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We determine and analyze the quantum phases and time delays in photoionization and photorecombination of
valence 3p and 3s electrons of argon using the Kohn-Sham local-density-functional approach. The time-dependent
local-density approximation is used to account for the electron correlation. Resulting attosecond Wigner-Smith
time delays show very good agreement with the recent experiment on argon that measured the delay in 3p
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I. INTRODUCTION

Technological advances in producing the isolated attosec-
ond pulse [1,2] and attosecond pulse trains [3,4] have facili-
tated pump-probe experiments to resolve the photoionization
(PI) process in real time [5–9]. In attosecond streaking mea-
surements, following the ionization by an extreme ultraviolet
(XUV) pump pulse, photoelectrons are boosted by the infrared
(IR) probe vector potential to different final momenta as a
function of pump-probe time delay, which are then mapped
into a spectrogram. Theoretical modeling of such spectrograms
extracts the time delay associated with PI. For instance,
the relative time delay between photoelectrons emitted from
2s and 2p orbitals of atomic neon [5] and that between
photoelectrons from conduction and valence bands in bulk
metals have been measured using streaking methods [8,9].
By introducing a coincidence technique of photoelectron
detection, multiple streaking traces can be determined in a
single experiment for emissions from various atomic orbitals
or from different gas species in a mixed sample [10]. In
the interferometric measurements, namely, reconstruction of
attosecond beating by interference of two-photon transitions
(RABITT) [3], photoelectrons emitted by odd harmonics of an
XUV pulse train subsequently absorb or emit an IR photon.
This produces even harmonic sidebands in the spectrogram.
The ionization time delay is then obtained by the ratio of the
difference of the measured phases at consecutive sidebands
and the harmonic separation. Important recent measurements
using the RABITT technique include relative delay between
argon 3s and 3p photoemission [6,7] and between emissions
from various noble-gas atoms [11].

The additional delay introduced by the IR probe pulse via
the so-called continuum-continuum coupling or Coulomb-
laser coupling can be calculated separately and subtracted
from the measured result, yielding the Wigner-Smith delay
associated with PI [12–14]. This is because the phase-
frequency difference approach mentioned above approximates
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the energy differential of the phase of the PI amplitude
that defines the Wigner-Smith delay [15,16]. This delay
is the excess time, positive or negative, spent by the electron
to reach the continuum in addition to the time it would
take in the absence of interactions between the continuum
electron and the target. Therefore, attosecond time delay is
an important probe of dynamical correlation effects in PI
processes. Several theoretical methods employed to explain
experimental 3s-3p relative delay in argon were only partially
successful to reproduce measurements [6,7,17–20], with the
exception of the multiconfigurational Hartree-Fock method,
which had better success [21].

Recently, the phase and the group delay associated with
photorecombination (PR) of the argon 3p electron at energies
that include the 3p Cooper minimum have been measured
using the combination of high-harmonic generation (HHG)
and RABITT methods [22]. Observations of the Cooper
minima in HHG spectra of various atoms and molecules
have been a subject of recent work [23–28]. The presence
of such minima in HHG spectra indicates that the structure
of the sample can be probed despite the presence of a
strong IR pulse during recombination. The assumption of
time-reversal symmetry between PR and PI forms the basis
of the principle of detailed balance [29]. This leads to a
one-to-one correspondence between PR and PI [30,31], which
permits the retrieval of structural and dynamical information
of the sample from HHG spectra.

The purpose of the present paper is to provide a detailed
theoretical analysis of the phase and Wigner-Smith time delay
associated with PI and PR processes. We report the calculation
of these phases and delays for argon using the time-dependent
local-density approximation (TDLDA) method and show that
the results successfully describe recent PR [22] measurements.
The argon atom is one of the most studied systems for HHG
and attosecond pulse generation and has a 3s and a 3p Cooper
minimum at, respectively, 42- and 48-eV photon energy in
the PI cross section [32,33] [the latter yields a (53 ± 3)-eV
minimum in the HHG spectra [23–25]]. Our study highlights
the importance of the second dipole-allowed channel at
energies near the Cooper minimum of a given channel with the
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same initial orbital and, in general, stresses the applicability
of the TDLDA method to interpret RABITT measurements.
Results also add reliability to recent TDLDA predictions
[19,34,35] of the PI time delay in fullerene materials.

