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Variational analysis of driven-dissipative Rydberg gases
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We study the nonequilibrium steady state arising from the interplay between coherent and dissipative dynamics
in strongly interacting Rydberg gases using a recently introduced variational method [H. Weimer, Phys. Rev.
Lett. 114, 040402 (2015)]. We give a detailed discussion of the properties of this approach and we provide a
comparison with methods related to the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. We find that the
variational approach offers some intrinsic advantages and we also show that it is able to explain the experimental
results obtained in an ultracold Rydberg gas on a quantitative level.
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I. INTRODUCTION

The discovery of dissipative quantum state engineering
[1–3], i.e., the use of controlled sources of dissipation for
the preparation of many-particle quantum states, has led to a
surge of interest in open quantum many-body systems. The
unrivaled tunability of interaction and dissipation properties
of driven Rydberg gases makes them particularly useful for
this purpose and has resulted in a large amount of theoretical
and experimental works investigating the interplay between
coherent and dissipative dynamics in these systems [4–25].
Here, we provide a detailed discussion of the application
of a recently introduced variational principle for the steady
state of dissipative quantum many-body systems [26] to
driven-dissipative Rydberg gases.

Rydberg atoms are routinely excited from ground-state
atoms by coherent laser driving, with their atomic properties
and interaction strength scaling dramatically with the principal
quantum number [27]. The radiative decay of the metastable
Rydberg state provides a natural dissipative element whose
decay rate can be widely tuned by laser coupling to other
excited non-Rydberg states [28]. As such, Rydberg atoms
provide an ideal environment for studying dissipative many-
body dynamics in a strongly interacting regime.

In this paper, we perform an analysis of the nonequilibrium
steady state of a driven-dissipative Rydberg gas. We investigate
the properties of this steady state using a variational method
recently introduced by the author [26]. We provide a detailed
evaluation of the approximations carried out within this
method. We complement our analysis of the variational method
by describing an alternative approach to the investigation of
dissipative quantum many-body systems based on a hierarchy
of equation that also allows for a systematic incorporation of
correlations. We perform an explicit comparison of the two
methods, finding substantial advantages in favor of the vari-
ational approach. Finally, we demonstrate that the variational
method provides remarkable quantitative agreement with
the experimental results on the steady-state phase transition
observed in an ultracold Rydberg gas.

II. DRIVEN-DISSIPATIVE RYDBERG GASES

We first give a microscopic description of driven-dissipative
Rydberg gases. We express the dynamics in terms of a spin-1/2
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representation, where the down-spin state corresponds to an
electronic ground state and the up-spin state refers to a
highly excited Rydberg state [27]. As the frequency difference
between all electronic states is much larger than the decay rate
of the Rydberg state, it is well justified to describe the radiative
decay of the Rydberg excitations in terms of a Markovian
quantum master equation in Lindblad form,

d

dt
ρ = − i

�
[H,ρ] +

∑
i

(
ciρc

†
i − 1

2
{c†i ci ,ρ}

)
, (1)

where ρ is the density operator describing the state of the
system, H is the Hamiltonian accounting for the coherent part
of the dynamics, and the set of ci are quantum jump operators
responsible for the dissipation [29]. If the external laser fields
are close to a resonance between the atomic ground state and
a single Rydberg state, such a system in its rotating frame is
governed by the spin-1/2 Hamiltonian,
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where the Rabi frequency � and the detuning � represent
the laser parameters, the C6 coefficient denotes the strength
of the van der Waals repulsion between Rydberg states, and
P r

i = (1 + σ z
i )/2 is the projection onto the Rydberg state. The

jump operators describing the decay of the Rydberg excitations
are represented by quantum jump operators describing up spins
flipping into down spins according to ci = √

γ σ
(i)
− , with γ

being the decay rate of the Rydberg state. Initially, we will
assume that the system is well described by a model involving
only nearest-neighbor interactions, i.e., the blockade radius is
smaller than the lattice spacing a. Then, we can introduce an
interaction constant given by V = C6/a

6. Of special interest is
the regime where the Hamiltonian is equivalent to a transverse
field Ising model, which is realized for � = V/2.

