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Above-threshold ionization with highly charged ions in superstrong laser fields.
III. Spin effects and their dependence on laser polarization

Enderalp Yakaboylu,* Michael Klaiber,† and Karen Z. Hatsagortsyan‡

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
(Received 20 March 2015; published 11 June 2015)

Spin effects in the tunneling regime of strong-field ionization of hydrogenlike highly charged ions in linearly as
well as circularly polarized laser fields are investigated. The impact of the polarization of a laser field on the spin
effects is analyzed. Spin-resolved differential ionization rates are calculated employing the relativistic Coulomb-
corrected strong-field approximation developed in the previous paper of the series. Analytical expressions for spin
asymmetries and the spin-flip probability, depending on the laser’s polarization, are obtained for the photoelectron
momentum corresponding to the maximum of the tunneling probability. A simple intuitive model is developed
for the description of spin dynamics in tunnel ionization. The spin flip is shown to be experimentally observable
by using moderate highly charged ions with a charge of the order of 20 and a laser field with an intensity of
I ∼ 1022 W/cm2.
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I. INTRODUCTION

Due to advances of the laser technology, the relativistic
regime of laser-atom interactions is now within experimental
reach [1–10]. Recently, different tools for advanced studies
of particles in extreme laser fields have also been developed,
which make it possible to select and prepare well-defined ion
ensembles and to optimize the laser-particle interaction [11].
This will allow the investigation of the relativistic strong-field-
ionization dynamics, which is accessible only in a combination
of strong lasers and highly charged ions.

The strong-field approximation (SFA) [12,13] and the
imaginary-time method (ITM) [14–18] are well-developed
theoretical tools for the analytical investigation of strong-
field ionization in the relativistic regime. In particular, the
differential and total ionization rates were calculated using
these methods. The photoelectron momentum distribution
in the relativistic regime of above-threshold ionization was
well explained by those calculations [19–25]. However, the
details of the electron-spin dynamics in the relativistic tunnel-
ionization regime still needs further elucidation.

Spin effects in different processes in laser fields have been
investigated since the invention of the laser [26]. In particular,
it was shown that the relativistic dynamics of free electrons
in a strong laser field is disturbed by spin-induced forces
[27] and that the electron radiation can be modified due to
the spin-induced dynamics [28]. Spin effects in laser-assisted
Mott scattering and laser-assisted Möller scattering were inves-
tigated in [29,30] and [31], respectively. Polarization effects
in the multiphoton Compton scattering were investigated in
[32–40]. Transfer of polarization from the laser beam to
positrons via Compton scattering and pair production is shown
in [41]. Recently, a spin-flip effect was shown in the Kapitza-
Dirac effect [42–44]. Relativistic spin operators in various
electromagnetic environments have been discussed in [45,46].
Collapse and revival of the spin precession in a laser field has
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been revealed in [47]. Furthermore, interesting polarization
effects were explored in electron-positron pair production
processes in ultrastrong laser fields, in particular, during
electron and positron pair creation in combined Coulomb
and strong laser fields [48], in the multiphoton Bethe-Heitler
process [49], and in two counterpropagating laser pulses [50].
Spin correlations in electron-positron pair creation by a laser
pulse and a proton beam were examined in [51].

During the relativistic laser-atom interaction spin effects
were shown to appear in the laser-driven bound electron
dynamics [52] and, in particular, in the radiation of high-order
harmonics [53–56]. The spin asymmetry in the strong-field-
ionization process of an atom with a circularly polarized laser
field was discussed in [57], neglecting the spin dynamics in the
bound state. The latter, however, can have a significant impact
on spin effects, as was shown in [58]. The spin dynamics in
nonsequential double ionization of helium was considered in
[59,60]. Furthermore, the photoelectron spin polarization can
also arise because of the electron-ion entanglement [61,62].
The spin asymmetry in the relativistic regime of tunnel
ionization from p states was explored in [63].

In this paper we investigate the dependence of spin effects
during tunnel ionization on the polarization of the laser field.
The spin-resolved differential ionization rates of a highly
charged hydrogenlike ion from the ground state in a strong
laser field of linear and circular polarizations are calculated
using the relativistic Coulomb-corrected SFA (CC-SFA) de-
veloped in paper II (the second paper of this series [64,65]).
Spin asymmetries and spin-flip effect during direct ionization
of an hydrogenlike system are investigated for the peak of
the final momentum distribution. Similarities and differences
of the spin asymmetries and spin-flip effect in the cases of
linear and circular polarizations of a laser field are analyzed.
In addition to the standard relativistic Coulomb-corrected SFA
(S-CC-SFA), we also apply a dressed CC-SFA (D-CC-SFA),
which is based on the use of a nonstandard partition of the
Hamiltonian within the SFA formalism [66,67]. The physical
relevance of the different versions of the SFA formalism is
discussed. While in S-CC-SFA the influence of the laser field
on the electron-spin evolution in the bound state is not taken
into account, it is fully accounted for in D-CC-SFA, which is
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shown to have a decisive impact on the spin effects. Finally,
we provide an intuitive model for the understanding of spin
effects. It incorporates the propagators of the spin states for the
bound and continuum motion and a quasiclassical description
of the tunneling process.

Spin effects in the tunneling regime of ionization emerge
through three steps [58]; spin precession in the bound state,
spin rotation during tunneling, and spin precession during
the electron motion in the continuum. In S-CC-SFA the
spin dynamics in the bound state is completely neglected.
Therefore, in this case the spin effects are determined by the
electron dynamics during tunneling and the motion in the
continuum. Because of the evident asymmetry in the spin
evolution in this picture, relatively large spin effects arise.
However, it is known that the laser field can induce a large
spin precession in the bound state [53,54], which is accounted
for in D-CC-SFA [58,65]. It reduces the asymmetry in the
spin dynamics during ionization and, consequently, leads to a
reduction of spin effects. The analysis based on our intuitive
model shows that the spin asymmetries are a consequence of
the tunneling step.

The plan of the paper is as follows. The spin-resolved
differential ionization rates within the two versions of CC-
SFA (standard and dressed) are calculated in Sec. II. The
bound-state spin dynamics, which is essential for D-CC-SFA,
is investigated in Sec. III. The final momentum distribution
of the tunnel-ionized electron is presented in Sec. IV, which
later is used in the calculation of the spin effects for the
maximal tunneling probability. Analytical formulas for the
spin asymmetries and spin flip in linearly and circularly
polarized laser fields are calculated in Sec. V. An intuitive
model for the spin dynamics is presented in Sec. VI. The
possibilities for an experimental observation of spin effects
are discussed in Sec. VII. Our conclusion is given in Sec. VIII.
Atomic units (a.u.) and the metric convention g = (+,−,−,−)
are used throughout the paper.

II. THE COULOMB-CORRECTED STRONG-FIELD
APPROXIMATION

The Hamiltonian which governs the dynamics of the
laser-induced tunnel ionization from the ground state of a
hydrogenlike ion is given by

H (t) = cα · [ p + AL(x,t)] − A0
L(x,t) + βc2 + V (r), (1)

where the laser field is described by gauge potentials given
in Göppert-Mayer gauge as A

μ

L(x,t) = (A0
L(x,t),cAL(x,t)) =

−x · E(η)(1,k̂), with the wave vector kμ = ω/c(1,k̂), the laser
frequency ω, and the phase η = kμxμ/ω, and the Coulomb
potential V (r) = −κ/r , with κ being the charge of the
hydrogenlike ion, β,α being the Dirac matrices, and c being
the speed of light.

The transition amplitude between the initial state |�s
i (t)〉

with the magnetic spin quantum number s and the final state
|�s ′

f (t)〉 with the number s ′ can be written as

Ms→s ′ = (S − 1)s→s ′ = −i

∫ ∞

−∞
dt
〈
�s ′

f (t)
∣∣Hint(t)

∣∣�s
i (t)
〉
, (2)

with the interaction Hamiltonian Hint(t). The S-matrix treat-
ment is exact as far as it incorporates the exact final state

|�s ′
f (t)〉, which is the exact solution of the Schrödinger

equation,

i
d|�s ′

f (t)〉
dt

= H (t)|�s ′
f (t)〉. (3)

The initial state, in its turn, fulfills the following equation:

i
d|�s

i (t)〉
dt

= [H (t) − Hint(t)]|�s
i (t)〉. (4)

In the SFA, the exact final state |�s ′
f (t)〉 in the transition

amplitude (2) is approximated by the Volkov state [68], whose
wave function in the Göppert-Mayer gauge reads

�s ′
V (x,t) = exp (iS + i A · x)

[
1 + 1

2cλ
(1 + k̂ · α)A · α

]
vs ′ ,

(5)
with the Volkov action

S = −px − 1

λ

∫ η

−∞
dη′
[

A(η′) · p + A(η′)2

2

]
(6)

and the free particle spinor

vs ′ =
√

ε + c2

2ε

(
χs ′

c
ε+c2 p · σχs ′

)
. (7)

Here ε =
√

c4 + c2 p2 is the electron energy, λ = ε/c2 − p ·
k̂/c is the integral of motion for the electron in a plane-wave
field, A(η) ≡ − ∫ η

−∞ E(η′)dη′, and χ+ = (1 0)T and χ− =
(0 1)T are the two component spinors. Note that the Volkov
wave function in the Göppert-Mayer gauge is obtained by
first solving the Dirac equation in the velocity gauge Aμ(η) =
(0,cA(η)) and then applying a gauge transformation with the
gauge function A(η) · x.

In this approximation, the transition amplitude neglects the
effect of the Coulomb potential on the electron dynamics in
the continuum as well as the influence of the laser field on the
bound-state dynamics. To account for the Coulomb potential
on the electron dynamics in the continuum, the relativistic
CC-SFA was developed in paper II [65]. Rather than the Volkov
solution for the continuum electron �s ′

V (x,t), CC-SFA employs
the wave function of the electron in the laser and Coulomb
fields in the eikonal approximation [69–73], which is given by
[see Eq. (29) in paper II]

�s ′
C (x,t) = �s ′

V (x,t) exp [iSc(x,η)] , (8)

where

Sc(x,η) =
∫ ∞

η

dη′ ε(η′)
c2λ

V [x(η′)], (9)

with the relativistic trajectory of the electron in the laser field
x(η′) = x + ∫ η′

η
dη′′ p(η′′)/λ and the energy momentum of the

electron in the laser field

p(η) = p + A(η) + k̂
[ p + A(η)/2] · A(η)

cλ
, (10)

ε(η) = ε + [ p + A(η)/2] · A(η)

λ
, (11)

where we have used Eqs. (A10) and (A11) of the Appendix and
define the final values of the physical variables as p ≡ p(ηf ),
ε ≡ ε(ηf ), and A(ηf ) = 0.
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Thus, the transition amplitude for the strong-field ionization
in CC-SFA reads

Ms→s ′ = −i

∫ ∞

−∞
dt
〈
�s ′

C (t)
∣∣Hint(t)

∣∣�s
i (t)
〉
. (12)

Accordingly, the spin-resolved differential ionization rate for
a certain spin transition can be defined as

dWs→s ′

d3 p
= ω

π
|Ms→s ′ |2, (13)

where the rate is averaged over a laser half cycle.
In contrast to the exact S-matrix treatment, the results

of the SFA calculation depend on the partition of the full
Hamiltonian [66], i.e., on the identification of the interac-
tion Hamiltonian Hint(t). In the next sections we specify
two different choices of interaction Hamiltonians, which yield
different SFA approaches. We calculate the spin-resolved
differential ionization rates in these two approaches and later
discuss their physical relevance.

We calculate the ionization rates in linearly as well as
circularly polarized laser fields. In the velocity gauge, the
vector potential of the laser field can be written as

A(η) = E0

ω
[sin(ωη)x̂ − ζ cos(ωη) ŷ] , (14)

which yields the corresponding electric and magnetic fields

E(η) = −E0 [cos(ωη)x̂ + ζ sin(ωη) ŷ] , (15)

B(η) = E0 [ζ sin(ωη)x̂ − cos(ωη) ŷ] , (16)

respectively, with the laser-field amplitude E0 and the polar-
ization parameter ζ , such that ζ = 0 corresponds to linear and
ζ = 1 is for circular polarization of the laser field. Further,
we specify the propagation direction as k̂ = ẑ, which implies
η = t − z/c.