This paper is structured as follows. Section II includes
three subsections: Sec. II A describes PI and PR within the
independent-particle model, i.e., the local-density approxima-
tion (LDA); Sec. II B provides the essentials of the TDLDA,
which incorporates important electron-electron correlations;
and Sec. II C gives an alternative discussion about the electron
correlation in PI and PR via the interchannel coupling
formalism by Fano. Section III discusses numerical results
and their comparison with recent measurements. A summary
is presented in Sec. IV.

II. THEORETICAL PERSPECTIVES

A. Independent-particle model

Choosing the photon polarization along the z axis, the
PI and PR dipole transition amplitudes in a single-channel
approximation, which omits electron correlations, are

dPI(k) = 〈ψ−
kl′ |z|φnl〉 (1a)

and

dPR(−k) = 〈φnl|z|ψ+
−kl′ 〉. (1b)

Here k is the momentum of the continuum electron, z is the
one-body dipole operator, φnl is the bound wave function of
the target, and ψkl′ , with + (−) representing the outgoing
(incoming) spherical continuum wave function, is

ψ±
kl′(r) = (8π )3/2

∑
m

e±iηl′ Rkl′(r)Yl′m(�r)Y ∗
l′m(�k), (2)

with l′ = l ± 1. In Eq. (2), the scattering phase ηl′(k) contains
contributions from both short-range and Coulomb potentials
and Rkl′ is the radial continuum wave. Since (ψ+

−k)∗ = ψ−
k ,

it follows from Eqs. (1) that dPI = dPR, satisfying the time-
reversal symmetry between PI and PR.

We calculate amplitudes d [Eqs. (1)] using the independent-
particle LDA method [36–38]. Here the LDA potential, using
the single-particle density ρ(r),

VLDA(r) = −z

r
+

∫
dr′ ρ(r′)

|r − r′| + VXC[ρ(r)], (3)

uses the Leeuwen-Baerends exchange-correlation functional
VXC [39], which provides an accurate asymptotic description of
the ground-state potential. The LDA self-consistently includes
an average interaction with the ionic core and obtains the
ground and continuum single-electron states for various angu-
lar momenta in a mean-field approximation. Thus, the LDA is
akin to the Hartree-Fock method, albeit an approximation to
the (nonlocal) exchange in a local frame.

We note the following in our LDA results. The absolute
value of the amplitude |d| of PI and PR dipole channels
3p ↔ kd shows minima at an energy of about 37 eV, below
the energy of the regular 3p Cooper minimum. In Fig. 2(a),
such a minimum in the 3p → kd LDA cross section is seen,
but no minimum is found in 3s → kp. Equations (1) include
LDA radial matrix elements 〈Rkd,ks |z|R3p〉 and 〈R3p|z|Rkd,ks〉,

respectively, for PI and PR. The scattering phase [η in Eq. (2)]
of PI and PR does not have any structure at these energies.
As the radial matrix element associated with the 3p → kd

transition changes its sign, the total phase corresponding to
the total matrix element has a sharp and discontinuous phase
jump at the Cooper minimum, which is at a lower energy
compared to the experimentally observed minimum. Note
that only the scattering phase is considered at the mean-field
approximation and our LDA results (not shown) are consistent
with the Hartree-Fock results for argon PI [18,40]. We show
below that when the electron correlation is included via the
complex induced potential in the TDLDA [see Eq. (4)], the
position of the Cooper minimum in the cross section and
the variation of the total phase of the radial matrix element
at the Cooper minimum reproduce the measured results.

