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Electron-atom scattering resonances: Complex-scaled multiconfigurational spin-tensor electron
propagator method for B−shape resonances
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We develop the complex-scaled multiconfigurational spin-tensor electron propagator (CMCSTEP) technique
for the theoretical determination of resonance parameters with electron-atom–molecule systems including open-
shell and highly correlated (nondynamical correlation) atoms and molecules. The multiconfigurational spin-tensor
electron propagator method developed and implemented by Yeager and his coworkers in real space gives very
accurate and reliable ionization potentials and electron affinities. The CMCSTEP method uses a complex-scaled
multiconfigurational self-consistent field state as an initial state along with a dilated Hamiltonian where all
of the electronic coordinates are scaled by a complex factor. We apply the CMCSTEP and the related M1

methods to get the B− shape resonance parameters using 14s11p and 14s11p5d basis sets with 1s2s2p3s,
1s2s2p3s3p, 1s2s2p3d , 2s2p3s3p, 2s2p3d , and 2s2p3s3p3d complete active spaces. The CMCSTEP and M1

resonance positions and widths are obtained for the 1s22s22p2 1D, 1s22s2p3 3D, and 1s2s22p3 3D, 3S, and 3P

shape resonances.
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I. INTRODUCTION

Resonances in electron-atom or electron-molecule scat-
tering processes have attracted much attention. They play
major roles in electron transport and energy exchange between
electronic and nuclear motions, in vibrational excitation of
molecules or molecular ions by electron impact, in dissociative
attachments and recombination [1,2], and as a mechanism for
DNA damage by low-energy electrons [3,4].

In order to avoid direct calculation of an outgoing wave
in resonance problems, we use a complex coordinate scaling
(CS) technique, which was first proposed by Combes and
co-workers [5,6] and Simon [7] in the early 1970s. In this
approach the electronic coordinates r of the Hamiltonian are
scaled (or dilated) by a complex parameter η as r → ηr ,
where η = αeiθ with α > 0 and θ ∈ (−π,π ). Under this
transformation, the bound states are real and are unchanged
by complex scaling and the continua of the complex-scaled
Hamiltonian H̄ is rotated by an angle 2θ at each threshold such
that the continuum states appear as complex eigenvalues of the
complex-scaled Hamiltonian H̄ . The resonance parameters
E = Er − i �r

2 hidden in the continua are exposed in complex
space for some suitable η, where Er and �r are the resonance
position and width of that resonance state, respectively.

Other alternative methods have included the complex
absorbing potential (CAP) [8–11] instead of CS. Both CS
and CAP methods can be developed and programmed from
bound-state electronic structure codes. Complex absorbing
potential methods have not been shown conclusively to be
superior to standard complex scaling.

Previously, we developed and used the quadratically con-
vergent � (total energy difference) complex-scaled multicon-
figurational self-consistent field [12,13] (CMCSCF) method
with step length control to obtain the resonance parameters.
In real space, the multiconfigurational self-consistent field
(MCSCF) method with a small complete active space (CAS)
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has been shown to be a very effective method to describe
nondynamical and some dynamical correlation correctly and is
computationally cheaper than very large or full configuration-
interaction calculations [14] while still incorporating the
fundamental physics of what is going on.

Based on the CMCSCF initial state, we also developed
a method termed the M1 method [13,15], in which the
complex M1 matrix is constructed from the first block of
the M matrix defined in the multiconfigurational spin-tensor
electron propagator (MCSTEP) method [16–20]. This block
allows for only simple electron removal and addition to
multiconfigurational based orbitals with no more complicated
processes allowed to mix in.

The MCSTEP method, however, includes many additional
operators that allow for more complicated electron ionization
and attachment processes to be included. The MCSTEP
method is designed to calculate reliably the ionization po-
tentials (IPs) [18–20] and electron affinities (EAs) [21,22]
for atoms and molecules that cannot generally be handled
accurately and efficiently by perturbation or other methods. In
addition to simple electron addition operators to all orbitals
as in the M1 method, the MCSTEP method includes operators
that allow for electron removal and electron addition to all
orbitals to excited states within the CAS [16–20]. With the
MCSTEP method both initial and final states have pure space
and spin symmetry even for open-shell initial and final states.
In complex space, the M1 and complex-scaled MCSTEP
(CMCSTEP) methods use CMCSCF states as reference or
initial states along with H̄ .