In contrast to closed quantum systems, an open quantum
system such as the dissipative Rydberg gas will generically
relax towards a stationary state characterized by the condition
d
dt

ρ = 0. Crucially, the interplay between the coherent and in-
coherent part of the dynamics generically leads to a stationary
state that is different from any state in thermal equilibrium,
i.e., a nonequilibrium steady state.
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III. VARIATIONAL PRINCIPLE

In the following, we review the basic concepts behind the
variational principle introduced in Ref. [26]. The basic idea
is to take a variational trial state ρ and compute the residual
dynamics it will generate by computing its time derivative
ρ̇ = Lρ according to the underlying quantum master equation
with the Liouvillian superoperator L. The operator ρ̇ can
be expressed as a traceless Hermitian matrix. To find the
variational approximation to the true steady state having
ρ̇ = 0, we choose the variational state that minimizes the trace
norm of ρ̇, i.e.,

ρvar = arg min
ρ

Tr{|Lρ|}. (3)

Choosing the trace norm as the correct matrix norm can be
motivated on two different grounds. First, the trace norm is
unbiased in the sense that it does not favor certain classes of
variational states over others without a physical reason. This is
related to the linearity condition ||ρ̇|| = ||λρ̇||/λ satisfied by
the trace norm. In particular, any other Schatten norm ||ρ̇|| =
Tr{|ρ̇|p} with p > 1 is biased towards the maximally mixed
state [26].

The second way to motivate the choice of the trace norm
follows from quantum information theory. Here, the trace norm
can be interpreted as being equivalent to the trace distance of ρ̇

to the zero matrix, while the latter is obtained for ρ̇ if and only if
the variational state ρ is an exact stationary state of the master
equation. Importantly, the ability to physically distinguish the
operator ρ̇ from the zero matrix is given by their trace distance
[30], and hence the trace norm of ρ̇. In this sense, the trace
norm is the natural norm to decide which variational state is
the best approximation to the true steady state. We would also
like to point out that the trace norm for the steady state is
equivalent to applying a time-dependent variational principle
for the dynamical evolution [31].

Following these initial statements, we can now proceed
with the variational analysis. Calculating the trace norm is, in
general, still a computational problem scaling exponentially
with the system size, so additional steps are needed first. This
situation is very similar to that of correlated fermions, where
energy expectation values for variational Gutzwiller wave
functions can only be evaluated within further approximations
[32]. In our case, we exploit the fact that we are not so much
interested in the actual value of the trace norm, but rather in
the properties of the stationary state. The additional approx-
imations we will carry out retain the variational character of
our calculation, i.e., they provide a rigorous upper bound to
the trace norm.

A. Product states

To be explicit, we first consider the case of the variational
set of states being restricted to product states, i.e.,

ρ = R1 =
∏

i

ρi . (4)

Here, we have introduced the superoperator R, which replaces
every occurrence of the identity operator for site i, 1i , by
the single-site density matrix ρi . Additionally, we focus
on quantum master equations including nearest-neighbor

interactions or jump operators involving, at most, two adjacent
sites. Then, the trace norm of the resulting dynamics can be
written in the form

||ρ̇|| =
∣∣∣∣∣∣
∣∣∣∣∣∣
∑

i

Rρ̇i +
∑
〈ij〉

RĊij

∣∣∣∣∣∣
∣∣∣∣∣∣ , (5)

where ρ̇i = Tr �i{ρ̇} describes the single-site dynamics and
Cij accounts for correlations between the sites. Here, the
correlations between the sites stem from the nearest-neighbor
interactions and two-site jump operators. These correlations
are restricted to nearest-neighbor correlations only, as
the variational principle of Eq. (3) contains only a single
application of the Liouvillian and therefore cannot produce
longer-range correlations when applied to product states. As
a first approximation, we apply the triangle inequality to pull
the summation over i out of the norm,

||ρ̇|| �
∑

i

∣∣∣∣∣∣
∣∣∣∣∣∣Rρ̇i +

∑
j

RĊij

∣∣∣∣∣∣
∣∣∣∣∣∣ . (6)

