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We have obtained accurate ab initio 4
�

+ quartet potentials for the diatomic metastable triplet helium+alkali-
metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with
noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients.
These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is
possible, because of the small reduced masses and shallow potentials that result in a small amount of bound
states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.
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I. INTRODUCTION

Interactions and collisions involving helium in the meta-
stable triplet 2 3

S1 state (denoted as He∗) have been regarded
for many years as one of the most fascinating in atomic and
molecular physics. The enormous amount of internal energy
(19.8 eV) allows for Penning ionization, which has been ex-
tensively exploited in crossed-beam studies [1]. More recently,
molecular-beam techniques involving He∗ have achieved suf-
ficient resolution in kinetic energy [2–4] to observe for shape
resonances in single partial waves for sub-kelvin collisions,
which are a sensitive probe of the interaction potential.

Elastic and inelastic collisions at sub-millikelvin energies
are relevant for ultracold trapped He∗ gases [5]. Penning
ionization greatly limits the lifetime of the trapped gas.
However, for a spin-polarized gas of He∗ Penning ionization
is strongly suppressed due to spin conservation [6]. Bose-
Einstein condensates of 4He∗ have been realized [7–11],
benefiting from a sufficiently large scattering length of 142a0

[12] that allows for efficient evaporative cooling. Degenerate
Fermi gases of 3He∗ are obtained by sympathetic cooling with
4He∗ [13], which is efficient due to a very large interspecies
scattering length of 496a0 [12].

One of the unique features of He∗ is its simple elec-
tronic structure. Thus, it is being explored extensively in
atomic physics to confront the state-of-the-art, ultraprecise
spectroscopy and the most advanced fundamental theories.
For example, precise measurement of transition frequencies
and the lifetimes are used to test the quantum electrodynamic
calculations [14–16]. Similarly, the two-body interaction
potential for spin-polarized He∗ atoms is so far the only
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system in ultracold physics for which it is possible to calculate
the aforementioned scattering lengths [12] with an accuracy
surpassing the experimental value [17]. This contrasts with
other systems, such as, e. g., the interaction potential for
alkali-metal atoms, for which predicting the scattering length
with such accuracy is impossible, and without experimental
data, it is essentially unknown.

Recently we have challenged this situation for the interac-
tion between He∗ and Rb, and demonstrated very good agree-
ment between theoretical predictions based on all-electron
restricted open-shell coupled cluster singles and doubles with
noniterative triples corrections [CCSD(T)] calculations and the
scattering length derived from thermalization measurements of
an ultracold mixture of 4He∗ and 87Rb [18]. The fact that even
for so many electrons it is possible for ab initio calculations to
quantitatively predict scattering lengths results not only from
the simple electronic structure of He∗, but mostly comes from
the small reduced mass and shallow interaction potential that
give a small number of bound states, making the scattering
length less sensitive to uncertainty in the calculated potential
(see Ref. [19] for the opposite case).

Motivated by our previous work on He∗+Rb [18], we con-
sider the relevant interaction potentials for He∗ and the other
alkali-metal atoms. Similarly as in the case of homonuclear
He∗ collisions, Penning ionization

He∗ + A → He + A+ + e− (1)

is suppressed by spin polarizing He∗ and alkali-metal atom
A both in the spin-stretched states, such that the total spin
and its projection is maximum [20]. While the s character of
the valence electron of He∗ and alkali-metal atoms are alike,
we expect the amount of suppression to be similar to that
in He∗+He∗ (in contrast to the other metastable noble gas
systems [5]). Here we have assumed that the product ion A+
has zero spin, which is true for the ground state. However,
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Penning ionization is not spin forbidden if excited, non-zero
spin, (A+)∗ states are energetically available, even for the
doubly spin-stretched state combination. Among the alkali-
metal atoms the (A+)∗ states cannot be reached, except for Cs,
for which the excitation energy from the neutral to the first
excited ionic state is 17.2 eV [21]. Therefore we will discard
Cs in this work because a stable ultracold mixture with He∗ is
probably not feasible, and computationally the presence of the
energetically available excited ionic channel will complicate
the calculations. Note that the above-mentioned criteria to
suppress Penning ionization exclude most other atomic species
as well (except He∗+H).