Both the CMCSCF and M1 methods have been previ-
ously used efficiently to study the 2P Be− shape resonance
[12,13,15]. The CMCSTEP method was first employed to
study the 2P Be− shape resonance problem [23]. The Be atom
is the prototypical system with nondynamical correlation since
the ground initial state is about 10% 1s22p2.

The existence of the B− ion was first reported on by
Branscomb and Smith in 1956 [24]. The first quantitative
measurement of B− was the EA determination by Feigerle
et al. [25] using the laser-photodetached electron spectroscopy.
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They showed that the B− ion was stably formed in the 2p2 3P

state. Further experimental work had been carried out by Liu
et al. [26], Lee et al. [27,28], Kristensen et al. [29], Scheer
et al. [30], and Berrah et al. [31].

Theoretical work for the B− ion first focused on calculating
the EA and is summarized in Ref. [32]. Accurate calculations
for the EA for B− were carried out by Sundholm and Olsen
[33] and Froese Fischer et al. [34], both using the large
multiconfiguration Hartree-Fock methods.

In this work we implement the M1 and CMCSTEP methods
for the B− shape resonance problems using 14s11p and
14s11p5d basis sets with several CASs and compare our
results with previous results. Previous application of the
CMCSTEP method was to a closed-shell atomic system, the
2P Be− shape resonance [23], however, the present work
applies to an open-shell atomic system, such as the B− shape
resonances. The reason we implement this method for the
resonance problem is that the MCSTEP method in real space
works exceptionally well and gives accurate and reliable values
of vertical IPs and EAs for general atomic and molecular
systems that are consistent with experimental measurements
[21,22,35–38]. Hence, we expect that the CMCSTEP method
will give reliable values of resonance parameters.

The paper is organized as follows. In Sec. II we discuss the
theory of the CMCSTEP method. In Sec. III we present and
discuss our results and the experimental and theoretical results
of others. A summary and conclusions follow in Sec. IV.

II. THEORY

The complex-scaled electronic Hamiltonian H̄ is non-
Hermitian. It is complex symmetric. This causes the wave
function |ψm〉 to be complex conjugate biorthogonal where
〈ψ∗

i |ψj 〉 = δij (the asterisk denotes the complex conjugate)
[39]. It is shown that creation operators are introduced as aT =
a† = (a∗)† rather than a†, with the usual anticommutation
relations for creation and annihilation operators still hold by
changing the dagger into T [40,41].

Therefore, the CMCSTEP may be formulated in the same
way as the MCSTEP via single-particle Green’s-function or
electron propagator methods [16–20] or the superoperator for-
malism [42] with the modified second quantization operators
and H̄ . We will not discuss the MCSTEP details here, since
they can be found in Refs. [16–20].

Complex-scaled MCSTEP IPs and attachment energies
(AEs) are obtained from the following the complex generalized
eigenvalue problem:

MXf = ωf NXf , (1)

where

Mrp =
∑

�

(−1)S0−�−Sf −γr W (γrγpS0S0; �Sf )

×(2� + 1)1/2〈NS0||{h∗
r (γ̄r ),H̄ ,hp(γp)}||NS0〉, (2)

Nrp =
∑

�

(−1)S0−�−Sf −γr W (γrγpS0S0; �Sf )

×(2� + 1)1/2〈NS0||{h∗
r (γ̄r ),hp(γp)}||NS0〉, (3)

Here ωf is the IP or AE from the N -electron initial tensor
state |NS0〉 with spin S0 to the N ± 1 electron final ion tensor
state |N ± 1Sf 〉, which has spin Sf , W is the usual Racah
coefficient, hp(γp) and h∗

p(γ̄r ) are tensor operator versions
of members of the operator manifold with ranks γp and γr ,
respectively, { ,} is the anticommutator

{A,B} = AB + BA, (4)

and { ,,} is the symmetric double anticommutator

{A,B,C} = 1
2 ({A,[B,C] + {[A,B],C}}). (5)

The CMCSTEP method uses a CMCSCF initial state with a
fairly small CAS and couples tensor ionization and attachment
operators to a tensor initial state to a final state that has the
correct spin and spatial symmetry even if the initial state is
open shell and/or highly correlated.