As the next step, we make use of the fact that ρ̇i and ρ̇j act on
different parts of the Hilbert space, which allows us to write

||ρ̇|| �
∑

i

∣∣∣∣∣∣
∣∣∣∣∣∣Rρ̇i +

∑
j

R(ρiρ̇j + Ċij )

∣∣∣∣∣∣
∣∣∣∣∣∣ . (7)

Note that this inequality does not change the variational
approximation to the steady state, but it allows us to write the
final result in a more compact form. Finally, we employ the
triangle inequality a second time, yielding

||ρ̇|| �
∑
〈ij〉

||R(ρ̇iρj + ρiρ̇j + Ċij )|| =
∑
〈ij〉

Tr{|ρ̇ij |}. (8)

Consequently, we have succeeded in mapping the full
quantum many-body problem into a sum of efficiently
solvable problems involving only neighboring sites. For
translationally invariant systems, it is, in general, even
sufficient to solve a single two-site problem.

At this point, it becomes a natural question to ask how well
justified our approximations are. Besides the obvious approx-
imation in restricting to the variational manifold, we have to
assess the deviations introduced by the inequalities leading to
Eq. (8). For small system sizes, we can answer this question ex-
actly because the Hilbert space is still small enough so that we
can minimize the trace norm of Eq. (3) without any additional
approximations. As shown in Fig. 1, the deviation introduced
by the inequalities is quite small for the Ising model describing
the dissipative Rydberg gas and in the case of four particles.

Of course, we are not really interested in problems involving
four sites, but rather see how the situation behaves in the
thermodynamic limit. For this, we can check how the exact
variational norm behaves as a function of system size. As a
single evaluation of the norm is computationally less costly
than performing a full minimization, we can go to somewhat
larger system sizes. Remarkably, we find that the scaling
with system size is completely independent of the model
being investigated or the trial state for which the norm is
evaluated; see Fig. 2. For a simple noninteracting toy model,
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FIG. 1. (Color online) Difference in the variational states intro-
duced by the inequalities leading to Eq. (8) as indicated by the trace
distance between the states ρ and ρ ′. Here the full space density
matrix ρ was taken as a product state of four sites. Inset: The
difference in the single-particle reduced density matrices at � = 4γ

(� = V/2, V = 5 γ ).

this surprising fact can be understood as a consequence of
the central limit theorem. This model consists of N purely
dissipative two-level systems, whose jump operators are given
by a dissipative spin flip of the form ci = √

γ σ−
i , as in the

case of the dissipative Rydberg gas. As a trial state, we choose
the maximally mixed state, ρ = 1/2N . Since the model is
purely classical and noninteracting, we can give an analytical
expression for the trace norm of the master equation,

||ρ̇|| = 4
N/2∑
m=0

(
N

N
2 − m

)
m

2N
γ. (9)

This expression can be evaluated efficiently even for large
values of N and corresponds to the crosses in Fig. 2. To obtain
the asymptotic behavior in the limit of large N , we replace
the sum by an integral and use the central limit theorem to
approximate the binomial coefficients by a Gaussian function,
obtaining

||ρ̇|| ≈
∫ N/2

0

4√
πN/2

exp

[
−

(
x − N

2

)2

N
2

] (
N

2
− x

)
γ dx

=
√

2N

π
γ + O(

√
N exp[−N ]). (10)
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FIG. 2. (Color online) Trace norm of the master equation de-
pending on the system size N for different models and different
product states normalized to the value at N = 4. The asymptotic
behavior for the noninteracting decay model is shown as a solid line.