A. Standard CC-SFA

In S-CC-SFA, the total Hamiltonian is partitioned as
follows:

H (t) = Hs
0 + Hs

int(t), (17)

Hs
0 = cα · p + βc2 + V (r), (18)

Hs
int(t) = x · E(1 − α · k̂). (19)

In this partition, the initial state, fulfilling Eq. (4), is the
ground state of a hydrogenlike ion |ψs

0 (t)〉, whose position
representation is

ψs
0 (x,t) = κ3/2

√
π

√
2 − Ip/c2


(3 − 2Ip/c2)
(2κr)−Ip/c2

× exp(−κr − iε0t)us, (20)

with the ground-state spinor

us =
(

χs

iIp

cκ
x̂ · σχs

)
, (21)

the ground-state energy ε0 = c2 − Ip, and the ionization
energy Ip = c2 − √

c4 − c2κ2 [74]. Then, after plugging the

eikonal-Volkov (8) as well as the ground-state (20) wave
functions into the transition amplitude and changing the
variables from (t,x) to (η,x), we obtain

Ms→s ′ = N

∫ ∞

−∞
dηeiS̃(η)

∫
d3xe−iq(η)·x−κr+iSc(x,η)

× r−Ip/c2
x · E(η)v†

s ′(1 − α · k̂)us, (22)

with the following contracted action S̃(η) and the relativistic
kinetic momentum q(η):

S̃(η) = 1

λ

∫ η

−∞
dη′
[

A(η′) · p + A(η′)2

2
+ λ(ε − ε0)

]
, (23)

q(η) = p + A(η) − ε − ε0

c
k̂.

(24)

Here the prefactor is

N = −i

√
c2

ε

κ3/2

√
π

√
2 − Ip/c2


(3 − 2Ip/c2)
(2κ)−Ip/c2

. (25)

For the later convenience, we can also write the contracted
action in the form of

S̃(η) = 1

2λ

∫ η

−∞
dη′[q2(η′) + κ2]. (26)

The η integral in Eq. (22) is performed via the saddle-point
approximation (SPA). The saddle-point equation, ˙̃S(ηs) = 0,
yields

q2(ηs) + κ2 = 0. (27)

Because in the SPA contour only the integration region near
the saddle point makes the main contribution to the integral, we
can expand the integrand around the saddle point ηs . However,
since the contracted action induces the saddle point, we expand
it around the saddle point up to the second order,

S̃(η) = S̃(ηs) + ¨̃S(ηs)(η − ηs)
2/2. (28)

Furthermore, in order to avoid any singularity due to the
saddle-point equation (27), we expand the momentum up to
the first order,

q(η) = q(ηs) + q̇(ηs)(η − ηs). (29)

In the remaining phase-dependent functions we may just re-
place η with ηs . Afterwards, the transition amplitude becomes

Ms→s ′ =N

∫ ∞

−∞
dη exp[iS̃(ηs) + i ¨̃S(ηs)(η − ηs)

2/2]

×
∫

d3xe−iq(η)·x−κr+iSc(x,ηs )r−Ip/c2

× x · E(ηs)v
†
s ′ (1 − α · k̂)us, (30)

where the Coulomb correction factor arises [see Eq. (57) in
paper II]

Qr ≡ exp [iSc(x,ηs)]

= exp

(
2Ip

c2

)(
1 − Ip

6c2

)[
− x · E(ηs)

4Ip

]Ip/c2−1

. (31)
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Furthermore, using the fact that x · Ê/r ∼ 1 (see Ref. [65]),
the transition amplitude reads

Ms→s ′ = Ne2Ip/c2

(
1 − Ip

6c2

)
(−4Ip)1−Ip/c2

∫ ∞

−∞
dη

× eiS̃(ηs )+i ¨̃S(ηs )(η−ηs )2/2

|E(ηs)|−Ip/c2 J0(η)v†
s ′(1 − α · k̂)ũs(η),

(32)

where

ũs(η) =
(

χs

iIp

cκ

J1(η)·σ
J0(η) χs

)
, (33)

with

J0(η) =
∫

d3x exp [−iq(η) · x − κr] , (34)

J1(η) · σ =
∫

d3x exp [−iq(η) · x − κr] x̂ · σ . (35)

With the help of the plane-wave expansion, these space
integrals can be calculated exactly as

J0(η) = 8πκ

[q(η)2 + κ2]2
, (36)

J1(η) · σ = − i8π

[q(η)2 + κ2]2
q(η) · σ . (37)

Then, the transition amplitude reads

Ms→s ′ = Ne2Ip/c2

(
1 − Ip

6c2

)
(−4Ip)1−Ip/c2

8πκ

×
∫ ∞

−∞
dη

eiS̃(ηs )+i ¨̃S(ηs )(η−ηs )2/2|E(ηs)|Ip/c2

4 [q(ηs) · q̇(ηs)]2 (η − ηs)2

× v
†
s ′ (1 − α · k̂)ũs(η). (38)

As a final step, we can evaluate the η integral. The preexpo-
nential integrand has a singularity at the saddle point because
of the saddle-point condition, Eq. (27). Therefore, we evaluate
the integral by following the modified SPA [75]. The bispinor
ũs(η), on the other hand, reads

ũs(ηs) =
(

χs

iIp

cκ
q̂(ηs) · σχs

)
, (39)

where we have used q(ηs) = iκ . Finally, the transition ampli-
tude can be written as

Ms→s ′ = Ñ
exp[iS̃(ηs)]

[q(ηs) · E(ηs)]3/2

|E(ηs)|Ip/c2

√
λ

× v
†
s ′ (1 − α · k̂)ũs(ηs), (40)

with Ñ ≡ iN (2πi)3/2κe2Ip/c2
(1 − Ip

6c2 )(−4Ip)1−Ip/c2
.

In order to evaluate the transition amplitude for any
spin-quantization axis, we can use the rotation operator D
after fixing the representation. Namely, we can choose the
representation of the γ matrices in the z basis and specify the
two-component spinor χs in Eq. (7) as well as in Eq. (21)

FIG. 1. Spin states along an arbitrary quantization axis can be
obtained by imposing the rotation operator on the initial spin states
whose quantization axis is along z. The rotation is defined by angles
(θ,φ). The configuration of the laser fields at the instant of ionization
is specified.

along the z direction. Then the spin states along an arbitrary
quantization axis can be written as

|�s〉 =
∑
s ′

Ds ′s(θ,φ)
∣∣�s ′

z

〉
, (41)

where |�s
z 〉 is the state whose spin-quantization direction is

the z axis and Dss ′ (θ,φ) is the Wigner D matrix, which can be
defined as

Ds ′s(θ,φ) =
(

cos
(

θ
2

)
e−iφ sin

(
θ
2

)
eiφ sin

(
θ
2

) − cos
(

θ
2

)
)

, (42)

with the spherical coordinates θ and φ; see Fig. 1. In other
words, the rotated states expressed in terms of the z basis read

|�+〉 = cos

(
θ

2

)
|�+

z 〉 + eiφ sin

(
θ

2

)
|�−

z 〉, (43a)

|�−〉 = e−iφ sin

(
θ

2

)
|�+

z 〉 − cos

(
θ

2

)
|�−

z 〉. (43b)

As a result, the transition amplitude valid for any spin-
quantization axis can be written as

Ms→s ′ =
∑
i,j

D∗
js ′M

z
i→jDis , (44)

with Mz
i→f being the transition amplitude when the spin-

quantization axis is chosen along the z axis. Furthermore,
the spin-resolved differential ionization rate for an arbitrary
spin-quantization axis can be found via

dWs→s ′

d3 p
= ω

π

⎛
⎝∑

i,j,k,l

D∗
js ′Dls ′Mz

i→jM
z∗
k→lDisD∗

ks

⎞
⎠ . (45)

B. Dressed CC-SFA

Although S-CC-SFA improves the results in comparison to
the usual SFA via the Coulomb correction to the continuum
electron wave function, it neglects the influence of the laser
field on the bound state. Because of that, the electron-spin
dynamics in the bound state is completely neglected and the
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electron spin in the tunneling bound state is the same as in
the initial state before the interaction with the laser field. In
this case, the spin effects are determined solely by the electron
dynamics during the tunneling and during the motion in the
continuum. Due to the evident asymmetry in the spin evolution
in this picture (frozen spin in the bound state, rotating spin in
the tunneling, and oscillating spin in the continuum), relatively
large spin effects arise. On the other hand, it is well known
that the laser field can induce a significant spin dynamics in
the bound state [53]. Moreover, the Zeeman splitting of bound-
state levels can have an impact on the tunneling probabilities,
in this way modifying the spin effects [76]. Therefore, it is
important to take into account the laser-field influence on the
spin evolution in the bound state when calculating spin effects
in the ionization process.

With this motivation, we employ D-CC-SFA (see paper II),
which is based on a specific partition of the Hamiltonian, in
which the bound-state dynamics in the laser field is accounted
for. In D-CC-SFA the total Hamiltonian is split up as follows:

H (t) = Hd
0 (t) + Hd

int(t), (46)

Hd
0 (t) = cα · p + βc2 + V (r) − [x · E(η)](α · k̂), (47)

Hd
int(t) = x · E(η). (48)

In this case the SFA transition amplitude reads

Ms→s ′ = −i

∫ ∞

−∞
dt

∫
d3x�s ′

C

†
(x,t)(x · E)�s

0(x,t), (49)

where the so-called dressed ground state satisfies the following
equation:

i
d
∣∣�s

0(t)
〉

dt
= Hd

0 (t)
∣∣�s

0(t)
〉
. (50)

This equation includes the spin precession in the bound state
induced by the laser field.

The Schrödinger equation for the dressed bound state
(50) cannot be solved analytically in an exact way and,
therefore, several approximations are applied. Since the typical
dimension of the atomic bound state is much smaller than the
wavelength of the laser, we apply the dipole approximation
for treating the dressed bound-state dynamics, i.e., η → t .
Furthermore, we are concerned mostly by the electron-spin
precession in the bound state; consequently, we consider only
transitions in the subspace of spin states and describe the
dressed ground state with the ansatz∣∣�s

0(t)
〉 =∑

s ′
Css ′

(t)|ψs ′
0 (t)〉, (51)

where |ψs ′
0 (t)〉 is the ground-state wave function whose

position representation is given by Eq. (20). According to
the wave equation (50), the coefficients Css ′

(t) satisfy the
differential equation

iĊss ′′
(t) =

∑
s ′

Css ′
(t)〈ψs ′′

0 (t)|H1(t)|ψs ′
0 (t)〉, (52)

where H1(t) = −E(t) · xα · k̂. When the spin-quantization
direction is the z axis, the value of the matrix elements can

be written as

〈ψ+
0 (t)|H1(t)|ψ+

0 (t)〉 = 〈ψ−
0 (t)|H1(t)|ψ−

0 (t)〉 = 0, (53a)

〈ψ+
0 (t)|H1(t)|ψ−

0 (t)〉 = 〈ψ−
0 (t)|H1(t)|ψ+

0 (t)〉∗

= i
iEy(t) − Ex(t)

2c
δ, (53b)

where δ ≡ 1 − 2Ip/(3c2). Thus, we obtain the coupled differ-
ential equations

Ċ+±(t) = C+∓(t)F∓(t), (54a)

Ċ−±(t) = C−∓(t)F∓(t), (54b)

with

F±(t) = iEy(t) ± Ex(t)

2c/δ
. (55)

We underline that the matrix element (49) will be calculated
by SPA, and hence it will be evaluated at the saddle point ηs =
ηr + iηi with real ηr and ηi . Furthermore, the imaginary part
of the saddle point is connected with the Keldysh parameter
γ = ω

√
2Ip/E0, and in the tunneling regime, when γ � 1,

it is small with respect to the laser period: |ωηi | ∼ γ � 1.
Therefore, once we provide the coefficients Css ′

(tr ), a simple
approximate solution of the bound-state wave function at ts
can be found exploiting the shortness of this time propagation
from tr . However, the investigation of Css ′

(tr ) requires the
exact solution of Eq. (54), which for linear and circular
polarizations of the laser field are discussed in Sec. III. For
a latter convenience, which become clear in Sec. IV, we refer
to tr as the instant of ionization, and we call the propagation
from tr to ts the under-the-barrier propagation.