B. Time-dependent local-density approximation

The TDLDA, used here to calculate the full transition
amplitude, includes many-electron effects and utilizes the
advanced G+ (for PI) and retarded G− (for PR) Green’s
functions [37,41,42]. In a linear response frame, such as the
TDLDA, the PI and PR amplitudes formally read

DPI(k) = 〈ψ−
kl′ |δV ∗

+ + z|φnl〉 = dPI(k) + 〈δV ∗
+〉 (4a)

and

DPR(−k) = 〈φnl|z + δV−|ψ+
−kl′ 〉 = dPR(−k) + 〈δV−〉. (4b)

Here δV± are complex induced potentials that account for
electron correlations. In the TDLDA, z + δV± are proportional
to the induced frequency-dependent changes in the electron
density [43]. This change is

δρ±(r′; ω) =
∫

χ±(r,r′; ω)z dr, (5)

where the full susceptibility χ builds the dynamical correlation
from the independent-particle LDA susceptibilities

χ0
±(r,r′; ω) =

occ∑
nl

φ∗
nl(r)φnl(r′) G(±)(r,r′; εnl + ω)

+
occ∑
nl

φnl(r)φ∗
nl(r

′) G(±)∗(r,r′; εnl − ω) (6)

via the matrix equation χ = χ0[1 − (∂V/∂ρ)χ0]−1 involving
the variation of the ground-state potential V with respect to
the ground-state density ρ. The radial components of the full
Green’s functions in Eq. (6) are constructed with the regular fL

and irregular gL solutions of the homogeneous radial equation(
1

r2

∂

∂r
r2 ∂

∂r
− L(L + 1)

r2
− VLDA + E

)
fL(gL)(r; E) = 0

(7)
as

G±
L (r,r ′; E) = 2fL(r<; E)h(±)

L (r>; E)

W [fL,hL]
, (8)

where W represents the Wronskian and h
(±)
L = gL ± i fL are

complex conjugate combinations. Obviously, the latter fact,
along with Eqs. (5)–(8), demonstrates that δV ∗

+ = δV−, thus
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confirming DPI = DPR. Note that the TDLDA thus includes
the dynamical correlation by improving upon the mean-field
LDA basis. The numerical results presented in this paper are
obtained using the TDLDA method only.

C. Electron correlations via interchannel coupling

Before discussing our numerical results, we present the
Fano formalism of interchannel coupling, which is used to
interpret the results. For photon energies of current interest,
the dominant correlation emerges between valence 3p and
3s channels, since argon’s inner electrons are too deeply
bound. An elegant way to interpret the dynamical correlation
is through the coupling between independent-particle channels
as described by Fano [44]. For instance, in the first-order
perturbation theory, to approximate the exact continuum wave
function of the 3p → kd channel, coupled to the degenerate
3s → kp (perturbing) channel, we obtain for the corrected
wave function

|−
kd (E)〉 = |ψ−

kd〉 + lim
λ→0

∫
dE′ 〈ψ̃−

kd |1/r12|ψ̃−
k′p〉

E − E′ + iλ
|ψ−

k′p〉

≈ |ψ−
kd〉 + c〈ψ̃−

kd |
1

r12
|ψ̃−

kp〉|ψ−
kp〉. (9)

Here ψ̃ are two-electron wave functions that include both
bound and continuum states of an independent-particle chan-
nel and c is a complex number that includes the contributions of
pole and principal value terms, both accumulated near E′ = E.
In the second step above, we approximate the energy integral
by the leading contribution at E′ = E = k2/2 for simplicity.
Using Eq. (9) in the form (1a), the correlation-corrected PI
amplitude can be written as

D3p→kd = 〈−
kd |z|φ3p〉 = d3p→kd + c〈ψ̃−

kp| 1

r12
|ψ̃−

kd〉d3s→kp,

(10)

in which the complex interchannel coupling matrix element
〈1/r12〉 with a two-body operator embodies the fraction of
the independent-particle 3s → kp strength that transfers, via
correlation, to the observed 3p → kd channel. Note that, since
both bound and continuum wave functions constitute ψ̃ , this
correlation incorporates the continuum-continuum interaction
between the detected d and perturbing p photoelectrons aug-
mented by the strong 3p-3s bound-state overlap. Specifically,
the correlation is expected to dominate the Cooper-minimum
region where the strength of the observing channel is small.
Figure 1(a) is a phenomenological representation of Eq. (10)
for the detection of 3p electrons where the vertical arrows
denote independent-particle PIs and the curved arrow is the
3s-to-3p correlation contribution.