The collision properties for He∗+alkali-metal atom are
determined by a 2

�
+ doublet and a 4

�
+ quartet potential,

however, for the doubly spin-stretched state combination
scattering only occurs in the quartet potential. Therefore for
realizing a stable mixture the properties of the quartet potential
are the most relevant; in particular, the quartet scattering
length. This scattering length determines interspecies ther-
malization rates and therefore whether sympathetic cooling
is efficient or not. Also, for quantum degenerate mixtures it
determines, together with the intraspecies scattering lengths,
whether the mixture is miscible or immiscible in the case of
Bose-Bose mixtures [22,23], or whether a Fermi core or shell
is formed in the case of Bose-Fermi mixtures [24]. Similar to
the triplet potential in alkali-metal+alkali-metal interactions,
the quartet potential is quite shallow, which in combination
with the small reduced mass leads to a small number of
bound states in the range of 11 to 15. Note that previous
experimental work on these kind of collision systems was
based on measuring electron emission spectra in crossed-beam
experiments [25–27], which inherently is only sensitive to the
doublet potential. Therefore ultracold mixture experiments are
the first to explore these quartet potentials.

In this paper we present ab initio calculations of the quartet
potentials of He∗+alkali-metal (Li, Na, K, and Rb) systems,
where the results for He∗+Rb are taken from Ref. [18]. In
Sec. II we describe the methodology of the calculations, while
in Sec. III we present the obtained potentials and give a
detailed discussion on the accuracy of those potentials. In
Sec. IV we provide the corresponding scattering lengths for
all the isotopologues and discuss possible implications for
future experiments. Finally, in Sec. V we conclude and give
an outlook.

Throughout this paper we use Bohr radius, a0 =
5.291 772 1 × 10−11 m, as a length unit and cm−1 =
1.986 445 5 × 10−23 J as an energy unit.

II. THEORY

A. General considerations

The s-wave scattering length a is obtained by solving the
radial Schrödinger equation with zero angular momentum and
vanishing kinetic energy E:

ψ ′′(r) + 2μ

�2
[E − V (r)]ψ(r) = 0, (2)

where μ is the reduced mass, r is the internuclear distance, and
V (r) is the interaction potential. Current quantum chemistry
ab initio methods are able to determine the short-range part of

V (r) with an accuracy on the order of a few percent, which
translates into few cm−1 for dispersion-bound systems, such as
spin-stretched alkali-metal dimers or He∗+alkali-metal atom
systems. The long-range part of V (r) for alkali dimers and
systems with helium atoms can be described very accurately
through the van der Waals expansion: the corresponding
coefficients for such systems can be obtained with subpercent
accuracy.

With an appropriate analytical form of V (r) it is possible
to explore separately the influence of short- and long-range
potential modifications on the scattering length. A good choice
of such a function is the so-called Morse/long-range (MLR)
potential [28], which has the form

V (r) = De

(
1 − uLR(r)

uLR(re)
exp[−φ(r)yp(r)]

)2

− De, (3)

where

uLR(r) = C6

r6
+ C8

r8
+ C10

r10
, (4)

yk(r) = rk − rk
e

rk + rk
e

, (5)

φ(r) = [1 − yp(r)]
4∑

j=0

φj [yq(r)]j + yp(r)φ∞. (6)

The free parameters of the MLR potential, determined
by fitting, are the φj (j = 0, . . . ,4) coefficients, while the
potential well depth De, equilibrium distance re, and φ∞ =
ln[2De/uLR(re)] are directly obtained from the ab initio calcu-
lations of the short-range potential. For the long-range part
of the potential, V (r)

r→∞→ −uLR(r) = −C6r
−6 − C8r

−8 −
C10r

−10. Note that the statistical error introduced by the
analytical fit is much smaller than the systematic uncertainty
in the ab initio calculations.