In order to investigate solely the propagation from tr to ts ,
we first convert these differential equations to Volterra integral
equations of the second kind, which for the time propagation
after t = tr can be written as

C+±(t) = C+±
0 + C+∓

0

∫ t

tr

dsF∓(s)

+
∫ t

tr

dsC+±(s)F∓(s)
∫ t

s

dτF±(τ ), (56a)

C−±(t) = C−±
0 + C−∓

0

∫ t

tr

dsF∓(s)

+
∫ t

tr

dsC−±(s)F∓(s)
∫ t

s

dτF±(τ ), (56b)

where Css ′
0 ≡ Css ′

(tr ). For calculation of the maximal tun-
neling probability, we choose tr = 0, which corresponds to
the electric field maximum; see Eq. (15). Then, introducing
the dimensionless parameter ϕ ≡ ωt , we arrive at the integral
equation

Css ′
(ϕ) = f ss ′

(ϕ) + 1

4
δ2ξ 2
∫ ϕ

0
duKss ′

(ϕ,u)Css ′
(u), (57)

with the relativistic invariant field parameter ξ ≡ E0/(cω).
Here the integral Kernels are given by

K±+(ϕ,u) = K±−∗(ϕ,u) = [cos(u) + iζ sin(u)]

× {iζ [cos(u) − cos(ϕ)] + sin(u) − sin(ϕ)} ,

(58)
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and the functions f ss ′
(t) are

f +±(ϕ) = C+±
0 + C+∓

0

δξ

2
{iζ [cos(ϕ) − 1] ± sin(ϕ)} ,

(59a)
f −±(ϕ) = C−±

0 + C−∓
0

δξ

2
{iζ [cos(ϕ) − 1] ± sin(ϕ)} .

(59b)

The formal solution to the integral equation (57) can be
given by the iterative method [77]. Although in weak laser
fields, ξ � 1, a few iterations would give an accurate result,
for the strong fields, ξ 
 1, generally, one has to deal with
the infinite sum of iterations. Nevertheless, we consider a very
short time propagation ϕi = ωti � 1. Moreover, we observe
from Eqs. (57)–(59) that the effective time parameter scales
as ξδϕi , which can be estimated as ξδγ ∼ √Ip/c � 1 and it
is small. Therefore, the solution of the integral equation (57)
for the considered small time propagation can be represented
by the leading iteration term even for strong fields. The
first iteration, which leads already to terms of the order of
(Ip/c2)3/2, is given by the following expressions:

C+±(ϕ) = C+±
0 ± C+∓

0

2
δξϕ − 1

8
[2iC+∓

0 δξζ + C+±
0 δ2ξ 2]ϕ2

∓ 1

48
[4C+∓

0 δξ − 2iC+±
0 δ2ξ 2ζ + C+∓

0 δ3ξ 3]ϕ3,

(60a)

C−±(ϕ) = C−±
0 ± C−∓

0

2
δξϕ − 1

8
[2iC−∓

0 δξζ + C−±
0 δ2ξ 2]ϕ2

∓ 1

48
[4C−∓

0 δξ − 2iC−±
0 δ2ξ 2ζ + C−∓

0 δ3ξ 3]ϕ3.

(60b)

Furthermore, the coefficients (60) can be represented as

Css ′
(ϕ) = �(ϕ,0)Css ′

0 , (61)

with the transformation matrix

�(ϕ,0) =

⎛
⎜⎜⎜⎜⎝

1 − 1
8δ2ξ 2ϕ2 1

2δξϕ − 1
4 iδζ ξϕ2

+ 1
24 iδ2ζ ξ 2ϕ3 −( 1

48δ3ξ 3 + 1
12δξ
)
ϕ3

− 1
2δξϕ − 1

4 iδζ ξϕ2 1 − 1
8δ2ξ 2ϕ2

+( 1
48δ3ξ 3 + 1

12δξ
)
ϕ3 − 1

24 iδ2ζ ξ 2ϕ3

⎞
⎟⎟⎟⎟⎠.

(62)
In this way we separate the propagation of the spin states
through the imaginary-time axis from the states at the instant
of ionization.

Then following the same procedure as in the case of S-CC-
SFA, the transition amplitude in D-CC-SFA for the case when
the spin-quantization direction is the z direction can be written
as

Mz
s→s ′ = Ñ

exp[iS̃(ηs)]

[q(ηs) · E(ηs)]3/2

|E(ηs)|Ip/c2

√
λ

v
z†
s ′

×
[

1 + 1

2cλ
α · A(ηs)(1 + α · k̂)

]∑
s ′′

Css ′′
0 Uz

s ′′ (ηs),

(63)

with

Uz
±(ηs) =

[
1 − 1

8
δ2ξ 2(ωηs)

2 ± 1

24
iδ2ζ ξ 2(ωηs)

3

]
ũz

±(ηs)

∓
[

1

2
δξ (ωηs) ± 1

4
iδζ ξ (ωηs)

2

−
(

δ3ξ 3

48
+ δξ

12

)
(ωηs)

3

]
ũz

∓(ηs),

where we first recover η by t → η, and then η → ηs for the
saddle-point integration.

The transition amplitude as well as the differential ioniza-
tion rate for any spin-quantization axis can be defined via Eqs.
(44) and (45), respectively.

III. SPIN DYNAMICS IN THE BOUND STATE

The spin-resolved-ionization amplitudes in D-CC-SFA,
given by Eq. (63), depend on the coefficients Css ′

0 , which
describe the spin precession in the bound state when the
quantization axis is along the laser propagation direction and
are evaluated at the ionization time tr = 0. These coefficients
are found from the solution of the system of differential
equations (54) with the boundary conditions

lim
E0→0

C±±(t) = 1, (64a)

lim
E0→0

C±∓(t) = 0, (64b)

describing the initial spin state of the atom when the laser field
is switched off adiabatically.

A. Circular polarization

In the case of circular polarization, the solution of Eq. (54),
which satisfies the boundary conditions (64), is

C±±
circ (t) = (1 +

√
1 + δ2ξ 2) exp

[∓ 1
2 itω(1 −

√
1 + δ2ξ 2)

]
√

δ2ξ 2 + (1 +
√

1 + δ2ξ 2)2
,

(65a)

C±∓
circ (t) = iδξ exp

[∓ 1
2 itω(1 +

√
1 + δ2ξ 2)

]
√

δ2ξ 2 + (1 +
√

1 + δ2ξ 2)2
. (65b)

The maximum of the ionization probability is at the instant
of ionization tr = 0 [see Eq. (15)], at which the coefficients
yield

C++
circ (tr = 0) = C−−

circ (tr = 0) = 1 +
√

1 + δ2ξ 2√
δ2ξ 2 + (1 +

√
1 + δ2ξ 2)2

,

(66a)

C+−
circ (tr = 0) = C−+

circ (tr = 0) = iδξ√
δ2ξ 2 + (1 +

√
1 + δ2ξ 2)2

.

(66b)
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In the weak-field limit, ξ � 1, one has the asymptotics

C++(tr = 0) = C−−(tr = 0) = 1 − 1

8
ξ 2δ2, ξ � 1, (67a)

C+−(tr = 0) = C−+(tr = 0) = i

2
δξ − 3i

16
δ3ξ 3, ξ � 1,

(67b)

while in the strong-field regime, ξ 
 1,

C++
circ (tr = 0) = C−−

circ (tr = 0) = 1√
2
, ξ 
 1, (68a)

C+−
circ (tr = 0) = C−+

circ (tr = 0) = i√
2
, ξ 
 1. (68b)

We observe from the solution (65) that the spin oscillates
over time with the frequency ω(1 ±

√
1 + δ2ξ 2)/2. While

for weak fields it oscillates around the value at tr = 0 (67)
with the laser’s frequency ω, for strong fields the spin state
does a full oscillation between the up and the down states
with a large frequency δξω/2. As the coefficients Css ′

circ(tr )
and, accordingly, the spin-resolved-ionization probability
oscillate with respect to the ionization time tr , instead of
Eq. (13), it is physically more appropriate to consider the
time-averaged-ionization rate as

Ws→s ′ ≡ 〈|Ms→s ′ |2〉 = 1

T

∫ T/2

T/2
dtr |Ms→s ′ |2, (69)

which, in fact, corresponds to the averaging over the photoelec-
tron momentum, because there is a mapping between the final
momentum and the instant of ionization via the saddle-point
equation. Choosing the interval of the time averaging T much
smaller than the laser half period T0 = π/ω, one can still relate
the averaged ionization probability to the maximum of the
momentum distribution of the tunneling electron. In the weak-
field regime the averaging result coincides with the instanta-
neous one with an accuracy of the order of T/T0 (T/T0 � 1).

From Eq. (63) one can see that the spin-dependent part of
the transition amplitude in the case of D-CC-SFA is determined
by the factor

Sz
s→s ′ ≡ V

z†
s ′ (η′

s)
∑
s ′′

Css ′′
(tr )Uz

s ′′ (η′
s), (70)

with

V
z†
s ′ (η′

s) ≡ v
z†
s ′

[
1 + 1

2cλ
α · A(η′

s)(1 + α · k̂)

]
. (71)

Here we did the replacement Css ′′
0 → Css ′′

(tr ) as well as η′
s →

tr + ηs in order to investigate effect of an arbitrary instant of
ionization tr . Note that as the rest of the terms in the transition
amplitude oscillate with the frequency ω, we omit them. Then
the averaged differential ionization rate contains the factors〈∣∣Szcirc

s→s ′
∣∣2〉

= 〈∣∣S̃z
+→s ′ (η′

s)C
s+
circ(tr ) + S̃z

−→s ′ (η′
s)C

s−
circ(tr )

∣∣2〉
= ∣∣S̃z

+→s ′ (ηs)
∣∣2〈∣∣Cs+

circ(tr )
∣∣2〉+ ∣∣S̃z

−→s ′ (ηs)
∣∣2〈∣∣Cs−

circ(tr )
∣∣2〉

+ S̃z
+→s ′ (ηs)S̃z∗

−→s ′ (ηs)
〈
Cs+

circ(tr )Cs−
circ

∗(tr )
〉

+ S̃z
−→s ′ (ηs)S̃z∗

+→s ′ (ηs)
〈
Cs−

circ(tr )Cs+
circ

∗(tr )
〉
, (72)

with S̃z
s→s ′ (η′

s) ≡ V
z†
s ′ (η′

s)U
z
s (η′

s). Here the slow oscillating
functions S̃z

s→s ′ (ηs) with respect to the averaging time T are
taken out from the averaging. From Eq. (65) one can see
that the mean values |Cs±

circ(tr )|2 are time independent, and
the frequency of the oscillations of Cs±

circ(tr )Cs∓
circ

∗(tr ) is ω.
Therefore, the averaged probability over the time T � T0 will
coincide with the instantaneous value〈∣∣Szcirc

s→s ′
∣∣2〉 = ∣∣Szcirc

s→s ′ (tr = 0)
∣∣2. (73)

However, this particular choice of the spin-quantization
axis, which is along the laser propagation direction, is very
special in the circular polarization case. When the quanti-
zation axis is arbitrary, the rate is a linear combination of
Cs1s2

circ (tr )Cs3s4
circ

∗(tr ) with arbitrary values of si because

〈∣∣Scirc
s→s ′
∣∣2〉 =

〈∑
i,j,k,l

D∗
js ′Dls ′DisD∗

ks

× [S̃z
+→j (η′

s)C
i+
circ(tr ) + S̃z

−→j (η′
s)C

i−
circ(tr )

]
× [S̃z

+→l(η
′
s)C

k+
circ(tr ) + S̃z

−→l(η
′
s)C

k−
circ(tr )

]∗ 〉
,

which, for instance, contains a term

S̃z
−→j (ηs)S̃z∗

+→l(ηs)〈C+−
circ (tr )C−+

circ
∗(tr )〉. (74)

The term C+−
circ (tr )C−+

circ
∗(tr ) oscillates with the frequency

ξδω for strong fields, and its mean value is vanishing
〈C+−

circ (tr )C−+
circ

∗(tr )〉 = 0 when the averaging period fulfills the
condition

1

δξω
� T � T0. (75)

Note that the former condition 1/(δξω) � T is introduced in
order to obtain T independent results. Then we observe that
the instantaneous value of this term at tr = 0 is 1/2 in the
strong-field limit, ξ 
 1. Therefore, the averaged probability
will differ from the instantaneous value in those cases when
the direction of quantization axis is chosen other than the laser
propagation direction.

