from a term depending
only on N . The phase diagram derived by minimizing the
ground state energy is as sketched in Fig. 1 for N = 2 to 9.
The line that separates the two phases in the β < 0, γ < 0
region is given by (4N + 2)β/(N + 3) = γ for N even and
(4N + 6)β/(N + 4) = γ for N odd [42], which approaches
the MF phase boundary in the thermodynamic limit.

The wave functions listed in Fig. 1 are constructed accord-
ing to the eigenvalues F and τ which minimize the energy.
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FIG. 1. (Color online) Mean-field-plus (MF+) phase diagram and many-body ground states of spin-2 Bose gas in parameter space (γ,β).
(a) Mean-field-plus phase diagram: ferromagnetic (F), polar (P0 and P2), and cyclic (C) phases. (b–i): phase diagram for exact many-body
states with finite number of particles from N = 2 − 9. The form of the many-body ground states is shown. These states are constructed by
spin-singlet pairs (	̂†

2) and trios (	̂†
3), and in certain regions, creation operator a

†
2 (A†

22) for a single particle (pair of particles) with f = 2,m = 2
is also necessary (see text for definition of these operators). States that involve â

†
2 or Â

†
22 explicitly are degenerate with their partners obtained

by rotational symmetry (not shown). Dots in the formulas, when the complete expressions are not given, indicate that linear superposition with
other terms is required. Wave functions shown here are not normalized. Dashed lines indicate the (schematic) phase boundaries.
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The wave functions with appropriate quantum numbers F and
τ can be written directly using their physical interpretation
and, when necessary, supplemented with direct evaluation of
τ (or equivalently �, which can be directly computed using
the corresponding operator). In the ferromagnetic region F,
they are (â†

2)N |0〉, hence identical with the mean-field states.
(Here |0〉 denotes the vacuum.) For the polar P region, wave
functions differ according to whether N is even or odd. For
even N , the wave functions are (	̂†

2)N/2|0〉 corresponding to
τ = 0, F = 0, and maximum possible �, which are N (N + 3)
as can be seen in Eq. (A7),

	̂
†
2	̂2(	̂†

2)N/2|0〉 = N (N + 3)(	̂†
2)N/2|0〉.

For odd N , the states that appear near the −γ axis have wave
functions â

†
2(	̂†

2)(N−1)/2|0〉 (up to rotations) again correspond
to states with maximum possible �, which are now (N −
1)(N + 4) with τ = 1 and F = 2. Near the +β axis but still
γ < 0, the states (for N � 3) have the form 	̂

†
3(	̂†

2)(N−3)/2|0〉
where

	̂
†
3 = −

√
6â

†
2â

†
0â

†
−2 + 3

2
(â†

1)2â
†
−2 + 3

2
(â†

−1)2â
†
2

−
√

3

2
â
†
1â

†
0â

†
−1 + 1√

6
(â†

0)3 (3)

is an operator which creates a spin-0 trio (not normalized).
These states have τ = 3 [see Eq. (A6)] and � = (N − 3)(N +
6) with F = 0.

In region C, if the particle numbers are multiple of 3,
the ground state wave functions are singlets constructed by
	̂

†
3 and 	̂

†
2 with the eigenvalue � = 0. The wave functions

are indicated in Fig. 1, and their derivation can be found in
Eqs. (A8) and (A9). For other N , the C region is divided into
two parts. The states near the +β axis and γ > 0 are again spin
singlets. If N = 2(mod3), hence N = 3R + 2, they are given
by 	̂

†
2|
3R〉 (with τ = 3R and F = 0) where |
3R〉 is the

corresponding ground state in region C for 3R particles. For
N = 1(mod3) and hence N = 3R + 4 for integer R (when
N � 4), then the wave functions are (	̂†

2)2|
3R〉 and again
τ = 3R. For the N shown in Fig. 1, these states happen to
be the same as the states near the +β axis on the γ < 0 side
so that they are the same phase, but this needs not hold for
larger particle numbers N � 11. The states near the +γ axis
with β > 0 have instead finite magnetization of F = 2, which
involve single- and two-particle creation operators of â

†
2 and

Â
†
22 (see its definition in Sec. V), respectively. We shall not

discuss them in detail since they are not directly relevant here
in the context of rotationally invariant states. We also note that
Fig. 1 agrees with the results in Ref. [43].

IV. ANGULAR-AVERAGED MEAN-FIELD STATES

Now we turn to the angular-averaged MF states and
compare with the corresponding exact eigenstates. First,
we recall the corresponding results for spin-1. The MF
ferromagnetic state corresponds to the exact solution. Their
angular average actually vanishes. The polar mean-field state
has a finite average only for N even and gives the correct exact

many-body state [39]. We then demonstrate how for spin-2 the
averaging process enables the fragmentation in both the polar
and cyclic phases, but in general it fails to correctly construct
the corresponding exact eigenstates at a given point (β,γ ) in
parameter space.

A. Polar states

The situation for the ferromagnetic state is exactly the
same as the spin-1 case. We now consider the angular-
averaged polar state of P0(2). Starting from the reference
state (0,0,1,0,0), the state obtained by rotations via the Euler
angels α,β,γ , which we denote collectively as �̂, is given by
ϕP 0

m (�̂) = D
(2)
m,0(�̂) where the matrix D

(2)
m,m′(�̂) is the spin-2

irreducible representation of the rotation operator [44] (see
also Appendix B). The general (unnormalized) rotationally
invariant state is constructed via

|
〉av = 1√
N !