Following [23], we can report on the resonance parameter
εCMCSTEP obtained from the CMCSTEP method:

εCMCSTEP(η) = ωCMCSTEP
f + EN

c − EN
0 , (6)

where ωCMCSTEP
f ≡ ωf is calculated from Eq. (1). In the case of

M1 calculations it is obtained from the M1 complex eigenvalue
problem [13] and we reported on results based on complex
eigenvalues ω

M1
f rather than the ωCMCSTEP

f in Eq. (6). Here EN
c

is the CMCSCF energy at the stabilized point and EN
0 is the

MCSCF (real) energy for the 1s22s22p 2P ground state.
The optimal values of α and θ enable one to estimate

the resonance parameters and can be found by the system
of equations

∂E

∂α
= η

α

∂E

∂η
= 0, (7)

∂E

∂θ
= −iη

∂E

∂η
= 0, (8)

which forms the trajectory method by determining E(αopt,θopt)
corresponding to the stability (loops, kinks, inflections, or any
kind of slowdown) in the plots of Im(E) as a function of Re(E)
evaluated as a series of α values (α trajectory) and a series of
θ values (θ trajectory) [43,44].

TABLE I. Summary of theoretical calculations for the
B− 1s22s22p2 1D shape resonance relative to the B 1s22s22p 2P

ground state.

Method Basis set CAS α θopt (rad) Er (eV) �r (eV)

M1 14s11p-2s2p3s3p 1 0.22 0.161 0.0486
M1 14s11p-1s2s2p3s 1 0.21 0.180 0.0575
M1 14s11p5d-2s2p3d 1 0.25 0.156 0.0538
M1 14s11p5d-2s2p3s3p3d 1 0.21 0.143 0.0574

CMCSTEP 14s11p-2s2p3s3p 1 0.16 0.185 0.0441
CMCSTEP 14s11p-1s2s2p3s 1 0.21 0.180 0.0575
CMCSTEP 14s11p5d-2s2p3d 1 0.25 0.158 0.0536
CMCSTEP 14s11p5d-2s2p3s3p3d 1 0.28 0.126 0.0613
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FIG. 1. The θ trajectories for B− 1s22s22p2 1D shape resonances
obtained from the CMCSTEP method. The curves correspond to the
(a) basis set 14s11p5d-2s2p3d CAS and (b) 14s11p5d-2s2p3s3p3d

CAS and the cross shows a stabilized point. The computational
parameters are α = 1 and �θ = 0.01 rad.

III. RESULTS AND DISCUSSION

In this study we investigate the shape resonance problems
for the lowest and first excited states of the B− ion using the
M1 and CMCSTEP methods. The B atom is an open-shell

TABLE II. Summary of theoretical calculations and experimental
measurement for the B− 1s22s22p2 1D shape resonance relative to the
B 1s22s22p 2P ground state.

Reference Er (eV) �r (eV)

[46] −0.61
[47] 0.375
[48] 0.45 0.11
[49] 0.006
[50] 0.275
[51] 0.095 0.054
this work
M1 0.143 0.0574
CMCSTEP 0.126 0.0613
Expt. [28] 0.104 ± 0.008 0.068 ± 0.025

TABLE III. Same as in Table I, but for the B− 1s22s2p3 3D shape
resonance.

Method Basis set CAS α θopt (rad) Er (eV) �r (eV)

M1 14s11p-1s2s2p3s 1 0.38 4.22 1.13
M1 14s11p-1s2s2p3s3p 1 0.41 4.13 1.23
M1 14s11p5d-1s2s2p3d 1 0.38 4.11 1.09

CMCSTEP 14s11p-1s2s2p3s 1 0.35 4.49 1.44
CMCSTEP 14s11p-1s2s2p3s3p 1 0.39 4.41 1.60
CMCSTEP 14s11p5d-1s2s2p3d 1 0.36 4.38 1.43

system and has a 2P ground state. The principal configuration
of the ground state is 1s22s22p. Thus it requires the full power
of a tensor formalism of the CMCSTEP approximation, in
which spin symmetry is always correctly handled [16–20].
Recently, we presented the M1 and CMCSTEP calculations
for the low-lying 2P Be− shape resonance problem, where the
ground state is 1S, i.e., totally symmetric in spin and space [23].

FIG. 2. The θ trajectories for (c) B− 1s22s2p3 3D shape reso-
nances obtained from the CMCSTEP method. The curves shown
correspond to the (a) basis set 14s11p-1s2s2p3s2p CAS and
(b) 14s11p5d-1s2s2p3d CAS and the cross shows a stabilized point.
Computational parameters are α = 1 and �θ = 0.01 rad.
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TABLE IV. Same as in Table II, but for the B− 1s22s2p3 3D shape
resonance.