The corresponding time-reversed photoamplitude with in-
terchannel coupling, plugging the outgoing version of Eq. (9)
in the form (1b), can likewise be found as

D3p←kd = 〈φ3p|z|+
−kd〉

= d3p←kd + c∗〈ψ̃+
−kd |

1

r12
|ψ̃+

−kp〉d3s←kp, (11)

which is sketched in Fig. 1(b) and can be shown to exactly
equal to its time-forward counterpart (10) since (ψ̃+

−k)∗ = ψ̃−
k

FIG. 1. (Color online) Schematics of total photoamplitudes for
transitions of the 3p electron. Vertical arrows are single-channel
matrix elements for 3p and 3s [Eqs. (1)], while curved arrows
represent the coupling via the interchannel matrix elements 〈1/r12〉
[see the text after Eq. (10)]. The detector in each panel identifies the
channel being observed in this two-channel interaction model.

and dPI = dPR. Obviously, Eq. (11) or Fig. 1(b) is the 3p ← kd

PR process correlation modified by its coupling with 3s ← kp.
One can likewise show the equality of PI versus PR amplitudes
by choosing to observe the 3s channel that couples to a 3p

channel.
Note that the correlation expressed in the wave function via

the interchannel coupling in Eq. (9) effectively reincarnates in
the operator δV in Eqs. (4). In fact, 〈δV 〉 corresponds to the
correlation contribution in Eq. (10) [45].

III. RESULTS, DISCUSSION, AND COMPARISON
WITH MEASUREMENTS

The total, 3p, and 3s PI cross sections for argon, obtained
within the TDLDA, are in very good agreement with the
measurements [32,33] as shown previously by us [19]. The
PR cross sections are derivable directly from PI results by
incorporating the principle of detailed balance. The TDLDA
phase � of the amplitude D is the sum of the LDA phase
l′ π

2 + η [Eq. (2)] and the phase (the correlation phase) of
the complex radial matrix element embedded in D. These
phases for channels involving 3p and 3s electrons are shown in
Fig. 2(b). At energies directly above the ionization thresholds,
η is dominated by the Coulomb phase. The phases of 3s → kp

and 3p → kd exhibit rapid variations at their respective
Cooper minima at 42 and 48 eV. These minima are also seen
in the TDLDA cross sections for PI in Fig. 2(a). Evidently,
the correlation blueshifts the 3p Cooper minimum from its
LDA position (37 eV). The correlation now also introduces a
phase variation at the zero of Re(D), since D is now complex
due to the complex δV in Eq. (4a). In the Fano formalism,
the nontrivial origin of this complex D is the interchannel
coupling matrix element in Eq. (10).

Further, for the 3s ionization, one rewrites Eq. (10) for
3s → kp modified by the coupling with 3p → kd; this entails
the d on the right-hand side to interchange and the interchannel
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FIG. 2. (Color online) (a) The LDA and TDLDA cross sections
for 3p → kd and 3s → kp photoionization channels. (b) The
TDLDA phases for 3p → kd,ks channels. Structures between 25
and 30 eV in 3p curves are from 3s excitations Rydberg resonances.
(c) Branching strength ratios [see Eq. (14)] are used in weighted
averaging the phases of two dipole channels of 3p electrons.

coupling matrix element to conjugate. Two important conse-
quences emerge: (i) The coupling term now directly inserts a
minimum in the TDLDA 3s channel [Fig. 2(b)] via the LDA
amplitude d of 3p → kd that has a minimum and is stronger
enough than the 3s channel to dramatically modify it through
the interchannel coupling and (ii) the complex conjugation of
the interchannel coupling matrix element explains why there
are opposite variations in 3p and 3s phases at their respective
minima in Fig. 2(b). A similar relative trend is also found by
the random-phase approximation with exchange (RPAE) [18].
The upshift (positive delay, as will be shown below) of 3s

phase points to a slower emergence of the 3s electron, while
the downshift of 3p suggests the opposite.