B. Short-range potential

For the short-range potential we have used the coupled
cluster method [29] in which the correlated electronic wave
function is represented by the exponential operator exp(T )
acting on the Slater determinant, where T = T1 + T2 + · · · is
the so-called cluster operator which includes single-, double-
and higher-order excitations. A gold standard for weakly
bound systems has become the approximate coupled cluster
method denoted as CCSD(T), in which one fully includes
single and double excitations and treats triple excitations
approximately. In this paper we use the open-shell version
of CCSD(T) introduced by Knowles et al. [30], implemented
in the MOLPRO program [31]. The accuracy of CCSD(T)
for predicting binding energies for weakly bound systems
is typically on the order of 2%–3% [32]. Here we confirm
this accuracy by calculating the De parameter using an
even more sophisticated method, namely, coupled cluster
with full triple excitations, CCSDT. In addition, we have
incorporated scalar relativistic effects using the Douglas-
Kroll-Hess approximation up to the fifth order in external
potential (DKH5) [33]. All electrons have been correlated in
these calculations. Interaction energies were calculated using
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the counterpoise correction scheme of Boys and Bernardi
[34], in which the total monomer energies calculated in dimer
basis sets are subtracted from total energy of dimer. The
accuracy of employed quantum chemistry methodology is also
determined by the choice of appropriate Gaussian basis set
describing the orbitals. Due to computational limitations, the
basis sets commonly used in quantum chemical calculations
are truncated. However, the basis sets that are used in this paper
are tailored to systematically improve the correlation energy
and allow approximate extrapolation to the complete basis set
(CBS) limit. By increasing the maximum angular momentum
in the basis sets the errors in correlation energy are expected to
decrease. Hence, in order to converge the quantum chemical
calculations one should obtain the results for a series of basis
sets with increasing maximum angular momentum. While for
most atoms corresponding to the first and second rows in the
Periodic Table a variety of various families of well-optimized,
systematically convergent basis sets are available, for heavy
alkali-metal atoms (K, Rb, Cs) the choice of basis sets is
limited. We have used a sequence of core-valence correlation
consistent basis sets developed by Prascher et al. [35] for Li and
Na, which we will denote as TZ, QZ, and 5Z. For K we have
used an uncontracted atomic natural orbital relativistic basis set
[36] (denoted as ANO-RCC) with the exponents of h functions
taken from g of the same basis (we follow the usual convention
to label the Gaussian functions with appropriate orbital angular
momentum). In each case the basis set has been augmented by
a set of two additional diffused functions per shell generated as
an even tempered set according to prescription implemented
in the MOLPRO program. The angular momentum structures of
largest basis sets for Li, Na, and K are 20s14p10d8f 6g1h,
22s20p10d8f 6g2h, and 23s18p7d4g2h, respectively.

A proper choice of helium basis set is also essential: the
optimal basis sets for the metastable triplet state have entirely
different character compared to basis sets for ground-state
helium [12]. Hence, we have decided to build a new basis set
that takes into account the diffused character of He∗. To this
end we have optimized a new set of exponents according to the
following procedure. The starting point was an uncontracted
ANO-RCC basis set for ground-state helium, i.e., 9s4p3d2f .
Exponents were reoptimized to minimize the total energy
in the DKH5 relativistic method (at the full configuration
interaction level) and extended to 15s8p5d4f 2g, which gives
less than 1 μhartree convergence. Then the lowest exponents
for each shell were again augmented and reoptimized for the
total energy of helium dimer quintet state at the equilibrium
distance. The final helium basis set has an angular momentum
structure of 17s10p7d5f 4g.

With such basis sets we have performed test calculations
for the spin-polarized homonuclear systems He∗

2, Li2, Na2, and
K2 to assess their performance near the equilibrium distance.
We have obtained very good agreement of De parameters with
experimental results: for He∗

2 we have obtained 1042.3 cm−1,
which is very close to the estimated limit of complete basis
set for the CCSD(T) method (1042.9 cm−1) [12] and about
5 cm−1 shallower than the theoretical potential obtained
with a full configuration interaction method. For Li2, Na2,
and K2 systems CCSD(T) values calculated with basis sets
described above are, respectively, 330.5 cm−1, 172.3 cm−1,
and 247.5 cm−1, which can be compared with experimental

values of 333.69 cm−1, 174.96 cm−1, and 255.017 cm−1

[37–39]. Clearly CCSD(T) with current basis sets systemati-
cally underestimates the well depths, but the deviations from
the benchmark values are small.