As shown in Fig. 2, this asymptotic behavior is already
reached for quite small values of N , indicating that the central
limit theorem can also be applied to the fully quantum case,
which appears to be a natural consequence of the correlations
in ρ̇ being restricted to nearest neighbors. Therefore, we
conclude that the approximations needed for an efficient
calculation of the variational norm are well justified and
enable one to use the variational principle as a powerful tool
to compute steady-state properties.

B. Correlations

The considerations made for product states can also
be extended towards more generic classes of variational
states including correlations. Here, we study the case where
nearest-neighbor correlations are fully included, resulting in a
variational state according to

ρ =
∏

i

ρi +
∑
〈ij〉

RCij +
∑

〈ij〉�=〈kl〉
RCijCkl + · · · . (11)

Additionally, we impose the constraint that all reduced density
matrices ρij = ρiρj + Cij are positive definite. Using the same
steps as for product states and observing that partial traces of
correlations vanish, Tri{Cij } = 0, we can again find an upper
bound to the variational norm as

||ρ̇|| �
∑
〈ijk〉

||ρ̇ijk||. (12)

Here, the many-body problem reduces to a sum of three-site
problems. It should not be surprising that the inclusion
of all two-site correlations leads to the minimization of a
three-site problem as the interaction generically generates one
higher order of correlations. Consequently, treating n-body
correlations exactly requires one to solve an n + 1-body
minimization problem.

IV. HIERARCHY EQUATION METHODS

An alternative way to analyze dissipative many-body
dynamics is through a hierarchy of equations in terms of their
correlations, in close analogy to the Bogoliubov-Born-Green-
Kirkwood-Yvon hierarchy of classical physics [33]. For this,
we express the density operator ρ in terms of their reduced
density matrices, according to the generating functional

F(α) = ln Tr

{
ρ

∏
i

(1i + αi)

}
, (13)

where the operators αi form an arbitrary operator basis acting
on lattice site i [34]. The first terms of the hierarchy are then
given by

ρi = Tr �i {ρ} = ∂F
∂αi

∣∣∣∣
α=0

, (14)

ρij = Tr �i �j {ρ} = ρiρj + ∂2F
∂αi∂αj

∣∣∣∣
α=0︸ ︷︷ ︸

Cij

, (15)

ρijk = Tr �i �j �k {ρ} = ρiρjρk + Cijρk + Cikρj + Cjkρi

+ ∂3F
∂αi∂αj∂αk

∣∣∣∣
α=0

. (16)
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FIG. 3. (Color online) Comparison of the Rydberg density nr for the variational solution (solid lines) and the solutions of the hierarchy
equations (dashed lines) for product states (left) and correlated states (right). Additionally, the quantum trajectories solution of the quantum
master equation for a 4 × 4 system is shown as a dotted line. The data for both the variational and quantum trajectories solutions are taken
from Ref. [26] (� = V/2, V = 5 γ ).

The same analysis can also be performed on the level of
the quantum master equation to obtain effective equations of
motion for the reduced density matrices. Generically, each
equation of motion is coupled to the next higher equation of
motion in the hierarchy. The usual strategy is then to truncate
the hierarchy at some point by setting the contributions from
all higher-order derivatives of F to zero and solve the resulting
closed set of equations [34]. This approximation is attributed
to a 1/z suppression of the higher-order derivatives. In lowest
order, the resulting equations of motion are identical to the
mean-field decoupling of Ref. [35].

In principle, it is possible to systematically incorporate
correlations similar to the variational approach by going up
to higher terms in the hierarchy. However, the main drawback
of the method remains, which is that it cannot be formulated in
terms of a variational principle, i.e., the neglected higher-order
terms are uncontrolled. In the case of the hierarchy equations
having multiple solutions, it is actually possible to combine it
with the variational method. First, all solutions to the hierarchy
equations are computed, which are then used as a variational
class of states to find the solution that leads to a minimization
of the variational norm.

