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Low-energy positron–nitrogen-molecule scattering: A rovibrational close-coupling study
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We study the positron–nitrogen-molecule scattering process under the rovibrational coupling method to include
the effect of rotational and vibrational motion of the nuclei dynamically during the scattering process. Here we
compute the angle integrated elastic and (state-to-state) rotational excitation, elastic and (state-to-state) vibrational
(summed over rotational) excitation, and total (summed over rotational and vibrational) cross sections for the
incident positron energy between 0.0 and 10 eV. However, in present paper we concentrate our discussion on
the results in the lower-energy region, especially below 3.0 eV. To calculate the cross sections we use the model
correlation polarization potential to include the distortion effect of the target electronic state in the presence of
the positron. The calculated total cross sections are compared with the theoretical calculations and experimental
results. The present theoretical results agree quite well with the recent theoretical and measured values. The
vibrational and rotational elastic and excitation cross sections are also compared with the existing theoretical
results. The state-to-state potential coupling and dynamical coupling effects on different cross sections are studied.
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I. INTRODUCTION

Positron (electron) scattering with atoms or molecules is
one of the important areas of research to study the nature of
the interaction between subatomic particles [1–3]. In these
scattering processes the projectile (positron or electron) and
the electrons of the target atom or molecule interact via
the Coulomb interaction. However, the theoretical quantum-
mechanical study of these atomic or molecular systems
involves the quantum-mechanical state of the target, which
produces the so-called static and polarization potential. In
the atomic case the electronic states of the atom produce
the (electronic) state-to-state coupling potential. Under the
close-coupling method these electronic coupling potentials act
dynamically via a competitive process among the different
channels when one solves the multichannel coupled differ-
ential equation in determining the scattering cross sections
[4,5]. In the case of the molecular scattering process the
nuclear motion (rotational and vibrational motion of the nuclei)
takes part in the scattering dynamics in addition to the
molecular electronic motion. Thus the theoretical quantum-
mechanical calculation of the positron-molecule scattering
process becomes complicated due to the inclusion of the
nuclear dynamics. To tackle the problem several approximate
methods have been used, such as fixed nuclei, adiabatic nuclei,
adiabatic nuclei rotation, laboratory frame close-coupling
(LFCC), body frame vibrational close-coupling (BFVCC), and
rovibrational close-coupling (rovibrational LFCC) methods
[6–10]. Among these the rovibrational close-coupling method
is an elaborate and extensive way to include the rotational
and vibrational motion of the nuclei in the calculation. Earlier
this method was used to study positron–hydrogen-molecule
scattering (see, e.g., [11]). In this method the total wave
function of the projectile-target system is expanded in terms
of electronic, rotational, and vibrational wave functions of the
molecule. In the present work we study positron–nitrogen-
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molecule scattering using the rovibrational close-coupling
method, keeping the molecule in its electronic ground state.
Thus the electronic state effect appears here via the static and
polarization potential like the atomic case. However, unlike
the atomic case, in the molecular scattering process under the
rovibrational coupling scheme (for the electronic ground state)
one has to calculate the rotational and vibrational state-to-state
potential, known as the rovibrational coupling potential. It
should be noted that these coupling potentials include not
only the rotational and vibrational states of the molecule
but also the signature of the state of the projectile through
the angular momentum coupling between the target and the
projectile. Thus, in addition to the accurate determination of
the potential, especially the polarization potential, one needs
to concentrate on computing these coupling potentials for a
theoretically accurate determination of the scattering cross
sections. The calculation of the polarization potential for the
molecular case is a crucial task that includes the distortion
effect of the target electronic state in the presence of the
projectile. Recently, Tenfen et al. [12] computed the ab initio
correlation-polarization potential for the positron-target sys-
tem, for different distances, following the approach proposed
by Assafrao et al. [13] to get the scattering cross sections for
positron–nitrogen-molecule scattering. They obtained fairly
good results using this polarization potential when compared
to the recent measurements. Although the calculation of the ab
initio potential has to be used to get an accurate determination
of the theoretical results, the determination of this potential
is a very complicated task for any large system. Thus one
has to rely on some approximate and reliable method to
calculate this potential. One such model potential is the
positron correlation-polarization potential (PCOP), specially
designed for the positron as an incident particle. This model
potential has been used in a number of scattering calculations
to predict reliable results; see, e.g., those of Mukherjee and
Sarkar [11], Mukherjee et al. [14], Gianturco and Mukherjee
[15], Mazon et al. [16] and references therein. In the present
calculation one of the motivations is to study the coupling
effect of the rotational and vibrational state-to-state potentials
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on the scattering cross sections. In the present study we
calculate state-to state coupling of the total potential (static
plus correlation polarization) under the rovibrational coupling
scheme using the PCOP. These close-coupling potentials are
used in the solution of the (rotational and vibrational) close-
coupled differential equation for the scattered multichannel
positron wave function to study the effect of this dynamical
coupling on scattering cross sections. We present here the
total angle integrated cross sections (summed over rotational
and vibrational cross sections), vibrational angle integrated
elastic and excitation cross sections (summed over rotational
cross sections), and rotational angle integrated cross section
for vibrationally elastic processes. The present results are also
compared with some of the existing theoretical and experimen-
tal results. It may be noted that at lower projectile energy the
effect of the polarization potential becomes dominant, which
is likely to give higher scattering cross sections as observed
recently (discussed below). To verify the theoretical prediction
and experimental observations we concentrate our discussion
in the present study up to 3.0 eV.