Reference Er (eV) �r (eV)

[52] 4.22 1.09
[57] 4.35 ± 0.07 0.82
this work
M1 4.11 1.09
CMCSTEP 4.38 1.43
Expt. fit [29] 4.31 1.16

For these resonance problems, we use initially the 14s11p

uncontracted basis set, which is based on the s and p functions
in the cc-pVTZ basis set [45] and then we added d functions to
it using a geometric progression with a view to account for the
diffuse nature of the resonances. Since for an accurate IP of
B, a larger 2s2p3s3p3d CAS that enables more correlation is
reliable [20], we employ basis sets 14s11p and 14s11p5d with
2s2p3s3p, 2s2p3d, 2s2p3s3p3d, 1s2s2p3s, 1s2s2p3s3p,
and 1s2s2p3d CASs as appropriate basis sets in this calcula-
tion. The first three CASs have three electrons and last three
CASs have five electrons in them for the CMCSCF initial
state. Most typical basis sets are designed for total energies of
low-lying states where tighter functions are necessary rather
than for resonance calculations where what is needed are basis
functions to describe near the continuum as well.

A. The 1s22s22 p2 1D shape resonance

We compute the B− 1s22s22p2 1D shape resonance pa-
rameters using the M1 and CMCSTEP methods. We use the
CMCSCF lowest 2P state as the neutral initial state in this
CMCSTEP calculation.

In Table I we show a summary of our obtained values with
the M1 and CMCSTEP methods for the B− 1s22s22p2 1D

shape resonance for 14s11p and 14s11p5d basis sets with
different CASs. In rows 2–5 and 6–9 of Table I we show results
from the M1 and CMCSTEP calculations, respectively. Widths
shown in Table I are small and consistent with each other, while
the values of the positions show a convergence with an increase
of basis sets with relatively large CASs. In these calculations
we use the initial CMCSCF state and MCSCF ground 2P

state energies for EN
c and EN

0 [see Eq. (6)], respectively, to
obtain resonance parameters for the B− 1s22s22p2 1D shape
resonance with respect to the B 1s22s22p 2P ground state.

In Fig. 1 we show the θ trajectories for the B− 1s22s22p2 1D

shape resonance obtained from the CMCSTEP method with

TABLE V. Same as in Table I, but for the B− 1s2s22p3 3D shape
resonance.

Method Basis set CAS α θopt (rad) Er (eV) �r (eV)

M1 14s11p-1s2s2p3s 1 0.31 188.77 0.053
M1 14s11p-1s2s2p3s3p 0.9 0.27 188.76 0.041
M1 14s11p5d-1s2s2p3d 0.9 0.28 188.71 0.036

CMCSTEP 14s11p-1s2s2p3s 1 0.31 188.77 0.054
CMCSTEP 14s11p-1s2s2p3s3p 0.9 0.28 188.74 0.041
CMCSTEP 14s11p5d-1s2s2p3d 0.9 0.27 188.71 0.035

TABLE VI. Same as in Table I, but for the B− 1s2s22p3 3S shape
resonance.

Method Basis set CAS α θopt (rad) Er (eV) �r (eV)

M1 14s11p-1s2s2p3s 1 0.24 188.70 0.077
M1 14s11p-1s2s2p3s3p 0.9 0.23 188.81 0.074
M1 14s11p5d-1s2s2p3d 0.9 0.23 188.85 0.073

CMCSTEP 14s11p-1s2s2p3s 1 0.28 188.71 0.142
CMCSTEP 14s11p-1s2s2p3s3p 0.9 0.28 188.83 0.141
CMCSTEP 14s11p5d-1s2s2p3d 0.9 0.26 188.87 0.142

the basis set 14s11p5d-2s2p3d CAS [Fig. 1(a)] and the
14s11p5d-2s2p3s3p3d CAS [Fig. 1(b)]. Crosses on each
trajectory throughout the paper show a stabilized point. All
trajectories show resonance points clearly along with an
increased density of points. In all trajectories in this paper
θ starts at θ = 0.01 rad at the top and increases with a step of
0.01 rad.