C. Long-range potential

The C6 van der Waals coefficients of a general A + B

system can be obtained by integration of the dipolar dynamic
polarizabilities α over the imaginary frequencies [40]:

CAB
6 = 3

π

∫
αA(iω)αB(iω)dω. (7)

For He∗ we have used the polarizabilities that are obtained from
explicitly correlated Gaussian wave functions with an accuracy
on the order of 0.1% for the zero frequency [18,41]. In the case
of alkali-metal atoms we have used the dynamic polarizabili-
ties at imaginary frequencies given by Derevianko et al. [42].
These polarizabilities give homonuclear C6 coefficients with
an accuracy of 0.14%, 0.25%, and 0.4% for the Li+Li, Na+Na,
and K+K systems, respectively. Hence, the inaccuracy of C6 in

heteronuclear systems determined as
√

1
2 (δ2

A + δ2
B) [42] (where

δA and δB are unsigned errors of pertinent static polarizabilities
of monomers A and B, respectively) is always smaller than
0.25%. Therefore the uncertainty in the long-range part of
the potential is much smaller than that of the short-range part
obtained from CCSD(T), and one can treat the long-range
part of the interaction as fixed by theory. Note that our C6

coefficients agree with the values obtained by Zhang et al.
[43] to better than 0.1%, which suggests that their estimated
uncertainty of 1%–5% is too conservative.

For the C8 and C10 coefficients we have used the values
calculated by Zhang et al. [43] for which the authors estimated
an uncertainty of about 1%–10%. However, our study of the
He∗+Rb system has shown that the error bounds for the C8

coefficient given by Zhang et al. were also far too conservative
[18].

III. AB INITIO POTENTIALS

A. Recommended ab initio potentials

The results of our calculations for He∗+(Li, Na, K, Rb)
quartet potentials are shown in Fig. 1; the values of the
potential well depth De, the equilibrium distance re, and the C6

coefficient are given in Table I. A complete list of the parameter
values of the MLR potential are given in the Appendix
(Table IV). The uncertainty of the ab initio calculations is
predominantly translated in an uncertainty in De, while the
uncertainty in re is smaller than 0.01a0.

The overall qualitative pattern of the potentials resembles
the triplet states of homonuclear alkali-metal systems: the one
containing Li has the deepest well, K and Rb are slightly
shallower than Li, and Na is anomaly shallower than the other
potentials. This pattern can be explained by the subtle interplay
between attractive dispersion forces and Pauli repulsion
(exchange energy). The Pauli repulsion increases with system
size as the atoms are systematically more diffused and have
systematically larger radius. An increase in exchange energy
is reflected in a monotonic increase of equilibrium distance
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FIG. 1. (Color online) Results of the ab initio calculations of
the potential energy curves of the quartet ( 4

�
+) He∗+alkali-metal

systems.

of dimers. On the other hand, the dispersion interaction gives
rise to the attraction of atoms in the system and its magnitude
correlates with the C6 coefficients. Li and Na have comparable
dispersion interactions, but a much larger exchange repulsion
in the case of Na results in a much smaller well depth. On
the other hand, K and Rb exhibit much stronger dispersion
interaction, thus their well depths are noticeably larger than
that of Na.

B. Accuracy of the ab initio potentials

To provide tests of the potential accuracy in the minimum
region we have performed additional calculations for He∗+(Li,
Na) using a coupled-cluster approach with full triple exci-
tations [44] (CCSDT) for basis sets with maximum angular
momentum limited to f (for Li and Na) and d (for He∗)
functions. CCSDT calculations were performed using the
CFOUR quantum chemistry code [45]. The results are shown
in Table II, and are discussed below. Note that a detailed
description of the accuracy of the He∗+Rb potential is given
in Ref. [18].

