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Excitation cross sections in low-energy hydrogen-helium collisions
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Quantum chemical results for the lowest four potentials of the HeH molecule and the corresponding rotational
and radial nonadiabatic coupling matrix elements are reported. Close-coupling calculations of the integral cross
sections for the excitation processes H(1s) + He → H(2s,2p) + He are performed on this basis. The calculated
cross sections are in a reasonable agreement with the experimental data.
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I. INTRODUCTION

Inelastic processes determine properties of gaseous and
plasma media in many cases, in particular, for nonlocal
thermodynamic equilibrium effects which are important in
astrophysics and plasma physics, especially when hydrogen
and/or helium are involved [1]. Inelastic collision processes
are of particular importance. The main source for inelastic
collision process data is numerical calculations. A vast
majority of these calculations are performed within the Born-
Oppenheimer (BO) approach, which treats a collision in terms
of molecular states. The calculation of inelastic atom-atom
collision cross sections forms a straightforward application
of numerical quantum mechanics. Within the BO formalism,
the potential energy curves, the radial and rotational coupling
matrix elements of the collision pair are required as input data
for a close-coupling procedure yielding the collisional channel
wave functions, the nonadiabatic transition probabilities, and
the cross sections. Using the molecular-state representation
(and molecular coordinates) within the BO formalism leads to
the so-called molecular-state (or electron-translation) problem,
which formed a severe problem for many years; see, e.g., [2–
6]. The problem can now be solved by different methods
beyond the BO approach [3,7–9], as well as within the BO
formalism [4–6]. In the present study, the molecular-state
problem for inelastic H + He collisions is resolved by means
of the reprojection method [4–6] within the BO approach.
The reprojection method does not require calculations of
any additional quantum chemical values; it is based on only
fixed-nuclear potentials and nonadiabatic couplings computed
with the electronic coordinate origin at the center of nuclear
mass.

The HeH system with only three electrons offers itself
as a testing ground for our theoretical capabilities in this
field. Calculations of the adiabatic potential energy curves
leading to the ground and low-lying excited states of the HeH
molecule and of the corresponding coupling matrix elements
are reported and discussed in the present paper. The integral
cross sections for the processes

H(1s) + He → H(2s,2p) + He (1)

obtained on this basis are computed and found to be in a
reasonable qualitative agreement with available experimental
data.

*andrey.k.belyaev@gmail.com

II. QUANTUM CHEMICAL CALCULATIONS

The quantum chemical calculations [5] were carried out
on the configuration-interaction level, using a code developed
by Hirsch et al. [10] and Bruna and Peyerimhoff [11] [the
multireference single- and double-excitation configuration-
interaction (MRD-CI) method] and a basis of 17s, 10p, and
2d atomic orbitals, each centered at one of the two atoms.
The electronic states X 2�+, A 2�+, B 2�, and C 2�+, which
converge to the ground and first excited levels of the pair of
separated atoms, are considered here.

Figure 1(a) shows the adiabatic potential curves Uj�(R), R
being the internuclear distance; logarithmic scales are used
in order to bring out the repulsive branch more clearly.
Figure 1(b) shows the differences between the potentials of
the excited states and that of the ground state. The calculations
were carried out down to distances of 0.05 a.u., where the
system is close to the united atom limit. The experimental
energy level differences of the united atom Li are shown
as black squares. The good agreement emphasizes the good
quality of the present results even in the strongly repulsive short
range. Similarly, the excitation energy for the free H atom at
R → ∞ was always found to come out at the expected value
of 0.375 a.u. within narrow limits.