Theoretical calculations for the low-lying B− 1s22s22p2 1D

shape resonance have been carried out by Johnson and
Rohrlich [46], Schaefer et al. [47], Hunt and Moiseiwitsch
[48], Moser and Nesbet [49,50], and Sinanis et al. [51]. Among
these only Hunt and Moiseiwitsch [48] and Sinanis et al. [51]
gave values for both an energy position and a width. Hunt and
Moiseiwitsch [48] obtained the B− 1s22s22p2 1D shape res-
onance parameters by solving the Schrödinger equation with
an empirically adjusted model potential under the scattering
boundary condition. An experimental measurement for these
resonance parameters was given by Lee et al. [28]. Sinanis
et al. [51] computed this resonance parameter systematically in
the framework of the state-specific configuration interaction in
the continuum and obtained a theoretical value quite consistent
with this measurement [28].

In Table II we have listed theoretical results obtained by
others [46–51] and experimental measurement [28]. Our best
current result (the 14s11p5d-2s2p3s3p3d CAS) is consistent
with both the theoretical value obtained by Sinanis et al. [51]
and the experimental measurement by Lee et al. [28].

B. The 1s22s2 p3 3D shape resonance

We performed calculations for the B− 1s22s2p3 3D shape
resonance. In Table III we show a summary of our results for
the B− 1s22s2p3 3D shape resonance. The obtained values
for the resonance positions and width are consistent with
each other. In Fig. 2 we present the θ trajectories for

TABLE VII. Same as in Table I, but for the B− 1s2s22p3 3P shape
resonance.

Method Basis set CAS α θopt (rad) Er (eV) �r (eV)

M1 14s11p-1s2s2p3s 1 0.28 188.70 0.124
M1 14s11p-1s2s2p3s3p 1 0.28 188.85 0.125
M1 14s11p5d-1s2s2p3d 1 0.27 188.93 0.123

CMCSTEP 14s11p-1s2s2p3s 1 0.28 188.70 0.124
CMCSTEP 14s11p-1s2s2p3s3p 1 0.28 188.85 0.125
CMCSTEP 14s11p5d-1s2s2p3d 1 0.27 188.94 0.123
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FIG. 3. The θ trajectories for B− 1s2s22p3 3D (a), 3S (b) and 3P (c) shape resonances obtained from the CMCSTEP method. (a)–(c) The
curves correspond to the basis set 14s11p5d with the 1s2s2p3d CAS and the cross shows a stabilized point. The computational parameters
are �θ = 0.01 rad and (a) and (b) α = 0.9 and (c) α = 1.

the B− 1s22s2p3 3D shape resonance obtained from the
CMCSTEP method with the basis set 14s11p-1s2s2p3s3p

CAS [Fig. 2(a)] and the 14s11p5d-2s2p3s3p3d CAS
[Fig. 2(b)].

A theoretical prediction of the photodetachment cross
section for the B− 1s22s2p3 3D shape resonance was made
Ramsbottom and Bell [52]. They employed a multichannel
theory based on the R-matrix method for electron-atom
collisions. Moreover, other calculations [53] were based on
the many-body method in the framework of the spin-polarized
random-phase approximation with exchange and thereby were
analogous to the calculations of the C−, Si−, and Ge− ions
[54,55], which predicted a window-type resonance just below
the B (2s2p2 4P ) state [56]. Later Kashenock and Ivanov [57]
investigated the collective effects in B− photodetachment
using many-body theory taking interchannel interactions,
dynamic-core polarization, and screening effects into account.
Kristensen et al. [29] performed the experimental measure-
ments for the photodetachment cross section of the B− ion at
photon energies ranging from 3.37 to 4.83 eV. The position
and width for the B− 1s22s2p3 3D shape resonance [29] are
determined by fitting the experimental photoabsorption curve
to the modified Wigner threshold law [58]. Table IV shows a
comparison of our results with the previously obtained values
[52,57] and the extracted result from the experimental data
[29]. Each value is consistent with each other.

Furthermore, the behavior of the photodetachment cross
section above the threshold indicates theoretically the presence
of the B− 1s22s2p3 3P shape resonance [29]. After carrying
out the CMCSTEP calculation for B− 1s22s2p3 (3S,3P ) states
with a basis set 14s11p5d-1s2s2p3d CAS, we obtain the
following values of positions and widths for these states: Er =

4.89 (3S) and 10.96 eV (3P ) and � = 1.98 (3S) and 1.20 eV
(3P ), respectively.