∫
�̂

[â†(�̂)]N |0〉, (4)

where we have defined
∫
�̂

≡ ∫ 2π

0
dα
2π

∫ β

0
dβ sin β

π

∫ 2π

0
dγ

2π
. For

our polar state P0, we thus use â†(�̂) → ∑
m â

†
mϕP 0

m (�̂).
We call the resulting state |
P 0〉av . It is straightforward to
evaluate the angular integrals. We find that |
P 0〉av retrieves
the exact ground states for even N = 2,4. For odd N = 3,5,7,
we recover the spin singlet state located near the +β axis
as indicated in Fig. 1 (see more details in Appendix A).
(Obviously the angular average cannot produce the states with
finite magnetization near the −γ axis.) However, for even
N � 6 and odd N � 9, the angular-averaged states fail to
construct the exact ground states. For example, for N = 6 it
gives rather

|
P 0〉av = 1

7 × 11 × 13
√

6!
[5 × 32(	̂†

2)3

+ 3 × 24(	̂†
3)2]|0〉,

which is in fact not even an eigenstate of the Hamiltonian in
Eq. (1).

Similarly for P2, we can construct angular-averaged states
as in Eq. (4) except now we use â†(�̂) → ∑

m â
†
mϕP 2

m (�̂)
with ϕP 2

m (�̂) = 1√
2
(D(2)

m2 + D
(2)
m,−2)(�̂). In this case the angular

average vanishes if N is odd. For N even again it produces the
correct ground states for N = 2,4 but fails again at 6.

Actually why the angular averaged mean-field states can
or cannot produce the many-body state is now clear. For N

up to 5, the exact many-body singlet states are unique. Since
angular averaged mean-field states must either be zero or they
must be a rotationally invariant, they must either vanish or
produce the singlet states. This is actually independent of
whether the starting mean-field state is the corresponding
ground state for the given parameters in the Hamiltonian.
For N = 6,8,9, the many-body singlet states are no longer
unique. The angular average, if it is not zero, just produces
some linear combinations of these singlets. The resulting states
have nothing to do with the ground state solutions of the
Hamiltonian. That the angular average of the polar state for
spin-1 produces correctly the exact many-body state for even
N is purely because that, for spin-1, this singlet is unique.
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Let us also consider the angular-averaged states for a linear
combination of both P0(2) and use ϕP

m (�̂) ≡ cosθD
(2)
m,0(�̂) +

sin θ [D(2)
m,2(�̂) + D

(2)
m,−2(�̂)]/

√
2 in Eq. (4). For N = 6, and

the angular-averaged polar state becomes (see Appendix C)

|
P (θ )〉av = 1

1001
√

6!
[(47 − 2 cos 6θ )(	̂†

2)3

+ (12 + 36 cos 6θ )(	̂†
3)2]|0〉, (5)

which in general again fails to become an eigenstate of Eq. (1).
The θ dependence obtained above can be understood as
follows. In the Cartesian representation, the general polar state
is cos θ (2z2 − x2 − y2)/

√
6 + sin θ (x2 − y2)/

√
2. θ → −θ is

equivalent to interchanging x and y, whereas θ → π/3 − θ

has the effect of interchanging y and z as well as a sign change
in the wave function. It follows that the angular averaged state
must be invariant under θ → −θ , while under θ → π/3 − θ , it
is multiplied by (−1)N . On the other hand, for N particles, the
θ dependence comes from terms of the form cosn θ sinN−n θ

where n = 0, . . . ,N with real coefficients [see Eq. (C2)].
Hence it must be of the form

∑N
k=−N cke

ikθ where c−k = c∗
k .

For even N , it follows that there is no θ dependence for N � 4,
and the θ dependence for 6 � N � 10 can only be a linear
combination of a constant and another term ∝ cos(6θ ) (only
c±6 and c0 are allowed). For odd N with 3 � N � 7, the θ

dependence is via cos(3θ ) (only c±3 allowed). The summation
over k has the same parity as N when we combine all the
symmetries we stated for θ , and therefore we have nonzero
even/odd k (6n and 6n + 3 respectively with integer n) for
even/odd N .

We note that the polar state P0 averages to (	̂3)†|0〉 for
N = 3, which happens to be the ground state also in the
C region. While for N = 6, |
P (θ )〉av never produces the
many-body state [(	̂†

3)2 − 1
18 (	̂†

2)3]|0〉 in the C region for
any choice of θ . It happens that when cos 6θ = −1/3, the
angular-averaged polar state becomes the exact ground state
(	̂†

2)3|0〉 in the P region. The above special value of θ can
be understood as follows. It can be shown that the weighted
average 3/2

∫ π/3
0 dθ sin 3θ over θ , together with the average

over Euler angles above, is equivalent to an average over the
4-sphere in the quantum rotor picture of Ref. [45]. If we apply
this average to ϕP

m (�̂), we obtain the exact many-body state
(	†

2)N/2|0〉 for even N (the average vanishes for odd N ). This
is because the above mentioned averages guarantee that we
obtain a state that is invariant under SO(5) rotations, and
(	†

2)N/2|0〉 is the only such state (corresponding to τ = 0 of
Ref. [42]). The θ -averaged of cos(6θ ) is −1/3.