V. RESULTS

A. Lattice model

We will first focus our attention on the case where the atoms
are distributed on a two-dimensional square lattice. We will
make a direct comparison between the variational method and
the results from solving the hierarchy equations. We comple-
ment this comparison with results from a numerical solution
of the quantum master equation using a quantum trajectories
method [36]. To ensure a comparison on an equal footing, we
will compare the variational results for product states to the
first-order hierarchy equations, and the variational method for
correlated states to the second-order hierarchy equations. In
the latter case, we include only nearest-neighbor correlations
within both methods. The results are shown in Fig. 3.
Except for intermediate values of �, the two methods agree
very well and, for correlated states, the level of agreement is
further improved and also matches well with the results from
the quantum trajectories simulation. For intermediate values
of �, the quantum trajectories simulation cannot capture the

behavior of the system for large system sizes because of strong
finite-size effects.

However, some important qualitative differences remain
even when correlations are included. The bistability of the first-
order hierarchy solution is still present, although over a smaller
range of parameters. Consequently, this bistability is not just
an artifact of the first-order result and the approximation of
neglecting the 1/z corrections to it. Rather, it appears to be a
generic element of the hierarchy equation method. In contrast,
the variational solution always produces a unique stationary
state as, even in the case of multiple local minima of the
variational norm, there is always a unique global minimum.
Within the variational approach, we find a first-order phase
transition between a low-density gas of Rydberg excitations
and a high-density liquid [26].

Finally, we turn to the parameter regime for nonzero
detuning � where the mean-field solution (i.e., the first-order
hierarchy equation) predicts the existence of an antiferromag-
netic phase [5]. Within the variational method, we also find
such an antiferromagnetic phase (see Fig. 4), but its extension
is reduced significantly.

B. Infinite-dimension limit

The qualitative differences between the variational ap-
proach and the hierarchy equation method warrant further
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FIG. 4. (Color online) Extension of the antiferromagnetic phase.
The shaded area depicts the presence of antiferromagnetic order
according to the variational approach (left) and the first-order
hierarchy equations (right) (V = 5 γ ).
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FIG. 5. (Color online) Analysis of the dissipative Rydberg gas in the limit of large coordination number z. The left panel shows the position
of the first-order transition indicated by the crossing of the two local minima in the variational norm. The right panel displays the slope of
the variational norm right below the transition point. The solid line is an algebraic fit to the data with an exponent of −0.99 ± 0.01, perfectly
consistent with a 1/z behavior.

discussion, especially regarding the appearance of the bistable
region. Some previous works have interpreted this region
as a genuine thermodynamic phase [5,22]. In this context,
the concept of the lower critical dimension is particularly
important. It refers to the spatial dimension of a system
above which a phase transition can be observed [37]. For
example, the equilibrium liquid-gas transition belongs to the
Ising universality class and has a lower critical dimension of
one.

In the following, we will investigate the dissipative Rydberg
gas in the limit where the coordination number z goes to
infinity. In this case, both the variational method and the
first-order hierarchy equations become exact, as the true steady
state of the master equation will be given by a product
state. In particular, it is instructive to look at this limit to
investigate the role of the bistability found in the solution
of the hierarchy equations. For this, we analyze the residual
dissipation between the two local minima found by the
variational method. As shown in Fig. 5, the variational method
always yields a unique steady state. Here we find that the larger
the coordination number becomes, the smaller the difference
in residual dissipation. However, the regime of true bistability
indicated by a vanishing of the slope of the variational norm is
only reached asymptotically as 1/z, and for any finite value of
z (i.e., for finite spatial dimensionality), there is no bistability.
Consequently, it is incorrect to interpret the bistable behavior
predicted by the hierarchy equations as a signature of a genuine
thermodynamic phase, as it does not have a finite lower critical
dimension.

Rather, these findings suggest that the variational method
is the correct starting point from which arguments in favor
of the existence of thermodynamic phases in sufficiently high
dimensions can be based. This is, of course, in contrast with
equilibrium systems, where such arguments can be made based
on a mean-field decoupling, which is the equivalent of the
first-order hierarchy equations.