Until recently, there was an ambiguity about the direction
of relative variations between 3p and 3s phases at their Cooper
minima. Schoun et al. have measured the variation of argon 3p

phase for the PR process across the Cooper minima [22]. The
correlation phase in the previous calculation was not correct
[19]. In the present calculation, this error has been rectified
by using the correct sign of the imaginary part of the overall
term. Note further in Fig. 2(b) that the 3p → ks phase is large
and rather monotonic as a function of energy, since no Cooper
minimum exists in this channel. A crucial consequence of this
fact will be recognized in the following.

In streaking experiments, one measures the delay associated
with the angle-resolved phase of the full 3p amplitude of
emissions at a solid angle �k [46]. Ignoring the phase of the
spherical harmonics, this can be written as

�3p(�k) = arg[|D3p→kd (�k)| exp(i�3p→kd )

+ |D3p→ks(�k)| exp(i�3p→ks)]. (12)

In a non-angle-resolved measurement such as RABITT, the
total amplitude is close to the direct sum of the dipole matrix
elements |D| over �k in (12). Since for a given channel∫

d�k|D3p→kd(s)(�k)|2 ∼ σ3p→kd(s), we approximate the inte-
grals over the |D| by the square root of the respective channel
cross sections. The TDLDA 3p phase is thus calculated by

�3p = arg[
√

σ3p→kd exp(i�3p→kd )

+√
σ3p→ks exp(i�3p→ks)]. (13)

In effect, instead of summing the angle-dependent moduli
of each channel amplitude, the square root of the sum of
their squares is used. Even though the scheme thus neglects
the cross terms (interference) among emissions in different
directions (by choosing only the self-terms), we show that the
results explain the measured 3p photorecombination data [22]
obtained in RABITT techniques very well.

Now we model Eq. (13) in an approximate form to develop
some insights as

�3p ≈
√

σ3p→kd

S
�3p→kd +

√
σ3p→ks

S
�3p→ks, (14)

where S = √
σ3p→kd + √

σ3p→kd . Although, in general,
Eq. (14) may have a limited range of validity, as demonstrated
in Fig. 3(a), Eqs. (13) and (14) agree numerically almost
perfectly for σ and � over the current energy range; it was
required to fold the 3p → ks phase onto the range of 0−2π

rad [Fig. 3(a)] before applying (14). The advantage of the
form (14) is that it explicitly shows the energy-dependent
fractions, the branching strengths, of channel phases in �3p.
Figure 2(c) presents these branching strengths in Eq. (14) that
show the influence of the 3p Cooper minimum. Note that the
branching strengths should be identical for PI and PR, since
the coefficients from detailed balance cancel out in the ratio.

In the following, we compare our TDLDA results for
the 3p photoelectron with the recently measured absolute
3p phase and associated time delay across the 3p Cooper
minimum in the PR process [22]. Figure 3(a) shows that the
3p → kd TDLDA phase qualitatively matches the measured
phase, albeit with a sharper energy variation for the TDLDA
while the measurement shows a softer behavior. However,
Eqs. (13) and (14) provide softer variations of the total 3p

phase around the minimum, which then are in very good
agreement with the measurement [22], as seen in Fig. 3(a).
Note that the experimental phase was redshifted by 5 eV. It
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FIG. 3. (Color online) (a) Total 3p TDLDA phase [Eq. (13)] and
an admixture [Eq. (14)] of 3p → kd,ks phases (both shown with
3p → ks shifted down by 2π ) compared with measured phases for
3p photorecombination [22], but shifted upward by 4 rad. (b) Same
as in (a) but for 3p Wigner-Smith time delay. Experimental results
are redshifted by 5 eV in both the cases (open triangles, 1.3 μm;
stars, 2 μm).

was also necessary to shift the measured data up by 4 rad
for comparison. This is because, since the actual observable
measured is the derivative of the phase, there is an arbitrary
constant shift of the total phase.