For even N � 12, the coefficients in the angular-averaged
polar state would contain cos(12θ ) while for odd N � 9, they
contain cos(9θ ) as expected. For N = 12 as an example, we
expect three nonunique singlet states, which are (	̂†

2)6|0〉,
(	̂†

2)3(	̂†
3)2|0〉, and (	̂†

3)4|0〉, with each coefficient a linear
combination of constant, cos 6θ , and cos 12θ . We do not know
whether the special θ∗ with cos 6θ = −1/3 would retrieve the
exact ground state for N = 12, but regard this as very unlikely.

The comparison between the angular-averaged polar state
and the exact eigenstates can also be viewed in a different
manner. Let us consider the operator 	̂

†
2	̂2. We note that,

for the normalized state |
̃p(θ )〉av of |
p(θ )〉av , we have the
expectation value

av〈
̃p(θ )|	̂†
2	̂2|
̃p(θ )〉av = N (N − 1)XN−2(θ )/XN (θ ), (6)

where XN (θ ) ≡av 〈
p(θ )|
p(θ )〉av and we have defined
X0 = 1. The derivation of Eq. (6) can be seen as follows.
Consider operating 	̂2 on the unnormalized state |
p(θ )〉av ,
for example, of â2

0 in 	̂2, we would have a term of the form
∫

�̂

√
N (N − 1)√
(N − 2)!

(ϕP
0 )2

× (
ϕP

2 â
†
2 + ϕP

1 â
†
1 + ϕP

0 â
†
0 + ϕP

−1â
†
−1 + ϕP

−2â
†
−2

)N−2|0〉.
Similar derivations are for other operators in 	̂2. After
summing over these contributions and using the identity∑

m(−1)mϕP
m (�̂)ϕP

−m(�) = 1, we get
∫

�̂

√
N (N − 1)√
(N − 2)!

× (
ϕP

2 â
†
2+ϕP

1 â
†
1+ϕP

0 â
†
0+ϕP

−1â
†
−1+ϕP

−2â
†
−2

)N−2|0〉
=

√
N (N − 1)|
p(θ )〉N−2, (7)

where |
p(θ )〉N−2 is the corresponding wave function for
N − 2 particles. Eq. (6) follows then just from the definition
of XN (θ ), since its left-hand side is just the overlap of
	̂2|
p(θ )〉av with its own complex conjugate.

While Eq. (6) is general, let us focus on P0. The evaluation
of XN at θ = 0 are particularly straightforward. We have

XN (0) ≡av 〈
p(0)|
p(0)〉av =
∫

�̂

d�̂
[
D

(2)
0,0(�̂)

]N
, (8)

where �̂ ≡ �̂−1
1 �̂2 represents the rotation �̂2 followed by

the inverse of �̂1. Here we have used the relation D
(2)
0,0(�̂) ≡∑

m D
(2)∗
m,0 (�̂1)D(2)

m,0(�̂2) [44]. We obtain X1 = 0, X2 = 1/5,
X3 = 2/35, X4 = 3/35, X5 = 4/77, X6 = 53/(7 × 11 × 13),
X7 = 6/(11 × 13), X8 = 5 × 19/(11 × 13 × 17), X9 = 23 ×
197/(11 × 13 × 17 × 19). On the other hand, as already
mentioned, the exact eigenstates are also eigenvectors of the
operator �̂ ≡ 	̂

†
2	̂2. For even N , the states (	̂†

2)N/2|0〉 have
eigenvalues � = N (N + 3). For odd N , the exact eigenstates
(	̂†

2)(N−3)/2	̂
†
3|0〉 have eigenvalues (N − 3)(N + 6). We can

check directly from Eq. (6) that the expectation values for
	̂

†
2	̂2 equal these exact values for N = 2, 3, 4, 5, 7 but not 6,

8 or 9.

B. Cyclic states

We now study the angular-averaged cyclic states. It is
simplest to use the reference state 1√

3
(1,0,0,

√
2,0) and

hence ϕC
m(�̂) = 1√

3
(D(2)

m,2 + √
2D

(2)
m,−1)(�̂) in Eq. (4). The

angular-averaged C states are nonvanishing only when N is
a multiple of 3, which can be easily seen by considering
the integral over the angle γ . It turns out that, in these
cases, the angular-averaged C states do produce the correct
many-body states. This is due to the fact that ϕC

m(�̂) obeys∑
m(−1)mϕm(�̂)ϕ−m(�̂) = 0, and hence the angular averaged

state is annihilated by 	̂2, so that the resulting state must
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satisfy � = 0 and hence correctly produce the corresponding
many-body state. We have also verified this conclusion by
direct angular averages in Appendix D.

V. REDUCED DENSITY MATRIX

As a further investigation, compare, for N = 6, the
two-particle density matrices for the angular-averaged polar
states with those for the exact many-body states |
6〉 ≡

1√
g(3)

(	†
2)3|0〉 where g(3) is a normalization constant. (The

one-particle density matrices are obviously identical since
both states are rotational invariant.) It is simplest to present
the results using the operators

ÂJM ≡
∑

m1,m2

〈JM|22m1m2〉âm1 âm2 . (9)

〈
6|Â†
JMÂJ ′M ′ |
6〉 is finite only when J = J ′ and

M = M ′ and is further M independent, as expected
by rotational invariance. These values are discussed in
Appendix E. We have 〈
6|Â†

00Â00|
6〉 = 54/5 = 10.8, and
〈
6|Â†

2MÂ2M |
6〉 = 〈
6|Â†
4MÂ4M |
6〉 = 48/35 ≈ 1.37.