It is worth mentioning that the situation is very different
when the hierarchy equations predict an antiferromagnetic
phase. There, we also find an antiferromagnetic phase within
the variational method, albeit with a smaller extension. While
these results put the existence of such an ordered phase on
firmer ground, the role of quantum fluctuation could still
preclude its observation in actual experiments, if the lower
critical dimension of the transition is three or larger.

C. Superatom model

We now extend the previous discussion of the lattice model
of Sec. V A to the case of a continuum, as in the case
of the experimental situation in Ref. [20]. In such a case,
the Rydberg blockade will ensure that Rydberg excitations
spontaneously form ordered structures [38,39]. Although these
correlations are short range, we may still well replace the
underlying continuum by a lattice structure with a lattice
spacing corresponding to the typical spacing between Rydberg
excitations. We can then determine the lattice spacing in a
self-consistent manner [40], finding

z
C6

a6
=

√
�2

eff + (2�)2. (17)

The factor of two in front of the detuning � can be
understood as realizing the antiblockade condition C6/a

6 =
2� in the limit of vanishing Rabi frequency. The effective
Rabi frequency �eff is derived from a renormalization of
the atomic Rabi frequency � due to a (limited) collective
enhancement. Far away from resonance, the transition to the
first Rydberg excitation is still collectively enhanced, but the
second Rydberg excitation can then only appear at specific
positions that satisfy the antiblockade condition. Assuming
there is always exactly one distance where the antiblockade
condition is fulfilled, we find that we can describe the dynamics
of such a superatom in terms of the number of atoms inside
the superatom, Ns , by renormalizing the Rabi frequency as
�eff = N

1/4
s �, i.e., the geometric mean of the Rabi frequency

for the first and the second Rydberg excitation.
In the following, we assume the underlying lattice to be

a cubic lattice (i.e., z = 6); however, we would like to stress
that our results are basically independent of z, as long as it is
chosen consistently with the assumed lattice structure. Then,
we can compute the number of atoms per superatom to be

Ns = n

√
C6

2
√

�2 + �2
, (18)

with n being the density of ground-state atoms. In the
experimental situation of Ref. [20], the system was either
on resonance or far away from it, i.e., either the condition
� � � or � 	 � has been fulfilled. Additionally, we capture
the experimental situation by including a dephasing term
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FIG. 6. (Color online) Comparison of the stationary state of a
dissipative Rydberg gas obtained by the Pisa experiment (left, taken
with permission from [20]) and by the variational method (right). For
the experimental data, the color coding refers to the total number of
Rydberg excitations in the sample, while for the numerical simula-
tions, it represents the fraction of excited superatoms (γ = 5 kHz,
κ = 500 kHz, n = 1.8 × 1017 cm−3, C6 = 7.54 × 10−58 Jm−6).

associated with the laser linewidth κ , according to the jump
operators c′

i = √
2κP (i)

r [41].
We are now in the position to compute the steady state of

the system using the variational approach for correlated states.
Remarkably, our results are in good quantitative agreement

with the experimental observations in Ref. [20]; see Fig. 6.
The jump in the density of Rydberg excitations corresponds
to the first-order phase transition between a low-density gas
and a high-density liquid; see Sec. V A. In close analogy to the
classical liquid-gas transitions, the first-order transition ends
in a critical point. However, due to experimental limitations on
the dephasing rate and on the Rabi frequency, it appears that
the observation of the critical region of the dissipative Rydberg
gas remains a significant challenge.

VI. SUMMARY

In summary, we have given a detailed discussion of the
recently introduced variational principle for steady states of
dissipative quantum many-body systems [26]. We have ex-
emplified its usefulness by focusing on the driven-dissipative
Rydberg gas and we have made a comparison of the varia-
tional approach to hierarchy equation methods, finding severe
conceptual advantages in favor of the variational approach.
Finally, we have found remarkable quantitative agreement
with experimental data for the phase transition between a low-
density gas of Rydberg excitations and a high-density liquid.
Our results strengthen the position of the variational method as
a key tool to analyze dissipative quantum many-body systems.
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