B. Linear polarization

In the case of linear polarization of the laser field, the
solution of Eq. (54), with the boundary conditions according
to Eq. (64), is

C±±
lin (t) = cos

[
1
2δξ sin(ωt)

]
, (76a)

C±∓
lin (t) = ∓ sin

[
1
2δξ sin(ωt)

]
. (76b)

The spin states at the instant of ionization, tr = 0, are

C±±
lin (tr = 0) = 1, (77a)

C±∓
lin (tr = 0) = 0. (77b)

Similar to the circular polarization case, in weak fields
ξ � 1, the spin states oscillate over time around the value at
the instant of ionization tr = 0 with the laser’s frequency,

C±±
lin (t) = 1 − 1

2 [δξ sin(ωt)/2]2 , ξ � 1, (78a)

C±∓
lin (t) = ∓ 1

2δξ sin(ωt), ξ � 1. (78b)
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Consequently, in weak fields ξ � 1 the time-averaged
probability, carried out over the time region given by Eq. (75),
coincides with the instantaneous one.

In strong fields ξ 
 1, the spin oscillates between the
up and down states with the frequency δξω/2. The mean
value of the differential ionization rate for an arbitrary spin-
quantization axis in the linear polarization case includes
the following three factors: 〈cos[ 1

2δξ sin(ωtr )] sin[ 1
2δξ

sin(ωtr )]〉 = 0, 〈cos2[ 1
2δξ sin(ωtr )]〉 = 1/2, and 〈sin2[ 1

2δξ

sin(ωtr )]〉 = 1/2, when the averaging is carried out over the
time region (75). Accordingly, when the quantization axis is
along the z direction, the averaged spin-resolved-ionization
probability in the strong-field limit is determined by the factor〈∣∣Szlin

s→s ′
∣∣2〉 = 1

2

[∣∣S̃z
+→s ′ (ηs)

∣∣2 + ∣∣S̃z
−→s ′ (ηs)

∣∣2], ξ 
 1,

(79)

which does not coincide with the instantaneous value of the
transition probability. The rate for an arbitrary quantization
axis can be calculated in a similar way.

As a summary, the spin-resolved differential ionization
rate corresponding to the maximum of the photoelectron
momentum distribution is well defined in the case of weak
fields and corresponds to the instantaneous ionization rate at
the peak of the laser field. In strong laser fields, the spin-
resolved-ionization rate is highly oscillating with respect to the
ionization time; therefore, it is physically relevant to average
the rate over a period fulfilling the condition (75), which
still allows us to assign the maximum of the photoelectron
momentum distribution.

IV. FINAL MOMENTUM DISTRIBUTION OF THE
TUNNEL-IONIZED ELECTRON

We are concerned with the spin-resolved-ionization prob-
abilities corresponding to the maximum of the momentum
distribution of photoelectrons. In this section we derive the
momentum distribution of the directly ionized electrons,
taking into account the relativistic corrections during the
under-the-barrier motion (∼Ip/c2) as well as the nonadiabatic
corrections (∼γ 2). The momentum corresponding to the
maximum of this distribution is used in the next section for the
evaluation of the spin asymmetries as well as for the spin flip.

In SFA the dominating part of the ionization probability is
given by the tunneling exponent

W ∼ | exp[iS̃( p,ηs( p))]|2, (80)

where the exponent depends on the final momentum p as
well as the saddle point ηs = ηr + iηi . Furthermore, via the
saddle-point equation q(ηs)2 = −κ2, the momentum and the
saddle point are connected to each other so that the exponent
is a function of the final momentum. In other words, each
saddle point corresponds to a different momentum for the
tunnel-ionized electron. In order to find the momentum that
maximizes the ionization probability, we first note that in the
quasistatic tunnel-ionization regime (γ � 1) the tunneling
probability is maximal when the electric field reaches the
maximum at the real part of the saddle point, i.e., when

|E(ηr )| = E0. (81)

Then, taking into account Eqs. (15) and (16), we find ηr = 0,
and

E(ηr ) = −E0 x̂, (82)

B(ηr ) = −E0 ŷ, (83)

A(ηr ) = −E0

ω
ζ ŷ. (84)

Note that for a circularly polarized field, the condition (81) is
fulfilled at any point. Nevertheless, in order to generalize the
result to an arbitrary polarization, we set ηr = 0. This condition
further implies that the most probable tunneling is along the
direction that points toward the maximal electric field. Within
this conclusion, the saddle-point equation (27) reads

κ2 + c2(1 − λ − Ip/c2)2 +
[
py − E0ζ cosh(ωηi)

ω

]2

+
[
px + i

E0 sinh(ωηi)

ω

]2

= 0. (85)

For a real ηi , Eq. (85) can only be fulfilled if

px = 0; (86)

i.e., the final momentum along the tunneling direction of the
tunnel-ionized electron should vanish. Correspondingly, the
contracted action (26) can be written as

S̃(ηs) = E2
0(ζ 2 − 1) [sin(2ωηs) − 2ωηs cos(2ωηs)]

8λω3

− 8E0pyζω [sin(ωηs) − ωηs cos(ωηs)]

8λω3
. (87)

Further, instead of maximizing the tunneling probability
by the final momentum p ≡ p(ηf ), we maximize it by the
momentum p(ηr ). The moment ηr can be called the instant
of ionization, at which the electron leaves the bound state
and starts the continuum motion, and p(ηr ) can be called the
momentum at the tunnel exit because the electron momentum
p(η) becomes real and has a vanishing value at η = ηr , while
being imaginary in the interval (ηs,ηr ) [78]. Therefore, the
final momentum in terms of the momentum at the tunnel exit
can be given by

p = p(ηr ) − A(ηr ) − k̂
λc

[
p(ηr ) − A(ηr )

2

]
· A(ηr ), (88)

where we have used Eq. (A10) in the Appendix and the fact
that A(ηf ) = 0. Taking into account Eqs. (84) and (86), the
relation (88) yields

px = px(ηr ) = 0, (89a)

py = py(ηr ) + ζE0

ω
, (89b)

pz = pz(ηr ) + 1

λc

ζE0

ω

[
py(ηr ) + ζE0

2ω

]
. (89c)

We observe that the initial momentum along the tunneling
direction at the tunnel exit, px(ηr ), vanishes, which validates
that ηr is the tunnel exit point, i.e., the turning point, where
the classical particle has a vanishing velocity.
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Next we express the constant of motion λ via
(py(ηr ),pz(ηr )) as

λ = 1

c
{
√

c2 + [py(ηr )2 + pz(ηr )2] − pz(ηr )}

≈ 1 − pz(ηr )

c
, (90)

where we neglect py(ηr )2/c2 and pz(ηr )2/c2, which are of
the orders of (E0/Ea)(2Ip/c2). [The latter follows from the
fact that the width of the transverse momentum distribution
at tunnel ionization is

√
E0/(2Ip)1/4 [16]. Note that in

the tunneling regime E0/Ea � 1/10, with the atomic-field
strength Ea = (2Ip)3/2]. Using the λ value, the contracted
action (87) reads

S̃(ηs) = −E0[E0 + ζωpy(ηr )]

3[1 − pz(ηr )/c]
η3

s , (91)

where we expand the action (87) up to nonvanishing order in
ηs taking into account that |ωηs | ∼ γ � 1. At the same order,
the saddle point is calculated as

ηs = i

√
py(ηr )2 + pz(ηr )2 + 2Ip[1 − pz(ηr )/c]

E0[E0 + ζpy(ηr )ω]
. (92)

Finally, we can identify the momentum which maximizes the
tunneling probability via the condition

∂S̃

∂ p⊥(ηr )
= 0, (93)

with p⊥(ηr ) = (py(ηr ),pz(ηr )). The condition yields the fol-
lowing two equations:

apy(ηr )2 − 2pz(ηr )2 − Ip + cpz(ηr )(3 + Ip/c2) = 0,

(94a)

6E0py(ηr ) + ζω

{
5py(ηr )2 − pz(ηr )2 − 2Ip

[
1 − pz(ηr )

c

]}
= 0. (94b)

Up to the leading order in Ip/c2, the solution of Eq. (94) can
be given by

pz(ηr ) = Ip

3c
, (95a)

py(ηr ) = ζωIp

3E0
. (95b)

As a summary, the final momentum yielding the maximal
tunneling probability, with Eq. (89), can be written as

px = 0, (96a)

py = ζE0

ω

(
1 + γ 2

6

)
, (96b)

pz = Ip

3c
+ p2

y

2c

(
1 + Ip

3c2

)
, (96c)

the validity of which is illustrated in Fig. 2, where the final
momentum distribution is calculated numerically via Eq. (80).
We emphasize that the momentum distribution (96) is valid

FIG. 2. (Color online) Ionization probability calculated numeri-
cally via Eq. (80) versus the final transverse momentum. The final
momentum is defined as pf ⊥ ≡ p⊥(1 + δ p⊥ ), with p⊥ given by
Eq. (96b), and Eq. (96c) and δ p⊥ being the dimensionless deviation.
The applied parameters are κ = 50, ω = 1, ζ = 0.5, E0/Ea = 1/30.
Note that we set ω = 1 instead of ω = 0.05, which is a typical
parameter for tunnel ionization, in order to confirm that the derived
analytical results are valid in a nonadiabatic regime as well.

also for an arbitrarily elliptical polarization with an ellipticity
0 � ζ � 1.

Furthermore, by using the final momentum (96), we
can write the saddle point, which maximizes the tunneling
probability, as

ηs = i

√
2Ip

E0

[
1 − 5Ip

36c2
+ γ 2

18
(ζ 2 − 3)

]
, (97)

where Ip/c2 expansion is applied. Accordingly, the maximal
probability is derived from Eq. (80) can be found as

W ∼ | exp[iS̃(ηs)]|2

≈ exp

{
−2Ea

3E0

[
1 − Ip

12c2
+ γ 2

30
(ζ 2 − 3)

]}
. (98)

Here we should note that the initial transverse momentum
given by Eq. (95) arises during the classically forbidden under-
the-barrier dynamics in tunnel-ionization. The momentum
along the laser propagation direction Ip/(3c) is a relativistic
signature of the process [78], whereas the momentum along the
direction of the laser’s magnetic field at the instant of ionization
ζE0γ

2/(6ω), which depends on the laser polarization, is
induced due to the nonadiabaticity of the ionization and it is
significant at large Keldysh parameters γ [79,80]. In addition
to the SFA prediction, there exists also an initial nonvanishing
momentum along the tunneling direction for the most probable
trajectory if one goes beyond the quasiclassical description of
tunneling and defines a tunneling time delay [81].

In the following sections, we discuss the spin dynamics in
the tunneling regime, γ � 1; consequently, we omit the γ 2

terms in Eqs. (96)–(98) in the corresponding calculations.
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V. SPIN ASYMMETRIES AND SPIN FLIP

In order to investigate the spin dynamics we consider the
following physically relevant choices of the spin-quantization
axis: along the laser propagation direction, along the direction
of the laser electric field, and along the laser magnetic field at
the instant of ionization.