The numerical results for the angular-averaged MF state is
shown in Fig. 2. The values oscillate with θ with period π/3
due to the cos 6θ factor in Eq. (5). For general θ , the difference
between the angular-averaged MF and the spin-singlet pair
states is less than 10%. For example, 〈Â†

00Â00〉 = 10.8 for the
exact many-body state while 〈Â†

00Â00〉 = 9.7 in Fig. 2(a) at
θ = 0. The values are identical at cos(6θ ) = −1/3.

While the density matrices at finite N in general differ, it can
be shown in Appendix E that they have the same leading terms
in the large N limit, so that the energy per particle remains
the same up to corrections of order 1/N , as in the case for
spin-1 [29]. In the large N limit, the fragmented state has
macroscopic number fluctuations while they decay rapidly as
miniscule magnetization sets in, therefore it is fragile against
symmetry-breaking perturbations. However, we expect that the
fragmentation of many-body ground state can be observable
in the few-particle system where its signature of two-particle
correlations is more noticeable in contrast to the mean-field
results.

10
10.5

11

〈A
+ 00

A
00

〉

1.4
1.5
1.6

〈A
+ 22

A
22

〉

0 0.5 1 1.5 2 2.5 3
1.32
1.34
1.36

θ (rad)

〈A
+ 44

A
44

〉 (c)

(b)

(a)

FIG. 2. (Color online) Two-particle density matrices for the
angular-averaged polar state for N = 6. Three density matrices for
J = 0, 2, 4 are shown in (a), (b), and (c), respectively.

VI. CONCLUSION

In conclusion, the many-body ground states of spin-2 Bose
gas in zero magnetic field are in general fragmented, which is,
however, not describable via angular-averaged MF states. For
polar states the angular-averaged calculation fails to describe
the exact eigenstates when even or odd N � 6 or 9 except in
certain cases. For cyclic states, the angular-averaged treatment
only sustains the exact ground states for particle number of
a multiple of 3, which preserves the constraint of 〈	̂†

2	̂2〉 =
0. That the angular-averaged MF states for even N in spin-1
Bose gas are equivalent to the exact ground states is simply a
coincidence. For even higher spinor BEC (f � 3), we expect
angular-averaged states fail to retrieve the exact eigenstates at
an even smaller number of particles.
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APPENDIX A: WAVE FUNCTIONS FOR THE SINGLET
MANY-BODY STATE WITH � = 0 IN THE C REGION

We show how to obtain the singlet wave functions in the
C regions of Fig. 1. To simplify notations, we shall often
simply write 〈00|n,n′〉 for the Clebsch-Gordan coefficients
〈00|2n; 2n′〉 when no confusion arises. We observe that

	̂
†
3 = c

2∑
m=−2

(−1)mâ
†
−mÂ

†
2m,

=
√

5c

2∑
m=−2

〈00| − m,m〉â†
−mÂ

†
2m, (A1)

where c = − 1
2 ( 7

3 )1/2. Such a relation is expected since both
sides create a singlet state of three particles. It is easy to see
that

[âm,Â
†
2M ] = 2〈2M|m,M − m〉â†

M−m

= 2(−1)m〈2 M − m| − m,M〉â†
M−m. (A2)

It is useful to note that though [âm,Â
†
2m] �= 0, we have

2∑
m=−2

[âm,Â
†
2m] = 0. (A3)

This relation is expected since the left-hand side is ro-
tationally invariant but its right-hand side can involve
only one creation operator. Indeed,

∑2
m=−2[âm,Â

†
2m] =

2
∑2

μ=−2(−1)μ〈20|μ,−μ〉a†
0 but the sum is proportional to∑2

μ=−2〈00|μ,−μ〉〈20|μ,−μ〉 = 0 due to the orthogonality
between the states |00〉 and |20〉. From Eq. (A1) we can
evaluate

[â−m,	̂
†
3] = −(−1)m

(3 × 7)1/2

2
Â

†
2,m, (A4)
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and hence

[	̂2,	̂
†
3] = − (3 × 7)1/2

2

2∑
m=−2

{Â†
2m,âm},

= −(3 × 7)1/2
2∑

m=−2

Â
†
2mâm, (A5)

where in the last step we have used Eq. (A3).
From the above we find

	̂2(	̂†
2)Q	̂

†R
3 |0〉 =2Q(6R + 2Q + 3)(	̂†

2)Q−1(	̂†
3)R|0〉

+ 3R(R − 1)

2
(	̂†

2)Q+2(	̂†
3)R−2|0〉.

(A6)

Note that this implies, for the special case R = 0,

	̂
†
2	̂2(	̂†

2)Q|0〉 = 2Q(2Q + 3)(	̂†
2)Q|0〉, (A7)

a result which we shall see again in Appendix E.
We can now derive the exact many-body wave function for

the region C when N is a multiple of 3. The state |
3R〉 with
N = 3R particles and τ = N with N = 3R being a multiple of
3 (i.e., 	̂†

2	̂2|
3R〉 = 0 hence � = 0) can then be constructed

as

|
3R〉 = b0(	̂†
3)R + b1(	̂†

2)3(	̂†
3)R−2 + · · ·

+ bk(	̂†
2)3k(	̂†

3)R−2k + · · · , (A8)

where we have

bk+1

bk

= − (R − 2k)(R − 2k − 1)

12(k + 1)(2R − 2k − 1)
. (A9)

We also note here that since [	2,N (N + 3) − 	
†
2	2] = 0,

the states (	†
2)Q|
3R〉 have the same quantum number τ = 3R

though different particle numbers N = 2Q + 3R. From these
we obtain the exact many-body ground states in region C of
Fig. 1.