1. Basis set convergence

We have studied the basis set convergence for all systems.
To this end we studied the dependence of the De parameter in a
family of basis sets obtained by taking out from our actual basis
sets two and one highest angular momentum functions. Such

TABLE I. Key parameters of potential energy curves of quartet
( 4

�
+) He∗+alkali-metal systems, including equilibrium distance

re, the potential depth De, and the C6 long-range coefficient. The
uncertainty of the CCSD(T) calculations is reflected in the error bars
on De (see text).

System re (a0) De (cm−1) C6 (cm−1a6
0 )

He∗+Li 7.53 575+4
−1 4.5782 × 108

He∗+Na 8.57 361+4
−1 4.7723 × 108

He∗+K 9.08 470+9
−1 7.7314 × 108

He∗+Rb 9.41 453+8
−1 8.4673 × 108

TABLE II. Interaction energies of quartet states of the He∗+(Li,
Na) systems calculated for the distance corresponding to re of
recommended potential (7.53a0 and 8.57a0, respectively) using
CCSD(T) and CCSDT levels of coupled-cluster theory. We report
also test calculations with various basis sets and levels of frozen-core
approximation. See Sec. II B for notations regarding the basis sets.

Basis set Level Active electrons V (re) (cm−1)

He∗+Li
TZ CCSDT all 572.6
TZ CCSD(T) all 569.2
TZ CCSDT 3 578.3
TZ CCSD(T) 3 576.6
QZ CCSD(T) all 574.5
5Z CCSD(T) all 575.4
CBS CCSD(T) all 576.1

He∗+Na
TZ CCSDT 7 352.0
TZ CCSD(T) 7 350.2
QZ CCSD(T) all 362.2
5Z CCSD(T) all 360.8
CBS CCSD(T) all 359.3

basis sets roughly correspond to triple- and quadruple-zeta
quality (which we denote as TZ and QZ, respectively), while
our best basis set is of five-zeta quality (5Z).

We have found that even for the smallest basis sets of
TZ quality the binding energies are very close to the values
obtained from those obtained with 5Z basis sets: for the
He∗+(Li, Na) systems the CCSD(T) interaction energies
calculated for the recommended re’s (Table IV) are, respec-
tively, 569.2 and 350.2 cm−1, respectively, that is, 6.2−1 and
10.6 cm−1 below the recommended De parameters. Such rapid
convergence might result from the fact that in the high-spin
He∗+alkali-metal systems same-spin electronic pairs are the
main contribution to the interaction energy and it is known that
the correlation energy for such pairs saturates faster than for
the opposite-spin pairs. While we have estimated the CCSD(T)
CBS limit for the He∗+(Li, Na) interaction energies to be 576.1
and 359.3 cm−1, respectively, we rather prefer to treat the
difference between the 5Z basis set and the CBS interaction
energy as (unsigned) uncertainty attributed to the basis set
incompleteness and to take the results for the 5Z basis set
as recommended values with basis set errors of ±0.6 and
±1.3 cm−1, respectively.

Our basis set for He∗+K is not correlation consistent,
so instead of performing the CBS estimate we have simply
compared the result in the extended ANO-RCC basis set (see
Sec. II B) to the interaction energy obtained with the basis set
with removed h functions. The value of the latter is 468.6 cm−1,
hence the uncertainty due to basis set incompleteness is about
±1.3 cm−1.

2. Post-CCSD(T) contributions to the interaction energy

Using the CCSDT method in reduced basis sets we
have explored the performance of ab initio methods beyond
the CCSD(T) model for He∗+(Li, Na) systems using the
TZ-quality basis sets. For the systems containing nonpolar
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species quadruply excited configurations give substantially
smaller contribution to the binding energies [32], hence we
might treat CCSDT interaction energy at equilibrium as a
probe of post-CCSD(T) effects near the equilibrium distance.
Moreover, for the He∗+Li case CCSDT is exact if the 1s

electrons of Li are kept frozen, and is exact also for isolated
Li and He∗ atoms. We have calculated the CCSDT interaction
energy for all electrons active and for the case when the 1s

orbital is frozen. The results are given in the Table II. In a basis
set of TZ quality the CCSDT interaction energy is deeper by
merely 3.4 cm−1. The TZ basis set is remarkably close to the
complete basis set convergence limit (CBS), and we can safely
assume that the difference between CCSDT and CCSD(T) is
also nearly converged. It is interesting to notice that CCSDT
for three-electron calculations (i.e., with a frozen 1s shell of
Li) gives actually an even smaller difference between CCSDT
and CCSD(T) interaction energies (1.7 cm−1), which shows
that the core-relaxation effects in this case are comparable to
the contributions beyond the CCSD(T) model.