Concerning the spin asymmetry during ionization, one may
ask two independent questions.

(1) Does the ionization rate depend on the initial spin state
of the bound electron?

(2) Will the electron be polarized after tunnel ionization
from an unpolarized target?

Consequently, we can define two spin-asymmetry parame-
ters. First,

Ai = W+→+ + W+→− − W−→+ − W−→−
WT

, (99)

which measures the asymmetry between the tunneling rates
for initially polarized states, Ws→s ′ is given by Eq. (69), and

WT = W+→+ + W+→− + W−→+ + W−→−
2

(100)

is the total ionization rate averaged by the initial spin states
and summed over the final spin states.

Second, one may define another spin-asymmetry parameter
as

Af = W+→+ + W−→+ − W+→− − W−→−
WT

, (101)

which is a measure of the electron final polarization in the case
of initially unpolarized states [57].

In addition to the asymmetries we provide also the spin-flip
rate

F± = W±→∓
WT

. (102)

The three independent parameters Ai , Af , and F± fully
describe the spin transitions, taking into account the normal-
ization condition (1/2)

∑
s,s ′ Ws→s ′/WT = 1.

To sum up, we have introduced two sets of parameters—
the laser polarization parameter ζ and the spin-quantization
angles θ,φ—in order to investigate analytical results for the
spin effects. The latter are described by three independent
parameters: the initial and final asymmetry parameters and the
spin flip, for which we discuss the weak-field as well as the
strong-field limits in the following section.

A. The S-CC-SFA prediction

Let us first consider predictions of S-CC-SFA, which
neglects the spin dynamics in the bound state. We underline
that due to the latter the results of S-CC-SFA are applicable
for an arbitrary elliptical polarization ζ .

1. The spin-quantization axis is parallel to the
laser propagation direction

When the spin-quantization axis is along the laser prop-
agation direction ẑ, the angles determining the quantization
axis are θ = 0 and φ = 0. In this case we obtain for the
spin-flip relative probability corresponding to the maximum

of the momentum distribution

Fz(s)
± = ζ ξ (ζ ξ/2 ∓ ρ)/2

1 + ζ 2ξ 2/4
+ O(ρ2), (103)

in the leading order of ρ ≡ √2Ip/c2. On the one hand, the
spin flip vanishes for a linearly polarized field for the maximal
tunneling probability. On the other hand, for a nonvanishing
laser’s polarization (ζ �= 0), the spin flip is negligible in
the weak-field regime ξ � 1, Fz(s)

± → 0, whereas S-CC-SFA
predicts almost complete spin flip for strong fields ξ 
 1,
Fz(s)

± → 1.
The initial and the final spin-asymmetry parameters can be

calculated up to the nonvanishing order of ρ as

Az(s)
i = − ζ

2ξ
ρ3, (104)

Az(s)
f = 2ζ ξ

1 + ζ 2ξ 2/4
ρ. (105)

The S-CC-SFA calculations predict a rather large final spin
asymmetry because the parameterAz(s)

f scales linearly with the
parameter ρ, while the initial asymmetry parameter is much
smaller ∼ ρ3. Nevertheless, the spin asymmetries disappear
for the linear polarization case.

We note that on the one hand the relation ρ3/ξ = ρ2γ

indicates that there is no singularity in Eq. (104) in the weak-
field regime (ξ � 1), where ρ � γ � 1. On the other hand,
the relation ρ3/ξ = ω/c2(Ea/E0) indicates that Eq. (104)
vanishes for low frequencies. When neglecting the terms of
the order of ξ 2 in the limit ξ � 1, one has also to neglect the
terms of the order of ρ2, because they are much smaller than
the former by the factor of γ 2 � 1.

2. The spin-quantization axis is perpendicular to the
laser propagation direction

In the case when the spin-quantization axis is perpendicular
to the laser propagation direction, one can align it along the
direction of the electric field or the magnetic field at the instant
of ionization ηr , and for the sake of convenience we consider
the directions opposite to the fields.

When the spin-quantization axis is along the direction of
−Ê(ηr = 0) (θ = π/2,φ = 0; see Fig. 1) [cf. Eq. (82)], the
flip probability is

Fx(s)
± = ρ2

4
, (106)

which is tiny for nonrelativistic (low-charge) ions. Further-
more, the asymmetries are vanishing,

Ax(s)
i = Ax(s)

f = 0. (107)

The results are independent from both the polarization and
intensity parameters at the maximum of the tunneling proba-
bility, tr = 0.

When the quantization axis is along the direction of
−B̂(ηr = 0) (θ = π/2,φ = π/2) [cf. Eq. (83)], the spin flip is

Fy(s)
± = (ζ 2ξ 2/4)(1 ± ρ)

1 + ζ 2ξ 2/4
+ O(ρ2). (108)

While it is insignificant for weak fields, a complete spin flip
occurs in the strong-field regime when ζ �= 0, which is similar
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to Eq. (103). On the other side, the spin asymmetries can be
written as

Ay(s)
i = 2ρ, (109)

Ay(s)
f = 2ρ

1 − ζ 2ξ 2/4

1 + ζ 2ξ 2/4
. (110)

The initial as well as the final asymmetry parameters scale as
ρ. The former is also independent from the polarization as well
as the intensity parameter of the laser field.

B. The D-CC-SFA prediction

In the weak-field regime ξ � 1, as the asymmetries as
well as the spin flip are negligible (smaller by an order of
magnitude than ρ3) for any choice of the quantization axes,
in what follows, we discuss the predictions of the strong-field
limit of D-CC-SFA. Note that in contrast to the S-CC-SFA
case, the polarization parameter is ζ = {0,1} for the D-CC-
SFA case.

1. The spin-quantization axis is parallel to the
laser propagation direction

In this case the spin flip in the strong-field regime (ξ 
 1)
in the leading order of ρ equals

Fz(d)
± = 1

2
± ζ

ρ3

4
, (111)

which is due to the spin fast oscillation in the bound state (see
Sec. VI B for an intuitive description), and it is different than
the prediction of the S-CC-SFA, whose strong-field limit yields
Fz(s)

± → ζ with ζ = {0,1}. Furthermore, there is a correction
at the order of ρ3 for the circular polarization case; see Fig. 5.
The corresponding asymmetries are

Az(d)
i = ζρ3 + O(ξ−1), (112)

Az(d)
f = O(ξ−1). (113)

First, the final spin-asymmetry parameter vanishes for both
linear and circular polarizations. The initial asymmetry pa-
rameter also disappears in the linear polarization case, where
S-CC-SFA and D-CC-SFA agree with each other for strong
fields. However, the D-CC-SFA result for the initial asymmetry
parameter differs from the S-CC-SFA one in the case of
circular polarization, as it increases with increasing charge
of the ion.

2. The spin-quantization axis is perpendicular to the
laser propagation direction

First of all, when we align the spin-quantization axis along
the −Ê(ηr = 0) direction, the spin flip can be calculated as

Fx(d)
± = 1

2 , (114)

which is again a consequence of the bound-state dynamics;
cf. Eq. (106). However, as in the case of S-CC-SFA, the
asymmetries vanish,

Ax(d)
i = Ax(d)

f = O(ξ−1). (115)

In the case where the spin-quantization axis is the −B̂(ηr = 0)
direction, the spin flip is

Fy(d)
± = ζ

2

(
1 ± ρ3

2

)
+ O(ξ−1). (116)

We first notice that the spin flip vanishes for the linear
polarization case. For a circularly polarized field the spin flip
is the same as in the case of the quantization axis along the k̂
direction.

The asymmetries in the D-CC-SFA case are

Ay(d)
i = (1 − ζ )ρ3 + O(ξ−1), (117)

Ay(d)
f = ρ3 − 2ζρ3. (118)

In the previous configuration, Eqs. (112) and (113), both
asymmetries vanish for a linearly polarized field; however, in
this case, both have the same nonvanishing value. Moreover,
we notice for the circular polarization case that when the
spin-quantization axis is rotated from the z axis to the
−B̂(ηr = 0) direction, the initial and the final asymmetry
parameters interchange their roles except a sign difference.
Namely,Az(d)

i = Ay(d)
i = 0 andAz(d)

f = −Ay(d)
i = ρ3.

Comparison of S-CC-SFA and D-CC-SFA for strong fields,
where the spin effects are not negligible, are presented in
Table I in a compact way. Thus, the standard and dressed
SFA give different answers for spin asymmetries and the
question is which result has physical implication. In the next
section we develop an intuitive model for the spin dynamics
in tunnel ionization, which allows us to identify the origin
of the difference between S-CC-SFA and D-CC-SFA and to
recognize the D-CC-SFA result as the physically relevant one.
Note that the same conclusion is reached in [58] from the
comparison of analytical results with numerical simulations in
the case of a linearly polarized laser field.

TABLE I. Spin flip and asymmetries in the strong-field regime ξ 
 1 at the instant of ionization associated with the maximal tunneling
probability in the leading order of the parameter 1/ξ . Comparison of the S-CC-SFA and D-CC-SFA results for different spin-quantization axes
at the leading order in ρ ≡ √2Ip/c; ζ = 0 is for linear and ζ = 1 is for circular polarization of the laser field.

Spin effects for strong fields ξ 
 1

k̂ −Ê(ηr = 0) −B̂(ηr = 0)

SSFA DSFA SSFA DSFA SSFA DSFA

F± ζ 1/2 ± ζρ3/4 ρ2/4 1/2 ζ (1 ± ρ) ζ
(
1/2 ± ρ3/4

)
Ai 0 ζρ3 0 0 2ρ (1 − ζ )ρ3

Af 0 0 0 0 2ρ(1 − 2ζ ) ρ3(1 − 2ζ )
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VI. INTUITIVE MODEL FOR THE SPIN DYNAMICS

In order to reveal the origin of spin effects in tunnel
ionization as well as to recognize the difference between the
standard SFA and the dressed SFA, in this section we present an
intuitive model, which is an analog of the three-step model of
ionization [82], but applied for describing the spin dynamics
in the ionization process. As we show, our intuitive model
captures well the features of the SFA results.

The following simplifications have been made in the
proposed model. First of all, rather than propagation of the
full wave function, the propagation of its corresponding spin
part is considered only, in order to trace the spin dynamics.
Next, to make the model more transparent, we consider
two-component spinors, instead of the Dirac bispinors. Finally,
for the possibility of physical interpretation, we decompose
the complete time propagation of the tunnel-ionized state into
three steps as

U (∞,−∞) = UC(∞,tr )UT (ts ,tr )UB(tr ,−∞), (119)

where UB(tr ,−∞) describes the propagation of the bound
state, UT (ts,tr ) the under-the-barrier dynamics, and UC(∞,tr )
the continuum dynamics; see Fig. 3. Here ts = tr + iti with
an arbitrary instant of ionization tr , and the Keldysh time
ti = √2Ip/E0, which defines how long the electron has to
travel for the width of the tunneling barrier in imaginary time
and determines the tunneling rate.

First, the spin-resolved continuum evolution can be found
via the spin-resolved prefactor of the Volkov wave function (5)
in the following way. The Volkov bispinors in two different
times are connected to each other as[

I + 1

2cλ
(I + k̂ · α)A(t) · α

]
vs

= UC(t,t ′)
[

I + 1

2cλ
(I + k̂ · α)A(t ′) · α

]
vs, (120)

with the identity matrix I. Hence, the continuum time evolution
operator yields

UC(t,t ′) = I + 1

2cλ
(I + k̂ · α)[A(t) − A(t ′)] · α, (121)

FIG. 3. (Color online) The intuitive model for the time evolution
of the initial bound spin state. The propagation can be split up to
three parts: the bound-state, the under-the-barrier, and the continuum
dynamics. The standard SFA (red dashed curve) neglects the former,
whereas the dressed SFA (blue solid curve) takes the laser field into
account in the bound-state dynamics.