APPENDIX B: SPIN-2 IRREDUCIBLE
REPRESENTATION OF d(2)

m′,m(β)

In this section, we reproduce the spin-2 irreducible
representation of the rotation operator D̂

(2)
m′,m(α,β,γ ) =

e−i(m′α+mγ )d
(2)
m′,m(β) [44] for Euler angles α, β, γ . In matrix

form, d
(2)
m′,m(β) is

d
(2)
m′,m(β) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos4( β

2 ) − sin β

2 (1 + cos β)
√

3
8 sin2 β

sin β

2 (cos β − 1) sin4 β

2

sin β

2 (1 + cos β) 1
2 (2 cos β − 1)(cos β + 1) −

√
3
2 sin β cos β 1

2 (2 cos β + 1)(1 − cos β) sin β

2 (cos β − 1)√
3
8 sin2 β

√
3
2 sin β cos β 1

2 (3 cos2 β − 1) −
√

3
2 sin β cos β

√
3
8 sin2 β

sin β

2 (1 − cos β) 1
2 (2 cos β + 1)(1 − cos β)

√
3
2 sin β cos β 1

2 (2 cos β − 1)(cos β + 1) − sin β

2 (1 + cos β)

sin4 β

2
sin β

2 (1 − cos β)
√

3
8 sin2 β

sin β

2 (cos β + 1) cos4( β

2 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B1)

which is expressed in terms of spin bases (ϕ2,ϕ1,ϕ0,ϕ−1,ϕ−2).

APPENDIX C: ANGULAR AVERAGE MEAN-FIELD POLAR STATES FOR FINITE NUMBER OF PARTICLES

From Eq. (4) with â†(�̂) = ∑
a
†
mϕP

m (�̂) where ϕP
m (�̂) ≡ cosθD

(2)
m,0(�̂) + sin θ (D(2)

m,2(�̂) + D
(2)
m,−2(�̂))/

√
2, we first average

over α and γ , which gives

|
 ′
P (θ,β)〉av =

N∑
n=0

(
N

n

)⎡
⎣∑

m′
1

cos θd
(2)
m′

1,0
(β)â†

m′
1

⎤
⎦

n (
sin θ√

2

)N−n

⎡
⎣∑

m′
2

d
(2)
m′

2,2
(β)â†

m′
2
+

∑
m′

3

d
(2)
m′

3,−2(β)â†
m′

3

⎤
⎦

N−n

δf (m′),0δf (m),0,

(C1)

where f (m) ≡ ∑
m=m1,2,3

m. We may expand the above further and use one of the delta function constraint δf (m),0, and the wave
function becomes

|
 ′
P (θ,β)〉av =

N∑
n=0

(
N

n

)
cosn θ sinN−n θ

2(N−n)/2

(
N − n

N−n
2

) ⎡
⎣∑

m′
1

d
(2)
m′

1,0
(β)â†

m′
1

⎤
⎦

n ⎡
⎣∑

m′
2

d
(2)
m′

2,2
(β)â†

m′
2

⎤
⎦

N−n
2

⎡
⎣∑

m′
3

d
(2)
m′

3,−2(β)â†
m′

3

⎤
⎦

N−n
2

δf (m′),0,

(C2)

where (N − n)/2 is integer. We then evaluate the β average either analytically or with the help of Mathematica. Below, we report
the results for this angular-averaged polar states for finite number of particles N = 2 to 10.
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1. N = 2

From Eq. (C2), we have the angular-averaged polar state

|
P (θ )〉av = 1

2
√

2!

∫ π

0
|
 ′

p(θ,β)〉 sin βdβ,

= 1

5
√

2
[2â

†
2â

†
−2 − 2â

†
1â

†
−1 + (â†

0)2]|0〉,

= 1

5
√

2
	̂

†
2|0〉. (C3)

Note that it has no θ dependence. The angular-averaged MF
state reproduces the exact many-body state.

2. N = 3

From Eq. (C2), we have the angular-averaged polar state

|
P (θ )〉av = 1

2
√

3!

∫ π

0
|
 ′

p(θ,β)〉 sin β dβ,

= 2

35
(cos3 θ − 3 cos θ sin2 θ )	̂†

3|0〉

= 2

35
[cos(3θ )]	̂†

3|0〉, (C4)

where 	̂3 is a three-particle singlet operator,

	̂
†
3 ≡ 1√

6
(â†

0)3 − 3√
6
â
†
1â

†
0â

†
−1 + 3

2
(â†

1)2â
†
−2 + 3

2
â
†
2(â†

−1)2

− 6√
6
â
†
2â

†
0â

†
−2. (C5)

Note that this angular-averaged state has θ dependence with
a period of 2π/3 but always reproduces the exact many-body
state for the region γ < 0 and near the +β axis.