The radial coupling matrix elements are the quantities
〈j �|∂/∂R|k �〉 and the rotational coupling elements are
〈j �|iLy |k � ± 1〉, where |j �〉 are the electronic molecular
wave functions and Ly is the component of the electronic
orbital angular momentum operator perpendicular to the
internuclear axis. The calculated values of the matrix elements
are shown in Figs. 2(a) and 2(b), respectively. The operation
∂/∂R is a partial derivative; it was carried out with the
electron coordinates fixed with respect to the center of mass
of the two nuclei in order to reach the simplest and standard
form of the nuclear dynamical equations [4,12]. Similarly,
Ly was computed with respect to the center of nuclear mass.
Figure 2(a) is dominated by a peak at 0.8 a.u. in the XA curve,
which reflects an avoided crossing between the X 2�+ and
A 2�+ states. The corresponding minimum in the XA potential
difference is clearly visible in Fig. 1(b). The molecular X and A
states interchange their character in the crossing region, which
is witnessed by the rapid variation of the rotational coupling
elements in the figure in this area.

The important feature of the quantum chemical calculation
is nonvanishing values of the radial couplings in the asymptotic
(R → ∞) region:

〈X 2�|∂/∂R|A 2�〉∞ = −0.1299 a.u., (2)
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FIG. 1. The X 2�+, A 2�+, C 2�+, and B 2� adiabatic potential
energy curves of HeH (a), and the differences of the potentials
from the ground-state potential, with the ground-state potential set to
zero (b). The molecular states are identified by the first letter.

〈X 2�|∂/∂R|C 2�〉∞ = 0.1819 a.u.; (3)

see Fig. 2(a). Nonzero asymptotic radial couplings are a
fundamental feature of the standard BO approach. Indeed, the
asymptotic radial couplings calculated with the electron origin
at the center of nuclear mass read

〈j�| ∂

∂R
|k�〉∞ = γ

m

�2
[Uj�(∞) − Uk�(∞)]〈j�|dz|k�〉,

(4)

where γ is the scalar factor, at present γ = MHe/(MHe + MH),
m the electron-nuclei reduced mass, and 〈j�|dz|k�〉 the
electronic transition dipole moment calculated on asymptotic
molecular wave functions; see [4–6,12] for details. Usually,
asymptotic molecular wave functions converge into (products
of) atomic wave functions, and, therefore, 〈j�|dz|k�〉 are
expected to be equal to the atomic transition dipole moments.
However, in the present case of H + He collisions, the excited
states are asymptotically degenerate and the asymptotic molec-
ular states are linear combinations of (products of) atomic
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FIG. 2. The radial (a) and rotational (b) coupling matrix elements.
The adiabatic molecular states X 2�+, A 2�+, C 2�+, and B 2� are
identified by the first letter.

states: |j �〉 = B |H(nlλ) + He〉 (λ = σ,π, . . .), that is,
⎛
⎜⎜⎜⎝

|X 2�〉
|A 2�〉
|C 2�〉
|B 2�〉

⎞
⎟⎟⎟⎠ = B

⎛
⎜⎜⎜⎝

|H(1sσ ) + He〉
|H(2sσ ) + He〉
|H(2pσ ) + He〉
|H(2pπ ) + He〉

⎞
⎟⎟⎟⎠, (5)

where

B =

⎛
⎜⎜⎜⎝

1 0 0 0

0 α β 0

0 −β α 0

0 0 0 1

⎞
⎟⎟⎟⎠ (6)

is a composition unitary matrix, and α and β are some coeffi-
cients satisfying the condition |α|2 + |β|2 = 1. In this case, the
asymptotic radial couplings are equal to linear combinations
of derivative matrix elements calculated on atomic wave
functions. Taking into account that 〈1sσ |∂/∂R|2sσ 〉 = 0, one
has in the asymptotic region

〈X 2�| ∂

∂R
|A 2�〉∞ = β 〈1sσ | ∂

∂R
|2pσ 〉, (7)
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〈X 2�| ∂

∂R
|C 2�〉∞ = α 〈1sσ | ∂

∂R
|2pσ 〉. (8)

Equations (7) and (8) explain why there are two nonvanishing
asymptotic radial couplings, XA and XC, in the quantum
chemical calculations although there is only one nonzero
atomic transition dipole moment between the states treated.
The matrix element 〈1sσ |∂/∂R|2pσ 〉 can be calculated an-
alytically; it has the value 0.2235 a.u. Taking the matrix el-
ements 〈X 2�|∂/∂R|A 2�〉∞ and 〈X 2�|∂/∂R|C 2�〉∞ from
the quantum chemical calculations Eqs. (2) and (3), one gets
α = 0.8138 and β = −0.5812; see Eqs. (7) and (8). These
coefficients determine the composition matrix B; see Eq. (6).