FIG. 4. Intuitive description of the spin dynamics under the
barrier can be modeled with a triangular potential barrier. In the
standard SFA case, the spin states of the tunneling particle enter
the barrier with the same energy −Ip and are split during the
under-the-barrier dynamics, whereas in the dressed SFA, first the
energy of the spin state is split due to the Zeeman effect in the bound
state, but later it is compensated by the energy splitting in the
under-the-barrier dynamics.

which reduces to

UC(∞,tr ) = I − 1

2cλ
(I + k̂ · α)A(tr ) · α, (122)

where we use the fact that A(∞) → 0. Moreover, we consider
only the large spin components, therefore, moving from the
bispinor to spinor description, the normalized operator yields

UC(∞,tr ) ≈ I − iξ [sin(ωtr )σy + ζ cos(ωtr )σx]/2√
1 + ξ 2(sin2[ωtr ] + ζ 2 cos2[ωtr ])/4

, (123)

where we further set λ = 1 for the spinor-description consis-
tency.

In order to model the time evolution for the under-the-
barrier dynamics, we first model the barrier formed by the
laser field and the atomic potential by a triangular barrier
depicted in Fig. 4 and then apply the WKB approximation. As
the WKB probability agrees with the SFA probability given
by Eq. (98) at the leading order, the WKB propagator can be
given by exp

(
iS̃
)
. If we further include the spin interaction

Hamiltonian into Eq. (26) heuristically, we may define the
under-the-barrier propagator as

UT (ts,tr ) = exp

{
i

∫ ts

tr

dt

[
q(t)2

2
− ε± + σ · B(t)

2c

]}
,

(124)
with ε± being the energy of the tunneling spin- 1

2 particle,
which is different in the standard and dressed SFA.

Since the bound-state dynamics varies, we investigate it
in a more detailed way for the standard and dressed SFA,
respectively.

A. Standard SFA

In the standard SFA, the influence of the laser field on the
bound state is neglected. Due to the latter, all the results which
we derive are valid also for an arbitrary elliptical polarization.

The evolution of the bound state between two different
times in this case is given by the usual propagator as

UB(t,t ′) = exp[−iε±(t − t ′)] = exp[iIp(t − t ′)], (125)

with the energy of the tunneling bound-state particle ε± =
−Ip, which leads to a trivial phase. Accordingly, as there
is no Zeeman splitting of the energy in the bound state, the
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under-the-barrier propagator reads

UT (ts,tr ) = exp

(
− Ea

3|E(tr )|
)

exp

[
i

∫ ts

tr

dt
σ · B(t)

2c

]
, (126)

where the tunneling exponent arises from the two first terms in
Eq. (124). Furthermore, the spin-resolved term can be written
up to the order O(γ 2), with γ ∼ ω Im[ts], as

i

∫ ts

tr

dt
σ · B(t)

2c
≈ ρ

2
[σy cos(ωtr ) − ζσx sin(ωtr )]. (127)

As a consequence, the final spin state in terms of the
initial spin state |±; ŝ〉 ≡ | ± (−∞); ŝ〉 with an arbitrary spin-
quantization axis ŝ can be written as

|±(∞); ŝ〉 = I − iξ [sin(ωtr )σy + ζ cos(ωtr )σx]/2√
1 + ξ 2(sin2[ωtr ] + ζ 2 cos2[ωtr ])/4

× exp

{
ρ

2
[σy cos(ωtr ) − ζσx sin(ωtr )]

}
|±; ŝ〉,

(128)

where we omit the tunneling probability amplitude for the sake
of simplicity, and the transition amplitude can be given by

Ms→s ′ = 〈s ′| I − iξ [sin(ωtr )σy + ζ cos(ωtr )σx]/2√
1 + ξ 2(sin2[ωtr ] + ζ 2 cos2[ωtr ])/4

× exp

{
ρ

2
[σy cos(ωtr ) − ζσx sin(ωtr )]

}
|s〉. (129)

Let us first consider the case when the spin-quantization
axis is chosen along the z direction. The spin flip can be found
as

Fz(s)
± (tr ) = 1 − 4(2 ± ζ ξρ)

8 + (1 + ζ 2)ξ 2 − (1 − ζ 2)ξ 2 cos(2ωtr )
.

(130)

For the instant associated with the maximal tunneling proba-
bility, tr = 0, we have

Fz(s)
± (0) = ζ ξ (ζ ξ ∓ 2ρ)

4 + ζ 2ξ 2
, (131)

which coincides with the S-CC-SFA result given by Eq. (103).
If we go further in the next orders of ρ, the spin flip at tr = 0
can be written as

Fz(s)
± (0) ≈ (ζ ξ ∓ ρ)2

4 + ζ 2ξ 2
. (132)

Equation (132) shows that both the spin precession in
continuum (the term ∼ ξ ) and the spin-dependent tunneling
probability (the term ∼ ρ) are contributed for the spin-flip
effect. In the case of linear polarization, ζ = 0, Eq. (132) gives
Fz(s)

± (0) ≈ ρ2/4, indicating spin flip only due to the tunneling.
At the same order the spin asymmetries can be given by

Az(s)
i (tr ) = 0, (133)

Az(s)
f (tr ) = 16ζ ξρ

8 + (1 + ζ 2)ξ 2 − (1 − ζ 2)ξ 2 cos(2ωtr )
. (134)

The initial asymmetry parameter is negligible for all possible
intensities as well as laser’s polarization similar to Eq. (104).
Further, it is independent from the instant of ionization. The

final asymmetry parameter disappears for both of the weak-
field and the strong-field regimes. Nonetheless, it depends on
the ionization moment for intermediate fields. For the maximal
tunneling probability, it reads

Az(s)
f (0) = 2ζ ξρ

1 + ζ 2ξ 2/4
, (135)

which agrees with Eq. (105).
In a similar way, we can deduce by the intuitive model

the spin flip as well as the spin asymmetries for different
spin-quantization axes. For example, when we align the
quantization axis along the y direction, we provide the
following expressions up to the order O(ρ):

Fy(s)
± (tr ) = 2ζ 2ξ 2 cos(ωtr )[cos(ωtr ) ± ρ]

8 + (1 + ζ 2)ξ 2 − (1 − ζ 2)ξ 2 cos(2ωtr )
, (136)

Ay(s)
i (tr ) = 2ρ cos(ωtr ), (137)

Ay(s)
f (tr ) = 2ρ cos(ωtr )

×
[
1 − 4ζ 2ξ 2

8 + (1 + ζ 2)ξ 2 − (1 − ζ 2)ξ 2 cos(2ωtr )

]
.

(138)

For the linear polarization case, the spin flip vanishes and
the both asymmetries simplify to Ay(s)

i (tr ) = Ay(s)
i (tr ) =

2ρ cos(ωtr ). The spin asymmetries as well as the spin flip for a
nonvanishing polarization depend on the instant of ionization
even for strong fields, and we derive

Fy(s)
± (0) = (1 ± ρ)ζ 2ξ 2

4 + ζ 2ξ 2
, (139)

Ay(s)
i (0) = 2ρ, (140)

Ay(s)
f (0) = 2ρ(4 − ζ 2ξ 2)

4 + ζ 2ξ 2
, (141)

for the maximal tunneling probability, and we notice that
the intuitive results capture the corresponding SFA results,
Eqs. (108)–(110).

If the quantization axis is along the x direction, at the
leading order of ρ, the spin flip and the spin asymmetries
can be written as

Fx(s)
± (tr ) = ξ 2 sin(ωtr )(sin(ωtr ) ∓ ζρ)

4 + ξ 2[ζ 2 cos2(ωtr ) + cos2(ωtr )]
, (142)

Ax(s)
i (tr ) = −2ζρ sin(ωtr ), (143)

Ax(s)
f (tr ) = − 2ζρ sin(ωtr )

×
[
1 − 4ξ 2

8 + (1 + ζ 2)ξ 2 − (1 − ζ 2)ξ 2 cos(2ωtr )

]
.

(144)

All the spin effects depend on the instant of ionization, and
all of them disappear for the maximum tunneling probability
at the leading order in ρ. If we further go to the next order,
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the spin flip for the maximal tunneling probability can be
given by

Fx(s)
± (0) = ρ2

4
, (145)

which is consistent with Eq. (106).
We notice that our intuitive model captures the main

features of the spin dynamics and is able to reproduce the
results of the SFA.

B. Dressed SFA

In the dressed SFA, the scenario is changing because we
take into account the bound-state evolution in the laser field.
The bound-state propagation is not a trivial phase in this
case, but includes the spin precession in the bound state.
Accordingly, the Hamiltonian for the bound-state propagation
can be represented as

H = H0I + σ · B(t)

2c
, (146)

where H0 is the usual atomic Hamiltonian of the electron in the
Coulomb field of the core. We would like underline that once
the solution of the Schrödinger equation for the Hamiltonian
(146) is known, the developed intuitive model is valid for any
polarization, and accordingly we discuss the linear and circular
polarization cases separately for the dressed SFA.

In addition to the trivial phase (125), in this scenario the
bound-state propagator for a linearly polarized field can be
calculated as

UB(tr ,−∞) = exp

[
−i

∫ tr

−∞

σyBy(t)

2c

]
, (147)

= cos

[
ξ

2
sin(ωtr )

]
I + iσy sin

[
ξ

2
sin(ωtr )

]
.

(148)

Furthermore, due to the Zeeman splitting, the energy of the
tunneling bound spin states whose quantization axis is along y

direction will read ε± = −Ip ∓ E0 cos(ωtr )/(2c) for a certain
instant of ionization tr , where ε+(−) is for spin-up(down) state.
Consequently, as the spin states having different quantization
axes can always be expanded by the basis vectors |±; ŷ〉, the
Zeeman splitting and the spin interaction under the barrier
cancel each other at the order O(γ 2), and the propagator is
simply given by the tunneling probability amplitude

UT (ts,tr )

= exp

{
i

∫ ts

tr

dt

[
q(t)2

2
+ Ip − σ · B(tr )

2c
+ σ · B(t)

2c

]}

= exp

[
− Ea

3|E(tr )|
]

. (149)

We conclude that the tunneling probability is spin independent
in the dressed SFA at the leading order in ρ. Therefore, the

spin asymmetries disappear at this order (the contribution of
higher orders are discussed in the next section).

After including the continuum propagation for ζ = 0, the
transition amplitude in the case of the dressed SFA for linearly
polarized field becomes

Ms→s ′ = 〈s ′|
[

I − iξ sin(ωtr )σy/2√
1 + ξ 2 sin2(ωtr )/4

]{
cos

[
ξ

2
sin(ωtr )

]
I

+ iσy sin

[
ξ

2
sin(ωtr )

]}
|s〉. (150)

First of all, the transition amplitude is a function of σy ; as
a consequence, there cannot exist a spin flip when the spin-
quantization axis is the y direction, which explains the derived
result (116). Furthermore, due to the symmetry reason, the
spin flip for the case when the spin-quantization axis is in the
z direction is the same as when it is in the x direction, and they
can be calculated as

Fz,x(d)
± (tr ) = 2

{
ξ sin(ωtr ) cos

[
ξ sin(ωtr )

2

]− 2 sin
[

ξ sin(ωtr )
2

]}2
8 + ξ 2[1 − cos(2ωtr )]

.

(151)

At tr = 0, Fz,x(d)
± (0) = 0. If tr �= 0, Fz,x(d)

± (tr ) ∼ ξ 2 for weak
fields, and it is negligible. However, its strong-field limit can
be given by

Fz,x(d)
± = cos2

[
ξ

2
sin(ωtr )

]
. (152)

As we discussed in Sec. III, the bound spin highly oscillates
between up and down states in a very short time interval for
strong fields. As a result, it is physically more correct to present
the mean value of the spin flip instead of its instantaneous
value at tr = 0. Furthermore, one can obtain the mean
value corresponding to the maximal tunneling probability by
averaging over a period T fulfilling the condition (75), and it
is

〈Fz,x(d)
± 〉T = 1

2 , (153)

which agrees with Eqs. (111) and (114), as well as with
Ref. [58].