For He∗+Na we were able to calculate the CCSDT
interaction energies for seven active electrons. It turns out
that the difference between interaction energies CCSDT and
CCSD(T) is only 1.8 cm−1 in the TZ-quality basis set. We
might assume that with a converged basis set and all electrons
correlated the error might be at most twice as large.

For He∗+K we were not able to converge the CCSDT
calculations. Hence, to estimate bounds on De we have
compared how the analytical long-range potential given by the
van der Waals series compares to the interaction energies from
the actual calculations. It turns out that C6 coefficient extracted
from the ab initio CCSD(T) interaction energies (fitted from
20a0 to 35a0) is about 1.5% smaller compared to the value
obtained from perturbation theory [i.e., Eq. (7)]. If this value
is treated as an estimate of ab initio potential uncertainty it
translates to about +7 cm−1.

3. Bounds on De parameters

As mentioned in Sec. II B, our methodology predicts that
the well depths of the homonuclear dimers He∗

2, Li2, Na2,
K2 are systematically shallower compared to the experimental
values by 0.53%, 0.92%, 1.52%, and 2.94%, respectively. Be-
cause of the simple structure of the He∗ atom [for the isolated
He∗ atom the CCSD(T) method is exact] we expect that within
the He∗+alkali-metal atom systems the errors should be even
smaller. By taking an average of the appropriate percentage
uncertainties for homonuclear alkali dimers, i.e., δAB =
(δA + δB)/2 we might expect that our ab initio potentials are
deeper by about 0.7%, 1%, and 1.7%, which translates to
4.0, 3.7, and 8.1 cm−1 for the He∗+(Li, Na, K) potentials,
respectively. These uncertainties are consistent with our
estimate of post-CCSD(T) interaction energies, which in each
case predicts small and systematically positive contributions
beyond CCSD(T). We can conservatively assume that the real
potentials have a well depth parameter De that is (i) not smaller
than De from CCSD(T) minus basis set uncertainty; and (ii)
not larger than our De plus basis set uncertainty, plus the post-
CCSD(T) correction. Hence, for He∗+(Li, Na, K) systems
the De parameters for quartet potentials have uncertainties of
−1/ + 4, −1/ + 4, and −1/ + 9 cm−1, respectively.

TABLE III. Scattering lengths for all He∗+alkali-metal iso-
topologues, showing the scattering length a corresponding to the
recommended De, and the bounds [a−; a+] corresponding to the
bounds on De. Also the number of bound states N is given. Note
that for the alkali-metal atoms the even isotopes are fermions and the
odd ones are bosons, while 4He is a boson and 3He is a fermion.

System Isotopes a [a−; a+] N

He∗+Li 3 + 6 +26 [+23; +26] 11
3 + 7 −17 [−27; −15] 11
4 + 6 +22 [+19; +23] 12
4 + 7 −193 [−607; −161] 12

He∗+Na 3 + 23 +58 [+52; +59] 11
4 + 23 +7 [−2; +9] 12

He∗+K 3 + 39 +51 [+42; +52] 13
3 + 40 +49 [+41; +51] 13
3 + 41 +48 [+39; +49] 13
4 + 39 +97 [+74; +101] 15
4 + 40 +91 [+70; +94] 15
4 + 41 +86 [+67; +89] 15

He∗ + Rba 3 + 85 +5 [−17; +7] 13
3 + 87 +3 [−19; +5] 13
4 + 85 +16 [−4; +18] 15
4 + 87 +15 [−6; +17] 15

aThe scattering length values are shifted by about 1a0 from our
earlier reported values in Ref. [18], which suffered from a small
computational error.