Why does the 3p total phase have a considerably softer
energy dependence than the 3p → kd phase across the 3p

minimum in Fig. 3(a)? This is because, while the 3p → kd

channel is generally strong, it becomes very weak near its
Cooper minimum so the 3p → ks phase dominates [see
Eq. (14)]. Indeed, as evident in Fig. 2(c), while the 3p →
kd channel dominates below 40-eV of photon energy, both
channels become comparable around 42 eV. With higher
energy, this trend continues and enables 3p → ks to eventually
contribute about 90% of the total strength right at the Cooper
minimum. Past the minimum, however, the 3p → kd channel
recovers and regains its dominance above 55 eV. Hence,
Eq. (14) makes it explicit that this reversal of relative strengths
at the minimum invokes a slower variation of the 3p total
phase, retaining its value close to the 3p → kd phase before
and after the minimum but producing values close to the
(folded) 3p → ks phase near the minimum [Fig. 3(a)].

The energy derivative of the 3p phase, its Wigner-Smith
time delay, is performed to calculate the time delay of

FIG. 4. (Color online) (a) The TDLDA 3s phase and total 3p

phase calculated using Eq. (13). (b) The TDLDA relative 3s-3p

Wigner-Smith and finite-difference time delays and their comparison
with the measured relative delays by the RABITT method (closed
circles, Ref. [7]; open squares, Ref. [6]). The RPAE results [18] are
also included for comparison.

3p photoelectrons. Respective Wigner-Smith delays for the
3p PR, TDLDA versus experiment, are then compared in
Fig. 3(b), which also exhibit nice agreement.

The total 3p phase obtained from (13) is now compared
with the TDLDA 3s phase in Fig. 4(a). They show opposite
energy gradients in the range from above the 3s Coulomb
region near its threshold to energies past the 3p Cooper
minimum. The energy differentials of the 3s and 3p phases,
their Wigner-Smith time delays, are carried out to calculate
the relative time delay between 3s and 3p photoelectrons.
Figure 4(b) presents the calculated relative delay in TDLDA
and its comparison with the PI measurements [6,7]. The
TDLDA and the measured delays are not in good agreement,
except at the lowest experimental energy, farthest from the 3s

Cooper minimum. We also present the results calculated by the
RPAE at the three measured energies [18]. The TDLDA and
RPAE results are fairly close and show stronger variations at
the 3s Cooper minimum from the structures they predict across
the minimum, while the measurements exhibit rather small
relative delays. Note, however, that both TDLDA and RPAE
predictions and the measurements generally indicate similar
qualitative trends (curvatures). We remark that, since, as shown
above, the TDLDA agreed so well with the measured 3p delay,
measurements of the 3s absolute delay in future, either for the
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PI or PR process, may shade lights towards accounting for this
theory-experiment quantitative discrepancy in Fig. 4(b).

The RABITT measurement [6,7] used an IR probe pulse
of 1.55-eV (800-nm) energy to extract the time delay from
measured phases � in a finite-difference approach: τ (E) =
[�(E + ω) − �(E − ω)]/2ω. In order to mimic this exper-
imental procedure, we also apply finite differencing of our
TDLDA phases [Fig. 4(a)] using 1.55-eV half steps. Resulting
finite difference relative-delay is also presented in Fig. 4(b)
which, even though is slightly different from the exact result,
does not improve the agreement. We should mention here that
we also have calculated the finite-difference TDLDA 3p delays
with 1.3-μm and 2.0-μm half steps, which are IR photon
energies in the PR experiment [22], but obtained virtually the
same results of Fig. 3(b).

IV. CONCLUSION

To summarize, a detailed theoretical study of argon valence
photoionization and photorecombination spectral phases and
associated Wigner-Smith time delays has been carried out
within the TDLDA methodology. A notion of interchannel

coupling based on Fano formalism to account for electron
correlations was introduced to aid the interpretation of the
result and to support the generally accepted consensus that
PI is a time-reversal process of PR. Numerical results for
the phases reveal structures at respective 3p and 3s Cooper
minima with opposite energy variations, resulting from the
correlation based on mutual couplings between 3p and 3s

channels. The TDLDA absolute phase and delay results for
3p transition were found to be in very good accord with
measured data using HHG plus RABITT. The relative 3s-3p

Wigner-Smith time delay was computed and found to mostly
disagree with recent RABITT measurements, a fact that needs
further investigation. As a final remark, TDLDA calcula-
tions using explicit corrections for electron self-interactions
[43] with a different exchange-correlation functional [47]
produced results qualitatively similar to those presented
here.
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