For the circular polarization case, we first notice that
solving the coupled differential equations (54) corresponds
to solving the Schrödinger equation for the Hamiltonian H =
σ · B(t)/(2c/δ). Furthermore, the corresponding propagator
can be written as

UB(tr ,−∞) =
(

C++(tr ) C−+(tr )
C−+(tr ) C−−(tr )

)
, (154)

with the coefficients (66). As a consequence, the bound-state
propagator for a circularly polarized field can be obtained
with the replacement of δ → 1 in the coefficients (66), which
reads

UB(tr ,−∞) = 1√
ξ 2 + (1 +

√
1 + ξ 2)2

⎛
⎝(1 +

√
1 + ξ 2)e−iωtr

1−
√

1+ξ2

2 iξe−iωtr
1+

√
1+ξ2

2

iξeiωtr
1+

√
1+ξ2

2 (1 +
√

1 + ξ 2)eiωtr
1−

√
1+ξ2

2

⎞
⎠. (155)
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While the under-the-barrier propagator is the same as
Eq. (149), the continuum propagator for the circular polar-
ization case reads

UC(∞,tr ) = I − iξ [sin(ωtr )σy + cos(ωtr )σx]/2√
1 + ξ 2(sin2[ωtr ] + cos2[ωtr ])/4

. (156)

Thereby, we can give an intuitive description of the spin effects
for a circularly polarized field. For instance, when the spin-
quantization axis is along the z direction, the spin flip is

Fz(d)
± (tr ) = ξ 2{4 − 4(1 + �) cos[ωtr (1 − �)] + (1 + �)2}

2(4 + ξ 2)(�2 + �)
,

(157)

with � ≡
√

1 + ξ 2. For a weak field the spin flip is negligible,
whereas in the strong field, ξ 
 1, we derive

Fz(d)
± (0) = 1

2 , (158)

for the instantaneous value at tr = 0. The mean value of the
spin flip over the period T (75),

〈Fz(d)
± 〉T = 1

2 , (159)

which coincides with its instantaneous value. This result is a
consequence of this particular choice of quantization axis, as
we discussed in Sec. III A. In a similar way, the strong-field
limit of the spin flip for the other spin-quantization axes can
be derived as

Fy(d)
± (tr ) = 1

2

{
1 − cos[ωtr (1 − �)] − cos[ωtr (3 − �)]

2

}
,

(160)

Fx(d)
± (tr ) = 1

2

{
1 − cos [ωtr (1 − �)] + cos [ωtr (3 − �)]

2

}
.

(161)

While at tr = 0, we provide

Fy(d)
± (0) = 1

2 , (162)

Fx(d)
± (0) = 0, (163)

their mean values over the period T are

〈Fy(d)
± 〉T = 1

2 , (164)

〈Fx(d)
± 〉T = 1

2 , (165)

which are consistent with Eqs. (116) and (114), respectively.
Thus, the intuitive model clearly shows that the spin

dynamics in the bound state is very important for developing of
spin effects during tunnel ionization. This dynamics is included
only in the dressed SFA and, therefore, the physically correct
results are those predicted by the dressed SFA.

C. Origin of the spin asymmetries in the dressed SFA

If we compare the results developed in Secs. VI A and
VI B, we notice that the origin of the spin asymmetries in
the standard SFA is the spin interaction under the barrier,
which leads to different tunneling probabilities for spin-up and
spin-down states. Since the Zeeman splitting in the bound state

compensates for this spin interaction in the dressed SFA, there
are no spin asymmetries at the leading order of ρ. However,
the magnetic field in the rest frame of the electron is slightly
different in the bound state and under the barrier, which have
an impact on the Zeeman splitting compensation and can lead
to a spin asymmetry. This can be described by improving our
intuitive model in the following way.

If we go further in the Foldy-Wouthuysen expansion of the
Hamiltonian, we can write the propagator for the under-the-
barrier dynamics as

UT (ts ,tr ) = exp

(
i

∫ ts

tr

dt

{
q(t)2

2
− ε±

+ σ · B(t)

2c
+ σ · [E(t) × q(t)]

4c2

})
, (166)

where the last term in the exponent of Eq. (166) describes the
effect of the magnetic field in the rest frame of the electron
during tunneling. Note that as the momentum vanishes for the
ground state, i.e., 〈 p〉B = 0, we do not need to modify the
energy of the tunneling bound spin states. Moreover, the rest
frame effect depends on the final momentum distribution via
the term E(t) × q(t). As both the electric field as well as the
momenta oscillate with the frequency ω, we can consider the
instant of ionization tr = 0 without loss of generality. The rest
frame effect term, then, can be calculated up to the orderO(γ 2)
as

i

∫ iti

0
dt

σ · [E(t) × q(t)]

4c2
∼ −σyE0qz(0)ti

4c2
= σyρ

3

12
, (167)

where we have further used qz(t) = −2Ip/(3c) via Eq. (24).
As a result, the under-the-barrier propagator yields

UT (iti ,0) = exp

(
− Ea

3E0

)
exp

(
σy

12
ρ3

)
(168)

for the maximal tunneling probability.
Combining the bound-state propagator for linear (147) and

circular polarizations (155) together, we derive

UB(0,−∞) = (1 − ζ )I + ζ [(1 +
√

1 + ξ 2)I + iξσx]√
ξ 2 + (1 +

√
1 + ξ 2)2

,

(169)

with ζ = {0,1}. Including the continuum propagator

UC(∞,0) = I − iξζσx/2√
1 + ξ 2ζ 2/4

, (170)

the transition amplitude can be written as

Ms→s ′ = 〈s ′|
[(

I − iξζσx/2√
1 + ξ 2ζ 2/4

)(
I + σy

12
ρ3

)

×
{

(1 − ζ )I + ζ [(1 +
√

1 + ξ 2)I + iξσx]√
ξ 2 + (1 +

√
1 + ξ 2)2

}]
|s〉,

(171)

where an expansion over a small parameter ρ is used. Then,
in the linear polarization case, ζ = 0, the transition amplitude
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yields

Ms→s ′ = 〈s ′|
(

I + σy

12
ρ3
)

|s〉. (172)

Since the amplitude depends only on σy , there cannot exist
the spin asymmetries when the spin-quantization axis is
along the z or x directions. This is the underlying reason of
Eqs. (112) and (113), as well as Eq. (115). However, when
the spin-quantization direction is chosen in the y direction, we
derive

Ay(d)
i = Ay(d)

f = ρ3

3
, (173)

which agrees with Eqs. (117) and (118) up to a 1/3 prefactor.
In the case of a circularly polarized field, the corresponding

spin asymmetries can be written as

Az(d)
i = ξ

3
√

1 + ξ 2
ρ3, Az(d)

f = 4ξ

3(4 + ξ 2)
ρ3, (174a)

Ay(d)
i = 1

3
√

1 + ξ 2
ρ3, Ay(d)

f = 4 − ξ 2

3(4 + ξ 2)
ρ3, (174b)

Ax(d)
i = 0, Ax(d)

f = 0, (174c)

and their strong-field limit, ξ 
 1, is

Az(d)
i = ρ3

3
, Az(d)

f = 0, (175a)

Ay(d)
i = 0, Ay(d)

f = −ρ3

3
, (175b)

Ax(d)
i = 0, Ax(d)

f = 0. (175c)

Similar to the linear polarization case, they agree with the
D-CC-SFA results up to the 1/3 factor (see Table I).

As a conclusion, the intuitive model describes correctly
the qualitative behavior of the asymmetry parameters. Here
we would like stress that we divide the total propagator
into three parts: the bound, under-the-barrier, and continuum
parts. Since the bound and continuum propagators are unitary
operators, the conservation of the probability |M±→+|2 +
|M±→−|2 = 1 as well as the relation Ms→s ′ = M∗

s ′→s , with
Ms→s ′ = |〈s ′|U (t,t ′)|s〉|2, imply that the spin asymmetries
vanish for these propagations. Nonetheless, the under-the-
barrier evolution operator is not a unitary operator as it
determines the tunneling rate. Therefore, the asymmetries
originate from the tunneling step.

D. Further contributions to spin effects

Finally, we would like to discuss further contributions to
the spin effects that have been neglected in our treatment.
First of all, we would like to emphasize that the following
relativistic corrections, λ → 1 − ρ2/6, δ → 1 − ρ2/3, and
ti → √2Ip/E0(1 − 5ρ2/72), as well as the effect of the
bispinor description, can improve the accuracy of the results
of the intuitive model.

Next, we have neglected the spin-orbit interaction during
the electron motion in the continuum under the action of the
laser and Coulomb fields. In paper II, we identified the spin-
orbit coupling term in the continuum wave function. Including
this term in the continuum propagator will result in a new term

for the matrix element describing spin transitions,

1

2cλ

∫ ∞

t

dt ′α · ∇V (C)[r(t ′)]. (176)

This will modify not only the intuitive model but also the SFA
calculations.

Finally, there could be a relation of spin effects to the
tunneling delay time [81], which needs investigation beyond
the quasiclassical description of tunneling. For instance, in the
intuitive model the time evolution of the wave function will be
modified as

U (∞,−∞) = UC(∞,tr + τ )UT (ts + τ,tr )UB(tr ,−∞),

(177)

if we introduce a real and positive time τ associated to the
time spent under the barrier, which would lead to an additional
precession and spin-effect modifications.

The mentioned modifications for the spin-transition proba-
bilities will be discussed elsewhere.

VII. EXPERIMENTAL OBSERVABILITY

A. Detection of photoelectrons

The measurement of the photoelectron spin flip during
tunnel ionization requires an initially polarized atomic target
and a detection of the photoelectron spin polarization. The
photoelectron spin polarization can be measured using Mott
polarimetry [83–85]. The latter is based on the left-right
asymmetry of Mott scattering cross section on a high-κ target.
It depends on the electron-spin polarization P⊥, transverse to
the scattering plane; dσ = dσ0[1 + P⊥S(θ )], where dσ and
dσ0 are the spin-resolved and spin-averaged cross sections of
Mott scattering, respectively, S(θ ) is the so-called Sherman
function, the maximum of which is approximately 0.5 in
the case of a gold target at electron energies of the order
of megaelectronvolts [84] and ∼ 10−2 in the case of zinc
or lead targets at electron energies of order of hundred
megaelectronvolts [84]. For instance, when the spin of the
ionized electron is polarized in the laser propagation direc-
tion in a circularly polarized laser field, the electron-spin
polarization in the final state is 1/2 for ξ 
 1, according
to Table I, and see Fig. 5. This means that the spin in the
final state will be oriented transversely with respect to the
propagation direction. Therefore, P⊥ ∼ 1 is possible, because
in the relativistic regime the electron final momentum is mostly
along the laser propagation direction. At ξ ∼ 10 (the laser
intensity of the order of 1020 W/cm2), P⊥S(θ )max ≈ 10−2,
and the relative error of the signal (∼1/

√
N (t)

s , with the
total scattering events N (t)

s ) should be smaller than 10−2 to
distinguish the electron polarization, i.e., N (t)

s = vshotN
(1)
s >

104, where vshot is the number of laser shots, and N (1)
s is the

number of scattering events per the laser shot. The latter is
determined by the ionization (Wi) and the Mott scattering
(WM ) probabilities N (1)

s ∼ Wi × WM × (δθ/π ), where the
effective interval of the scattering angle (where S(θ ) ∼ 10−2

[85]) is δθ ∼ 5◦. Estimating the Mott scattering probability
via WM ≈ (κ2πa2

B/γ 2
l )ρ0� ≈ 1, with the Bohr radius aB , the

target length � = 0.1 μm, the Lorentz factor γl ≈ ξ 2 = 100,
κ = 30, and the density ρ0 = 2 × 1022 cm−3, each electron
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FIG. 5. (Color online) The spin flip associated with the maximal
tunneling probability for a circularly polarized field when the
spin-quantization axis is the laser’s propagation direction within
D-CC-SFA. The blue solid and the red dashed lines represent Fz(d)

+
and Fz(d)

− , respectively. The applied parameters are ω = 0.05 and
E0/Ea = 1/30.

will produce a scattering event but the hindering multiple
scattering will be avoided. The ionization probability per
laser shot can be estimated as Wi ∼ 10−2κ2 (at a fixed
E0/Ea = 1/10, the laser pulse duration of 100 fs) [65]. Then
the scattering events per laser shot is N (1)

s ≈ WM × (δθ/π ) ×
Wi ∼ 3 × 10−2. The number of laser shots required for the
necessary signal resolution is νshot > N (1)

s /N (t)
s ≈ 3 × 105,

which can be realized even with a 1-Hz laser system.
For typical experimental parameters, e.g., ionization of

hydrogenlike Ne9+ ions in a strong infrared laser field with
an intensity of 1020 W/cm2, D-CC-SFA predicts a spin-flip
relative probability of about 0.1.