3. N = 4

For this even number of particles, we again have

|
P (θ )〉av = 1

2
√

4!

∫ π

0
|
 ′

p(θ,β)〉 sin β dβ,

= 3

35
√

4!
(	̂†

2)2|0〉, (C6)

where so far we still have a θ independent angular average. This
state is a N/2 spin-singlet-pairs state, i.e., the exact eigenstate.

4. N = 5

From Eq. (C2), only n = 1,3,5 are possible for (N − n)/2
is an integer. The angular-averaged polar state is

|
P (θ )〉av = 1

2
√

5!

∫ π

0
|
 ′

p(θ,β)〉 sin β dβ,

= 4
√

6

77
√

5!
(cos5 θ − 3 cos θ sin4 θ

− 2 cos3 θ sin2 θ )	̂†
2	̂

†
3|0〉

= 2

77
√

5
[cos(3θ )]	̂†

2	̂
†
3|0〉. (C7)

Note that this angular-averaged state again has θ dependence
with a period of 2π/3 and reproduces the exact many-body
state for the region γ < 0 and near the +β axis.

5. N = 6

For this even number of particles, we expect a combination
of two- and three-particle singlet states to appear. From
Eq. (C2), we have

|
P (θ )〉av = 1

2
√

6!

∫ π

0
|
 ′

p(θ,β)〉 sin β dβ,

= 1

1001
√

6!
[(47 − 2 cos 6θ )(	̂†

2)3

+ (12 + 36 cos 6θ )(	̂†
3)2]|0〉. (C8)

We may express this wave function in terms of the
normalized many-body state of two- and three-particle singlet
states for N particles,

∣∣
(2)
N=6

〉 = 1√
24 · 33 · 5 · 7

(	̂†
2)3|0〉, (C9)

|
(3)
N=6〉 = 1√

5 · 73
(	̂†

3)2|0〉. (C10)

For θ = 0, the normalized angular-averaged state is

|
̃P (0)〉av

= 1√
11 × 13 × 53

[
5 × 35/2

∣∣
(2)
N=6

〉 + 22 × 7
∣∣
(3)

N=6

〉]
,

(C11)

where we note the finite overlap 〈
(2)
N=6|
(3)

N=6〉 = 2/(
√

3 · 7).
The angular average has θ dependence in general, and it can
be expressed in terms of two-particle-singlets state only when
cos 6θ = −1/3. In general the angular-averaged polar state
fails to construct the exact ground states, which should be
N/2 spin-singlet-pairs state.

6. N = 8

To investigate the θ dependence of even number of particles,
we proceed to calculate the angular-averaged polar state of
N = 8,

|
p(θ )〉av = 1

2
√

8!

∫ π

0
|
 ′

p(θ,β)〉 sin β dβ

= 1

2431
√

8!
[(71 − 8 cos 6θ )(	̂†

2)4

+ 16(3 + 9 cos 6θ )	̂†
2(	̂†

3)2]|0〉. (C12)

Using the normalized singlet states,

∣∣
(2)
N=8

〉 = 1√
27 × 33 × 5 × 7 × 11

(	̂†
2)4|0〉, (C13)

∣∣
(2,3)
N=8

〉 = 1√
2 × 5 × 7 × 11 × 79

	̂
†
2(	̂†

3)2|0〉, (C14)
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we may express the normalized angular-averaged state (con-
sider θ = 0) as

|
̃p(0)〉av = 1

3
√

2 × 5

[√
3
∣∣
(2)

N=8

〉 + √
79

∣∣
(2,3)
N=8

〉]
, (C15)

where again we use 〈
(2)
N=8|
(2,3)

N=8〉 = 4/(
√

3 × 79). Note that
when cos 6θ = −1/3, the angular-averaged MF state becomes
the exact many-body state.

7. N = 10

We may further investigate the angular-averaged MF state
for even N . From Eq. (C2), we have

|
P (θ )〉av = 1

2
√

10!

∫ π

0
|
 ′

p(θ,β)〉 sin β dβ,

∝ [(101 − 20 cos 6θ )(	̂†
2)5

+ 120(1 + 3 cos 6θ )(	̂†
2	̂

†
3)2]|0〉. (C16)

Note that a special angle of cos 6θ = −1/3 appears similar to
the cases of N = 6,8.

APPENDIX D: ANGULAR-AVERAGED MEAN-FIELD
CYCLIC STATES FOR FINITE N

When we angular averaged the mean-field cyclic state, we
obtain, for N = 3,

|
C〉av = 4
√

3

35 × √
3!

	̂
†
3|0〉. (D1)

For N = 6, we have

|
C〉av = 8

7 × 11 × 13
√

6!
[−(	̂†

2)3 + 18(	̂†
3)2]|0〉. (D2)

In both cases, we produce the exact many-body states in the C
region.

APPENDIX E: REDUCED DENSITY
MATRIX CALCULATION

We here consider the N = 2Q singlet state

|
2Q〉 = 1√
g(Q)

	̂
†
2
Q|0〉, (E1)

where g(Q) is a normalization constant. g(Q) can be evaluated
(see also below) by the repeated use of the commutation
relation [	̂,	̂†] = 2(2N̂ + 5) where N̂ is the number operator.
We then obtain

g(Q) = 2QQ!(2Q + 3)!!/3. (E2)

Some special values are g(1) = 10, g(2) = 23 × 5 × 7, and
g(3) = 24 × 33 × 5 × 7. It turns out that g(Q) = f (1,Q) of
Ref. [29].