Another important feature of the quantum chemical results
is an infinite increase of the absolute value of the asymptotic XB
rotational coupling; see Fig. 2(b). Again, this is a fundamental
characteristic of using the molecular representation within
the standard BO approach; see Eq. (20) in Ref. [5]. Indeed,
the nonvanishing limits of the radial couplings reflect a mere
electron translation effect: the electron wave functions move
with one of the nuclei when the distance R becomes large
and not with the center of nuclear mass, which was used as
the origin when calculating the matrix elements. The increase
of the XB term towards large R in Fig. 2(b) has a similar
origin. The large-R limits of radial as well as rotational matrix
elements can be changed by choosing another origin, but this
would lead to additional terms in both the total Hamiltonian
and the coupled-channel equations. These additional terms
would compensate changing of the couplings and keep the
same nonzero terms in the dynamical equations; see [4,12].
A similar conclusion has been made in Refs. [13,14]. Thus,
special care should be taken in nonadiabatic nuclear dynamics
about both features concerning the radial and rotational
asymptotic couplings.

III. NONADIABATIC NUCLEAR DYNAMICS

The quantum mechanical scattering problem can be cast
into the form of a system of coupled equations, where the
coupling terms between different 2�+ states are proportional
to the radial coupling elements and those between 2�+ and 2�

states to the rotational coupling elements divided by R2. The
coupled equations contain not only first- but also second-order
derivative coupling terms. The rotational coupling terms of
this type were neglected; the corresponding radial coupling
terms, which are required for the conservation of current, were
modeled by first-order terms as described in Ref. [15]. Owing
to the finite number of electronic states considered, the coupled
system is truncated to four coupled equations in the present
treatment. The nonzero asymptotic XA and XC radial couplings
discussed above imply inelastic transitions between electronic
molecular states at arbitrarily large distance, but inelastic tran-
sition probabilities should be calculated not between molecular
states, they should be computed between electronic scattering
states in the asymptotic region, and the reprojection method
takes this into account. The reprojection method consists
in solving the coupled equations with the matrix elements
as they are shown, and taking corresponding care when
constructing the correct asymptotic scattering wave functions
from the numerical solution. The important point is that each
single incoming and outgoing asymptotic wave function for a

scattering (atomic) channel written in scattering coordinates
in the asymptotic region populates several molecular wave
functions written in molecular coordinates at a projection
distance, and vice versa. The form of the coupled equations
and the way in which the S matrix is obtained from the
channel wave functions are discussed in detail in Ref. [5]. The
reprojection method is generalized in Ref. [6] for multielectron
collision systems.

The neglect of the molecular-state problem, that is, treating
an inelastic probability as a transition probability between
molecular states instead of a transition probability between
scattering (atomic) states (which is in turn a result of the
neglect of the difference between internuclear and interatomic
coordinates in asymptotic wave functions) leads to a severe
problem, which is twofold. (i) The inelastic transition proba-
bility calculated as a probability between molecular states in
the asymptotic region remains an oscillatory function of the
upper integration limit [4–6]. This oscillatory behavior results
in some uncertainty for the inelastic transition probability. This
uncertainty might be small as compared to a rigorous transition
probability, but if the rigorous probability has a small value, the
uncertainty might be much larger than the probability itself;
see [6]. (ii) Since nonadiabatic transitions between molecular
states remain at arbitrarily large internuclear distance, then
nonadiabatic transition probabilities remain nonzero at arbi-
trarily large total angular momentum quantum number J . This
leads to a lack of convergence of the inelastic cross section
with respect to the summation over J which goes to ∞ [6]; so
the calculated inelastic cross section might have no sense. The
reprojection method [4–6] resolves both problems.