B. Detection of ions

The electron spin flip can also be revealed via a measure-
ment of ion parameters. The angular momentum change of the
ion during ionization �Ji can be related to the electron-spin
change �S, using the angular momentum and the energy
conservation laws in the case of circular polarization

n + Ji + Je = J ′
i + J ′

e, (178)

nω = Ip + 2Up, (179)

where n is the number of absorbed photons at ionization,
Up = c2ξ 2/2 is the ponderomotive potential, Ji,e and J ′

i,e are
the ion and the electron total angular momenta before and
after the ionization, respectively, Ji,e = Li,e + Si,e, with Li,e

and Si,e being the orbital angular momentum and the spin
of the ion and electron, respectively, and �Ji,e = J ′

i,e − Ji,e,
�Si,e = S ′

i,e − Si,e, and n = �Je + �Ji . Taking into account
the change of the electron angular momentum during above-
threshold ionization, which is

�Le ≈ Ip + 2Up

ω
(180)

(see [12]), the change of the electron spin can be measured via
the ion angular momentum,

�S = −�Ji. (181)

Let us employ a circularly polarized laser field and polarize the
initial electron spin along the laser propagation direction (the
ion nuclear spin is assumed to be vanishing Si = 0). Even when
the electron spin is not changed during ionization �Se = 0, the
ion carries out a small part of the angular momentum provided
by n absorbed photons. In particular, with a right circular
polarization, the ion gets an orbital angular momentum,

LR
z = L0 ≡ m

M

Ip + 2Up

ω
, (182)

where m and M are the electron and ion mass, respectively.
The latter follows from the fact that the ion distance with
respect to the center of mass of the ion-electron system is
m/M times smaller than the electron distance. With a left
circular polarization, the ion acquires an angular momentum
LL

z = −L0. When the spin flip happens, LR
z = L0 − 1 and

LL
z = −L0 − 1. Therefore, the spin flip will be indicated by

a nonvanishing signal for the difference in the ion angular
distribution with the left and right polarized laser field.
The mentioned signal for the difference in the ion angular
distribution can be estimated as

S ∼ ∣∣∣∣YL0+1,L0+1

∣∣2 − ∣∣YL0−1,L0−1

∣∣2∣∣
∼ | sin2(L0+1) θ − sin2(L0−1) θ | ∼ 2δ, (183)

where Yl,m are the spherical harmonics, θ is the ion scattering
angle with respect to the laser propagation direction, and δ ≡
cot2 θ � 1. Then the required number of laser shots is νshot ∼
106 at δ ∼ 10−3 (the ions are observed in the transverse to the
laser propagation direction within an angle of 20 mrad).

VIII. CONCLUSION

In this paper we have investigated the spin effects during
strong-field ionization in the tunneling regime for linearly
as well as circularly polarized laser fields. The spin effects
are fully described by two types of spin asymmetries, the
initial and the final spin asymmetries, as well as by the spin-
flip probability. The initial spin asymmetry describes the
asymmetry in ionization of the initially polarized target, while
the final asymmetry describes the degree of the photoelectron
polarization from an unpolarized target. The spin-resolved
differential ionization rates as well as the spin asymmetries
are derived for the maximal tunneling probability. For this
purpose, the final momentum distribution of the tunnel-ionized
electron is calculated. The results are further generalized to an
arbitrary spin-quantization axis.

Two versions of the CC-SFA have been considered. While
in S-CC-SFA the influence of the laser field on the bound
state is completely neglected; the latter is properly treated in
D-CC-SFA. Therefore, we have discussed the spin dynamics
in the bound state driven by linearly as well as circularly
polarized fields. The physically relevant predictions for the
spin effects is given by the dressed SFA. Generally, the spin
effects calculated with S-CC-SFA are overestimated.

An intuitive model for spin effects is developed which
transparently shows how the spin effects arise in three steps;
spin precession in the bound state, spin rotation during
tunneling, and further spin precession in the continuum.
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The parameter ξ determines the field regime, and in the
weak-field regime ξ � 1 the spin flip as well as the spin
asymmetries are negligible. The spin effects are considerable
for strong fields ξ 
 1, where the spin-flip probability is about
1/2. The spin-flip probability is mainly determined by the
bound-state dynamics; however, the spin asymmetries, which
increases with increasing the charge of the atomic core, are a
consequence of the effect of the magnetic field in the rest frame
of the electron during tunneling, as indicated by the developed
intuitive model.

The most favorable for experimental observation of spin
effects is the spin flip by using moderate highly charged ions
with a charge of the order of κ ∼ 20 and a laser field with an
intensity of I ∼ 1022 W/cm2.
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APPENDIX

Classical equations of motion of a charged
particle in a plane wave

The most general gauge potential for a plane wave can be
given by

Aμ = ε
μ

1 f1(η) + ε
μ

2 f2(η), (A1)

with the phase η = kx/ω and the wave vector kμ (k2 = 0).
Here ε

μ

1 , ε
μ

2 are the polarization vectors such that ε2
1 = ε2

2 =
−1 and ε1k = ε2k = ε1ε2 = 0. Then the field strength tensor
Fμν reads

Fμν = ε
μν

1 ḟ1(η) + ε
μν

2 ḟ2(η), (A2)

where ε
μν

1 = kμεν
1 − kνε

μ

1 , ε
μν

2 = kμεν
2 − kνε

μ

2 , and dot de-
notes the derivative with respect to the phase η.

The classical equations of motion are obtained by solving
the Lorentz force law, which can be written in the proper time
parametrization as

dpμ

dτ
= −1

c
Fμνpν. (A3)

The relation kμε
μν

1 = kμε
μν

2 = 0 implies that kp is a constant
of motion. Using further the identity

dpμ

dτ
= dpμ

dη

dη

dτ
= ṗμλ, (A4)

with λ = kp/ω, the Lorentz force law in the phase
parametrization yields

ṗμ = 1

c
Ȧμ − 1

λωc
kμȦp. (A5)

Moreover, the last term in the above equation can also be given
by

Ȧp = d

dη
(Ap) − Aṗ = d

dη

(
Ap − 1

2c
A2

)
, (A6)

where we used the contraction of Eq. (A5) with Aμ after the
second equality sign. Then, Eq. (A5) can be written as

ṗμ = d

dη

[
1

c
Aμ − 1

λωc
kμ

(
Ap − 1

2c
A2

)]
, (A7)

whose solution in terms of the initial phase ηi can be found as

pμ(η) = pμ(ηi) + Aμ(η) − Aμ(ηi)

c

− kμ

λωc

[
pν(ηi) + Aν(η) − Aν(ηi)

2c

]

× [Aν(η) − Aν(ηi)], (A8)

where we used the following relation:

Aμ(η)pμ(η) = Aμ(η)pμ(ηi) + 1

c
Aμ(η)[Aμ(η) − Aμ(ηi)].

(A9)
In the velocity gauge Aμ = (0,cA), the three-momentum and
the energy, then, yield

p(η) = p(ηi) + A(η) − A(ηi)

+ k̂
λc

[
p(ηi) + A(η) − A(ηi)

2

]
· [A(η) − A(ηi)],

(A10)

ε(η) = ε(ηi) + k̂
λ

[
p(ηi) + A(η) − A(ηi)

2

]
· [A(η) − A(ηi)].

(A11)
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[3] M. Dammasch, M. Dörr, U. Eichmann, E. Lenz, and W. Sandner,
Phys. Rev. A 64, 061402 (2001).

[4] K. Yamakawa, Y. Akahane, Y. Fukuda, M. Aoyama, N. Inoue,
and H. Ueda, Phys. Rev. A 68, 065403 (2003).

[5] E. Gubbini, U. Eichmann, M. Kalashnikov, and W. Sandner,
J. Phys. B: At., Mol. Opt. Phys. 38, L87 (2005).

[6] A. D. DiChiara, I. Ghebregziabher, R. Sauer, J. Waesche,
S. Palaniyappan, B. L. Wen, and B. C. Walker, Phys. Rev. Lett.
101, 173002 (2008).

[7] S. Palaniyappan, R. Mitchell, R. Sauer, I. Ghebregziabher, S. L.
White, M. F. Decamp, and B. C. Walker, Phys. Rev. Lett. 100,
183001 (2008).

[8] A. D. DiChiara, I. Ghebregziabher, J. M. Waesche, T. Stanev,
N. Ekanayake, L. R. Barclay, S. J. Wells, A. Watts, M. Videtto,
C. A. Mancuso, and B. C. Walker, Phys. Rev. A 81, 043417
(2010).

063407-18

http://dx.doi.org/10.1103/PhysRevLett.82.1688
http://dx.doi.org/10.1103/PhysRevLett.82.1688
http://dx.doi.org/10.1103/PhysRevLett.82.1688
http://dx.doi.org/10.1103/PhysRevLett.82.1688
http://dx.doi.org/10.1103/PhysRevA.63.042712
http://dx.doi.org/10.1103/PhysRevA.63.042712
http://dx.doi.org/10.1103/PhysRevA.63.042712
http://dx.doi.org/10.1103/PhysRevA.63.042712
http://dx.doi.org/10.1103/PhysRevA.64.061402
http://dx.doi.org/10.1103/PhysRevA.64.061402
http://dx.doi.org/10.1103/PhysRevA.64.061402
http://dx.doi.org/10.1103/PhysRevA.64.061402
http://dx.doi.org/10.1103/PhysRevA.68.065403
http://dx.doi.org/10.1103/PhysRevA.68.065403
http://dx.doi.org/10.1103/PhysRevA.68.065403
http://dx.doi.org/10.1103/PhysRevA.68.065403
http://dx.doi.org/10.1088/0953-4075/38/6/L01
http://dx.doi.org/10.1088/0953-4075/38/6/L01
http://dx.doi.org/10.1088/0953-4075/38/6/L01
http://dx.doi.org/10.1088/0953-4075/38/6/L01
http://dx.doi.org/10.1103/PhysRevLett.101.173002
http://dx.doi.org/10.1103/PhysRevLett.101.173002
http://dx.doi.org/10.1103/PhysRevLett.101.173002
http://dx.doi.org/10.1103/PhysRevLett.101.173002
http://dx.doi.org/10.1103/PhysRevLett.100.183001
http://dx.doi.org/10.1103/PhysRevLett.100.183001
http://dx.doi.org/10.1103/PhysRevLett.100.183001
http://dx.doi.org/10.1103/PhysRevLett.100.183001
http://dx.doi.org/10.1103/PhysRevA.81.043417
http://dx.doi.org/10.1103/PhysRevA.81.043417
http://dx.doi.org/10.1103/PhysRevA.81.043417
http://dx.doi.org/10.1103/PhysRevA.81.043417


ABOVE-THRESHOLD . . . . III. SPIN EFFECTS AND . . . PHYSICAL REVIEW A 91, 063407 (2015)

[9] N. Ekanayake, S. Luo, P. D. Grugan, W. B. Crosby, A. D. Camilo,
C. V. McCowan, R. Scalzi, A. Tramontozzi, L. E. Howard, S. J.
Wells, C. Mancuso, T. Stanev, M. F. Decamp, and B. C. Walker,
Phys. Rev. Lett. 110, 203003 (2013).

[10] A. D. Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel,
Rev. Mod. Phys. 84, 1177 (2012).

[11] M. Vogel, W. Quint, G. Paulus, and T. Stöhlker, Nucl. Instrum.
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