The expectation values for the two-particle density ma-
trices 〈
2Q|Â†

JMÂJM |
2Q〉 needed can be read off from
the energy E = 1

2 [αN (N − 1) + β(F (F + 1) − 6N ) + γ�]
where � = 2Q(2Q + 3) since this must also be E =
1
2

∑
JM gF 〈
2Q|Â†

JMÂJM |
2Q〉 where the sum over J is for

0,2,4 only. We have

〈
2Q|Â†
00Â00|
2Q〉 = 2Q(2Q + 3)/5, (E3)

〈
2Q|Â†
2MÂ2M |
2Q〉 = 8Q(Q − 1)/35, (E4)

〈
2Q|Â†
4MÂ4M |
2Q〉 = 8Q(Q − 1)/35. (E5)

The equality between the values between J = 2 and J = 4 is
due to the special properties of the state |
2Q〉. Below we also
show an alternate derivation of Eqs. (E3)–(E5)

The state (E1) can be expressed in terms of the basis
|n2,n1,n0,n−1,n−2〉, where nm is the number of particles in
the state m. We get

|
2Q〉 =
[

3 × 2QQ!

(2Q + 3)!!

]1/2 Q∑
k0,k1,k2

′
(−1)k1

[(2k0)!]1/2

2k0k0!

× |k2,k1,2k0,k1,k2〉, (E6)

where the sum is over all non-negative integers k0, k1, k2

with the restriction (denoted by the prime) k0 + k1 + k2 = Q.
The density matrices are obtained by operating âm1 âm2 on
|
2Q〉 and then evaluating the appropriate inner products. The
required sums are evaluated below.

We show here how to evaluate the sums involved. They are
of the form

SQ ≡
Q∑

k=0

bk, (E7)

where bk are the products of polynomials in k with ck ≡
(2k)!

22k (k!)2 = (2k−1)!!
2kk! . For this, we notice that if the function f (y) ≡∑∞

k=0 bky
k is known, then (by straightforward verification)

SQ is simply the coefficient of yQ of the function F (y) ≡
f (y)/(1 − y). Now, we note that f1(y) ≡ ∑∞

k=0 cky
k is given

simply by (1 − y)−1/2. Hence the sum S1,Q ≡ ∑Q
k=0 ck is given

by the yQ coefficient of (1 − y)−3/2, and hence

S1,Q ≡
Q∑

k=0

ck = (2Q + 1)!!

2QQ!
. (E8)

Similarly, for the sum S2,Q ≡ ∑Q
k=0 kck , the function f2(y) ≡∑∞

k=0 kcky
k can be obtained from y d

dy
f1(y) = y

2 (1 − y)−3/2.

Hence S2,Q is the yQ coefficient of F2(y) = y

2 (1 − y)−5/2, and
hence

S2,Q ≡
Q∑

k=0

kck = Q

3

(2Q + 1)!!

2QQ!
. (E9)

We can proceed similarly to get

S3,Q ≡
Q∑

k=0

k(k − 1)ck = Q(Q − 1)

5

(2Q + 1)!!

2QQ!
, (E10)

S4,Q ≡
Q∑

k=0

k(k − 1)(k − 2)ck

= Q(Q − 1)(Q − 2)

7

(2Q + 1)!!

2QQ!
. (E11)
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With the above sums, we can also obtain

Q∑
k=0

(Q + 1 − k)ck = 1

3

(2Q + 3)!!

2QQ!
, (E12)

Q∑
k=0

(Q − k)(Q − k + 1)ck = 4Q

15

(2Q + 3)!!

2QQ!
(E13)

[using (Q − k)(Q − k + 1) = k(k − 1) − 2Qk + Q(Q + 1)],
and

Q∑
k=0

(Q − k − 1)(Q − k)(Q − k + 1)ck

= 8Q(Q − 1)

35

(2Q + 3)!!

2QQ!
(E14)

[using (Q − k − 1)(Q − k)(Q − k + 1) = −k(k − 1)(k −
2) + 3(Q − 1)k(k − 1) − 3Q(Q − 1)k+(Q − 1)Q(Q + 1)].

We demonstrate the use of the above relations by
checking here the normalization of |
2Q〉. 〈
2Q|
2Q〉
is given by [ 3×2QQ!

(2Q+3)!! ]
∑Q

k0,k1,k2

′ck0 . Due to the restric-
tion k0 + k1 + k2 = Q, the sum is therefore given by∑Q

k0=0[
∑Q−k0

k1=0 1] = ∑Q
k ck(Q − k + 1), which is (2Q+3)!!

3×2QQ!
from Eq. (E13). The density matrices are obtained by
first operating âm or âm1 âm2 on |
2Q〉 and then evaluating
the appropriate interproducts with the help of the above
formulas.

We list here also the two-particle density matrices
〈
2Q|â†

m1 â
†
m2 âm3 âm4 |
2Q〉. We list them starting from the

largest M ≡ m1 + m2 = m3 + m4. For M = 4,

〈
2Q|â†
2â

†
2â2â2|
2Q〉 = 8Q(Q − 1)/35. (E15)

For M = 3

〈
2Q|â†
2â

†
1â1â2|
2Q〉 = 4Q(Q − 1)/35, (E16)

corresponding to 〈
2Q|Â†
4MÂ4M |
2Q〉 = 8Q(Q − 1)/35.