C. The 1s2s22 p3 3D, 3S, and 3P resonances

We have also performed the M1 and CMCSTEP calcula-
tions for the B− 1s2s22p3 3D, 3S, and 3P shape resonances.
We use the 1s2s22p2 4P CMCSCF state as the initial state. In
Tables V–VII we show the summaries of theoretical calcula-
tions for the B− 1s2s22p3 3D, 3S, and 3P shape resonances,
respectively. In the first three rows of each table results from
M1 calculations are shown, while the last three rows show
results from the CMCSTEP calculations. For the 3D shape
resonance (Table V), resonance parameters from both methods
are consistent with each other for the chosen basis sets. For
the 3S shape resonance (Table VI), the obtained resonance
positions from the M1 and CMCSTEP calculations are almost
identical, however, for widths the CMCSTEP calculations give
results almost two times more than those obtained by the M1

calculations. All values for the 3P shape resonance shown in
Table VII are consistent with each other as well.

In Fig. 3 we show the θ trajectories for the B− 1s2s22p3 3D

[Fig. 3(a)], 3S [Fig. 3(b)], and 3P [Fig. 3(c)] shape resonances
obtained from the CMCSTEP calculations with the basis
set 14s11p5d with the 1s2s2p3d CAS. Berrah et al. [31]
presented theoretical and experimental values of resonance
parameters for these 3D, 3S, and 3P states. Theoretically they
used two separate R-matrix methods. Moreover, they revealed
three near-threshold (Eth = 188.63 eV) shape resonances that
are each described by Breit-Wigner-Lorentzian profiles from
experimental measurements of B− K-shell photodetachment.

TABLE VIII. Same as in Table II, but for the B− 1s2s22p3 shape resonance.

Reference Er (eV) (3D) �r (eV) (3D) Er (eV) (3S) �r (eV) (3S) Er (eV) (3P ) �r (eV) (3P )

[31] 188.73 0.056 189.03 0.178 189.22 0.536
this work
M1 188.71 0.036 188.85 0.073 188.93 0.123
CMCSTEP 188.71 0.035 188.87 0.142 188.94 0.123

Expt. fit [31] 188.72 ± 0.05 0.037 ± 0.020 189.03 ± 0.05 0.071 ± 0.022 189.17 ± 0.13 0.26 (+0.26
−0.10

)
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In Table VIII we show a comparison of our results with other
theoretical results [31] and extracted data from experimental
measurements [31] for the B− 1s2s22p3 3D, 3S, and 3P shape
resonances. In rows 2 and 6 we place the theoretical results
and experimentally fitted data for these three states obtained
in Ref. [31]. The comparison demonstrates that our results for
positions for 3S and 3P states are very slightly smaller that
those in Ref. [31], however, they are consistent with that in
Ref. [31] for the 3D state. Results for widths are also smaller
than that calculated by others in Ref. [31], however, our results
are very close to experimentally fitted data.

IV. SUMMARY AND CONCLUSIONS

In this work we have further developed the CMCSTEP
method and presented theoretical calculations for B− shape
resonances using two different but related methods (M1 and
CMCSTEP). Two different basis sets 14s11p and 14s11p5d

with six different CASs are used in the calculations. In
CMCSTEP calculations we use open-shell CMCSCF states
as the initial states. The low-lying B− 1s22s22p2 1D, higher
B− 1s22s2p3 3D, and B− 1s2s22p3 3D, 3S, and 3P shape
resonance parameters were calculated theoretically using
the M1 and CMCSTEP methods. The M1 and CMCSTEP
values of the B− shape resonances were compared with
previously obtained calculational results and experimental
measurements in the literature. The results from M1 and CM-
CSTEP calculations are reliable and practical for resonance
problems including for the initial- and final-state open-shell
cases.

Although we have here presented results for resonance
parameters for an atomic system B−, these methods can be
implemented for investigating shape resonance parameters for
molecular systems as well. We had previously shown that the
2�g N2

− shape resonance using the M1 method [13] is quite
consistent with previous literature results [59–62] and experi-
mental measurements [63,64]. The N2 initial (ground) state is
totally symmetric in spin and space and has no nondynamical
correlation. In the molecular case [13], the CS technique for the
electron-nuclear Coulomb interaction potential −Z/|r − R|
has been implemented so that −(Zη −1)/|r − Rη −1|, where Z

is a nuclear charge and r and R are the electronic and nuclear
positions relative to an origin of a fixed molecular coordinate
system [43]. Moreover, the CS can be modified by using basis
functions with complex orbital exponents [65,66] or by using
exterior complex scaling [67].

The application of the CMCSTEP method to resonance
problems (shape, Feshbach, and Auger) for other open-shell
and closed-shell initial-state atomic and molecular systems,
including cases with nondynamical correlation in the initial
state, is left for future research.
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