Degeneracy of the excited hydrogen states observed in the
present study adds an extra complication. In order to calculate
the final scattering matrix Sfinal from the scattering matrix
S computed from the coupled equations by means of the
reprojection method [5], one has to apply the additional trans-
formation with the composition matrix B defined by Eq. (6):

Sfinal = B† S B. (9)

The inelastic cross sections are calculated from the Sfinal

matrix as usual.
Figure 3 shows the calculated inelastic cross sections

for collision energies from the threshold to 1 keV. The
light lines are the integral cross sections for H(2pσ ) and
H(2pπ ) production, which add up to the H(2p) cross section
shown by the upper heavy line. The lower heavy line is the
integral cross section for H(2s) production. At the lowest
energies, H(2pσ ) formation dominates, indicating that radial
coupling is the only relevant mechanism here. We deal at
low energy essentially with the X → A transition induced
by the avoided crossing at 0.8 a.u. With increasing energy,
H(2pπ ) production soon becomes comparable, indicating
the growing importance of rotational coupling. Rotational
coupling between the converging X and B states near the united
atom limit is a very effective mechanism, which is however
suppressed at the lowest energies because the necessary close
approach of the nuclei is not possible. Figure 1(a) shows
how small distances become more and more accessible with
increasing energy, leading to an increasing weight of the
rotational coupling mechanism. The asymptotic population
of the B state is completely found back as the atomic 2p
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FIG. 3. (Color online) The cross sections as functions of the
relative energy. Heavy lines: numerical results for H(2s) (lower, red
line) and H(2p) (upper, black line). Light lines: the partial cross
section for H(2pσ ) (blue dashed line) and H(2pπ ) (orange dot-dashed
line). Symbols: H(2p) production (upper, black) and an upper limit
for H(2s) production (lower, red).

population. Rather, the population of the A and C molecular
states is redistributed into H(2s) and H(2p) populations,
according to the asymptotic composition (5) of the molecular
states. The small value of the 2s cross section compared to
2pσ is therefore an interference effect, reflecting a comparable
asymptotic population of the A and C states and a relative phase
favoring superposition to form 2p.

The symbols in Fig. 3 are experimental results [16]. They
were derived from measurements of the Ly-α emission, the
increase of the emission under the influence of an electric
field. The data had to be corrected for cascades. Due to the
related uncertainty, the 2s data form only an upper limit
to the actual 2s production cross section. Experimental and
theoretical data agree with respect to the order of magnitude
of the cross sections, with respect to the relative magnitude

of the 2s and 2p cross sections, and with respect to the com-
paratively slow increase of the cross sections with the energy.
However, discrepancies of up to a factor of 3 remain between
experiment and theory. In previous similar applications to more
complex collisional systems (see, e.g., Na + H [15]) the typical
remaining discrepancy was not larger than a factor of 2. For
the present simple system, a better agreement might have been
expected.

IV. CONCLUSION

Possible sources of deviation between the experimental
and numerical data can have various origins: (i) A major
shortcoming of the experimental data consists in the highly
indirect procedure used for determining the absolute cross
section scale. The data were normalized for this purpose to
results published by other authors, which in turn relied again
on a similar normalization. The error of the experimental data
in Fig. 3 was estimated to be of the order of 40% [16]. A larger
error of the absolute scale seems possible, however, and offers
a straightforward explanation for a large part of the observed
discrepancy. (ii) The neglect of higher excited states in the
system of coupled equations. Inclusion of the molecular states
leading to H(n = 3) can therefore be expected to have some
effect on the numerical results, but would probably not lead to
changes beyond a few tens of percent. Generally, one expects
errors of this type to be less relevant for the range of energies
near the threshold, compared to the 1 keV range. (iii) Errors
in the calculated potentials and coupling matrix elements are
expected to be smaller than for the Na + H system referred to
above and should therefore in general result in correspondingly
smaller deviations.

In summary, the numerical treatment of the present system
offers no severe conceptual or mathematical difficulties, either
on the quantum chemical or on the dynamical level. The degree
of agreement with the experimental data makes a repetition of
the experiment highly desirable.
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