For M = 2, we have two operators â0â2 and â1â1

and their conjugates. We obtain

〈
2Q|â†
2â

†
0â0â2|
2Q〉 = 4Q(Q − 1)/35, (E17)

〈
2Q|â†
1â

†
1â1â1|
2Q〉 = 8Q(Q − 1)/35, (E18)

whereas

〈
2Q|â†
2â

†
0â1â1|
2Q〉 = 0. (E19)

The last result can be most easily seen when 
2Q is expanded
in the number basis. This is reflected in the equality between
Eqs. (E4) and (E5).

For M = 1, there are two operators â1â0 and â2â−1. We
have 〈


2Q|â†
1â

†
0â0â1|
2Q

〉 = 〈
2Q|â†
2â

†
−1â−1â2|
2Q〉, (E20)

= 4Q(Q − 1)/35, (E21)

and there are no cross elements. Similar remarks we made for
the M = 2 sector also applies here.

For M = 0, there are three operators, â2â−2 and â1â−1 and
â0â0. This part of the density matrix is, with rows and columns
in order of these three operators, given by

2Q

35

⎛
⎜⎝

(4Q + 3) −(2Q + 5) (2Q + 5)

−(2Q + 5) (4Q + 3) −(2Q + 5)

(2Q + 5) −(2Q + 5) (6Q + 1)

⎞
⎟⎠ . (E22)

The equality between the first two diagonal elements, as well
as among the off-diagonal elements except signs, follows from
the fact that |
2Q〉 is invariant under â±2 → â±1 up to a sign.
From the above formulas, we can recover Eqs. (E3)–(E5).

It is straightforward to obtain the number
fluctuations from above: 〈N̂2N̂2〉 = 〈N̂1N̂1〉 = 〈N̂2N̂−2〉 =
〈N̂1N̂−1〉 = 2Q(4Q + 3)/35, 〈N̂0N̂0〉 = 4Q(3Q + 4)/35,
〈N̂2N̂1〉 = 〈N̂2N̂0〉 = 〈N̂2N̂−1〉 = 〈N̂1N̂0〉 = 4Q(Q − 1)/35.
The above expressions are valid also when replacing m by
−m. 〈N̂2N̂2〉 = 〈N̂2N̂−2〉 etc follows immediately also from
(E6), since for each of the states on the right-hand side,
n2 = n−2.

We now consider the density matrices for |
P 〉av in large N limit. We have

〈
â†

m1
â†

m1
âm3 âm4

〉 = N (N − 1)

∫
�̂1,�̂2

ϕ∗
m1

(�̂1)ϕ∗
m2

(�̂1)ϕm3 (�̂2)ϕm4 (�̂2)
[∑

m ϕ∗
m(�̂1)ϕm(�̂2)

]N−2

∫
�̂1,�̂2

[∑
m ϕ∗

m(�̂1)ϕm(�̂2)
]N

. (E23)

(We leave out the explicit labels |
P 〉av to simplify our
notations.) For large N , the overlap [

∑
m ϕ∗

m(�̂1)ϕm(�̂2)]N is
negligible unless �̂1 is very close to �̂2 (rigorously speaking,
also �̂2 − �̂1, but we can check easily that this does not affect
the following argument). Hence we can identify the �̂ in the
arguments of ϕm1 . . . ϕm4 in the integrand of the numerator.
Canceling the common factors (the normalization coefficient
is ∝ N−1 for large N ) we are left with

〈
â†

m1
â†

m1
âm3 âm4

〉 = N (N−1)
∫

�̂

ϕ∗
m1

(�̂)ϕ∗
m2

(�̂)ϕm3 (�̂)ϕm4 (�̂).

(E24)

Now we observe that, for our state, ϕ∗
m(�̂) = (−1)mϕ−m(�̂),

since d
(2)
−m,−n = (−1)m+nd (2)

m,n where D̂
(2)
m′,m(α,β,γ ) ≡

e−i(m′α+mγ )d
(2)
m′,m(β). Therefore the integral above is the same

as

(−1)m1+m2

∫
�̂

ϕ−m1 (�̂)ϕ−m2 (�̂)ϕm3 (�̂)ϕm4 (�̂).

We notice that this latter integral is the same as the one that
occurs in our evaluation of the coefficient of â

†
−m1

â
†
−m2

â
†
m3 â

†
m4

for the wave function |
P 〉av for four particles, except
combinatorial factors. For example, the value of 〈â†

2â
†
1â1â2〉 is
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just −N (N − 1) times the coefficient of â
†
−2â

†
−1â

†
1â

†
2 in |
P 〉av

[see Eq. (C6)] divided by 4!. Using our previous calculations
we therefore obtain, in the large N limit, 〈â†

2â
†
1â1â2〉 = N2/35,

〈â†
2â

†
0â0â2〉 = N2/35, etc. It is again most economical to

express the final results using ÂJM . We get 〈Â†
00Â00〉 = N2/5

and 〈Â†
2MÂ2M〉 = 〈Â†

4MÂ4M〉 = 2N2/35. Hence the N2 terms
in two-particle density matrix in the state obtained by angular
average is the same as that of Eq. (E1), and the differences arise
only in lower powers in N . Therefore the interaction energies
per particle for these states are equal except for terms that are
of order 1.
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