Finally, we note that nonadiabatic effects can be neglected
here despite the relatively small reduced masses. For the
He∗+Li system in the van der Waals minimum the diagonal
Born-Oppenheimer correction calculated with the Hartree-
Fock electronic wave functions (using the CFOUR program
[45]) is about 0.02 cm−1. For the He∗+(Na, K) systems these
errors will be even smaller.

IV. SCATTERING LENGTHS

With the recommended MLR potentials the quartet scatter-
ing length a for all isotopologues can be calculated, for which
we have used the 1D renormalized Numerov propagator [46]
for a kinetic energy of 10 nK. Within the Born-Oppenheimer
approximation it is only the different reduced masses that give
rise to different scattering lengths for the isotopologues within
each system and we have verified that nonadiabatic terms are
negligible. We can conveniently explore the bounds on the ab
initio scattering lengths solely by scaling the De parameter
within its estimated bounds. Such scaling does not affect the
long-range part of the MLR potential, which is kept fixed. The
results are presented in Table III, showing a and the bounds
[a−; a+] related to the bounds on the calculated potentials,
where the lowest possible value of De corresponds to a+ and
the highest one to a−. Also the number of bound states N is
indicated, which differs between the two He isotopes by one
or two units.

The sensitivity of the scattering length a for the potential
well depth De is very nonlinear, and a diverges at each value
of De at which the potential supports a new bound state. In
most cases here a is far away from a pole and the bounds
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FIG. 2. (Color online) Scattering length as a function of reduced
mass for the He∗+Li potential, indicating the reduced masses for the
four isotopologues (red dashed lines). The gray area gives the bounds
on the scattering length related to the uncertainty in the potential.

on a are quite tight. A noticeable exception is 4He∗+ 7Li,
which lies very close to a pole, leading to a broader range
of possible scattering length values. This is also illustrated in
Fig. 2, showing a as a function of the reduced mass μ for the
He∗+Li potential. The appearance of poles in a when varying
De or μ is similar, as μ and V (r) appear only as a product
in the Schrödinger equation [see Eq. (2)]. For He∗+Li the
four isotopologues have quite different reduced masses such
that the corresponding scattering lengths can be very different.
The similarity between the scattering lengths of 3He∗+ 6Li
and 4He∗+ 6Li is purely accidental. For the heavier alkali-
metal atoms (K and Rb) the scattering lengths for the same
helium isotope are nearly the same, as the reduced mass hardly
changes for the different alkali isotopes.

The 16 isotopologues of He∗+(Li, Na, K, Rb) contain
six Bose-Bose, eight Bose-Fermi, and two Fermi-Fermi
mixtures. From the calculated scattering lengths we find that
the 4He∗+( 23Na, 39K, 41K, 87Rb) Bose-Bose mixtures are
miscible, while the Bose-Fermi mixtures provide both Fermi
core and Fermi shell situations. The 3He∗+ 40K Fermi-Fermi
mixture has already been proposed as its mass ratio is very
close to a narrow interval where a purely four-body Efimov
effect is predicted [47]. It is interesting to note that both 3He∗

and 40K have an inverted hyperfine structure, such that the
high-field seeking doubly spin-stretched state combination is
the lowest channel within the 3He∗+ 40K manifold.

From the calculated scattering lengths one can also find
whether alkali-metal atoms can be used to sympathetically
cool He∗, as an alternative to evaporative cooling of 4He∗ and
sympathetic cooling of 3He∗ by 4He∗. Although both these
schemes are successfully applied, sympathetically cooling
with another species would put less stringent requirements
on the initial number of laser-cooled 4He∗ atoms. Here one
has to take into account that the thermalization rate scales with
ξ = 4mHe∗mA/(mHe∗ + mA)2, and a2 in the zero temperature
limit (see, for instance, Ref. [18]). Na might be the most
suitable candidate for sympathetic cooling of 3He∗, while 7Li

is the best coolant for 4He∗ (although only until quantum
degeneracy is reached because of immiscibility).

V. CONCLUSIONS AND OUTLOOK

We have obtained accurate ab initio 4
�

+ quartet poten-
tials for He∗+(Li, Na, K, Rb), using CCSD(T) calculations
and accurate calculations of the C6 coefficients, and have
calculated the corresponding scattering lengths for all the
isotopologues. An accurate prediction of scattering lengths
for these many-electron systems is possible, in contrast to
nearly all other types of ultracold mixtures, because of the
small reduced masses and shallow potentials that result in a
small amount of bound states (N = 11–15), and therefore a
reduced sensitivity of the scattering length to the properties of
the potentials.

So far, we have only considered the quartet potential,
which is the only relevant potential for the doubly spin-
stretched state combinations, for which Penning ionization
is suppressed. Feshbach resonances that allow one to tune the
scattering length are in principle possible for He∗+alkali-metal
systems, as both atoms have electron spin and at least one
has nuclear spin; however, they would require spin-state
combinations in which at least one of the atoms is not in
the spin-stretched state, and scattering has both doublet and
quartet character. Unfortunately, accurate ab initio calculations
of the doublet potentials are far more challenging. First of all,
the doublet potentials need multiconfigurational treatment and
these methods are at present far less accurate than CCSD(T).
Secondly, for the doublet states coupling with continuum states
of ionized channels is possible, which might complicate the
calculations. In addition, the much larger well depths [26],
and therefore much larger amount of bound states, results in a
much stronger sensitivity of the doublet scattering length to the
underlying potential. Therefore, experimental input, such as
positions of Feshbach resonances, will be needed to determine
the doublet scattering properties.
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APPENDIX: PARAMETERS OF MLR POTENTIAL

In Table IV we give the parameter values for the MLR
potentials, where De and re are obtained directly from the
CCSD(T) calculations, C6 is calculated from the dynamical
polarizabilities, C8 and C10 are taken from Ref. [43], and the
φ parameters are obtained from fitting the MLR potential to
the CCSD(T) data. The values of p and q are chosen to obtain
the best fit.
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TABLE IV. Parameter values of the MLR potentials. The number of digits given exceeds their
precision. The C8 and C10 coefficients are taken from Ref. [43].

He∗ + Li

De 575.40 cm−1 φ0 −2.5087
re 7.5296a0 φ1 0.32009
C6 4.5782 × 108 cm−1 a6

0 φ2 −0.38608
C8 2.9058 × 1010 cm−1 a8

0 φ3 0.34763
C10 2.8093 × 1012 cm−1 a10

0 φ4 −0.78801
p, q 4, 4 φ5 −1.3009

He∗ + Na
De 360.80 cm−1 φ0 −1.8898
re 8.5678a0 φ1 0.30840
C6 4.7723 × 108 cm−1 a6

0 φ2 −0.059153
C8 3.4084 × 1010 cm−1 a8

0 φ3 0.20557
C10 3.4458 × 1012 cm−1 a10

0 φ4 −0.86720
p, q 5, 5 φ5 −0.47504

He∗ + K
De 469.83 cm−1 φ0 −1.8233
re 9.08326a0 φ1 0.33689
C6 7.7314 × 108 cm−1 a6

0 φ2 −0.12801
C8 6.7049 × 1010 cm−1 a8

0 φ3 0.13803
C10 7.6487 × 1012 cm−1 a10

0 φ4 −0.67352
p, q 5, 5 φ5 −0.22291

He∗ + Rb
De 452.71 cm−1 φ0 −1.8284
re 9.4079a0 φ1 0.48678
C6 8.4673 × 108 cm−1 a6

0 φ2 −0.065081
C8 8.0108 × 1010 cm−1 a8

0 φ3 −0.30087
C10 9.4242 × 1012 cm−1 a10

0 φ4 −1.5195
p, q 5, 4
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[29] J. Čı́žek, J. Chem. Phys. 45, 4256 (1966).
[30] P. J. Knowles, C. Hampel, and H. J. Werner, J. Chem. Phys. 99,

5219 (1993).
[31] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz
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