II. THEORY

The theoretical scattering cross sections are calculated by
solving the Schrödinger equation

(H − E)� = 0 (1)

with the usual scattering boundary conditions. Here H and
� are the total Hamiltonian and the total wave function
of the positron molecule system. In the present case of
positron–nitrogen-molecule scattering, using the (electroni-
cally elastic) rovibrational close-coupling method under the
Born-Oppenheimer approximation, the total Hamiltonian H

of the system is given by

H ≡ H (�rp) + Hel(�re) + Hvib(R) + Hrot(
�

R)

+Vp−mol(�rp,�re, �R), (2)

where �rp is the positron coordinate measured from the center
of mass of the system; �re collectively denotes the molecular
electronic coordinates; �R is the internuclear set of coordinates
of the molecule; H (�rp) is the kinetic energy operator for

the incident positron; Hvib(R), Hrot(
�

R), and Hel(�re) are the
vibrational, rotational, and electronic Hamiltonians of the
target molecule, respectively; and Vp−mol(�rp,�re, �R) represents
the positron-molecule interaction. The total wave function �

is characterized by, for the present method, the electronic,
vibrational, and rotational quantum numbers of the molecule
and the angular momentum quantum number of the projectile
particle 0, v, j , and l, respectively, and is described by

�JM
0vjl(�rp,�re, �R) = χ0(�re, �R)

∑
α′′

r−1
p u

Jvjl

v′j ′l′ (rp)

×Y JM
j ′l′ (

�
r p,

�

R)ϕv′(R), (3)

where χ0(�re, �R) is the ground-state electronic wave function
that parametrically depends on �R and ϕv′(R) is the vibrational
wave function of the molecule. The angular basis function Y

is given by

Y JM
j ′l′ (

�
r p,

�

R) =
∑
mj

∑
ml

〈j lmjml|j lJM〉Ylml
(
�
r p)Yjmj

(
�

R).

(4)

The coefficients 〈j lmjml | j lJM〉 are the familiar Clebsch-

Gordan coefficients and Yjmj
(
�

R) and Ylml
(
�
r p) are the nuclear

rotational and positron angular wave functions, respectively.
In this model �J = �j + �l and its projection M along the nuclear
axis are the good quantum numbers (constants of motion
of the system). After substitution of the above equations
into the Schrödinger equation (1) one gets the corresponding
rovibrational close-coupled differential equation(

d2

dr2
rp

− l′(l′ + 1)

r2
p

+ k2
αα′

)
u

Jjl

α′ (rp)

=
∑
α′′

〈α′,J |V ′(�rp, �R)|α′′,J 〉uJjl

α′′ (rp), (5)

where α collectively denotes the quantum numbers v,j,l,

V ′(�rp, �R) =
∫

χ0(�re, �R)Vp−mol(�rp,�re, �R)χ0(�re, �R)d�re, (6)

k2
jj ′vv′ = 2(E − εjj ′ − εvv′ ), (7)

with E is the incident positron energy and εjj ′ and εvv′ the
energy differences between rotational levels j and j ′ and the
vibrational levels v and v′, respectively.

The rotational and vibrational state-to-state coupling poten-
tial matrix elements used in the coupled equations are given
by the relation

〈v′j ′l′|V ′(�rp, �R)|v′′j ′′l′′〉

= 2
∫∫∫

ϕv′(R)Y JM∗
j ′l′ (

�
r p,

�

R)V ′(�rp, �R)ϕv′′ (R)

×Y JM
j ′′l′′ (

�
r p,

�

R)dRd
�

Rd
�
r p. (8)

Here the interaction potential has been expanded in terms of
Legendre polynomials as

V ′(�rp, �R) =
∑

λ

vλ(rp,R)Pλ(
�
r p,

�

R). (9)

Equation (8) takes the final form (after integration over the
nuclear and projectile angular coordinates R̂ and r̂p)

〈v′j ′l′|V ′(�rp, �R)|v′′j ′′l′′〉
=

∑
λ

〈v′(R)|vλ(rp,R)|v′′(R)〉fλ(j ′,l′,j ′′,l′′; J ), (10)

where fλ(j ′,l′,j ′′,l′′; J ) is the angular coupling factor given by
Lane and Geltman [17], which implies the angular coupling
between rotational components (j,l) of initial and final states
of the target and projectile

fλ(j ′,l′,j ′′,l′′; J ) = (−1)j
′+j ′′−J (2λ + 1)−1[(2j ′ + 1)

× (2l′ + 1)(2j ′′ + 1)(2l′′ + 1)]1/2

× (l′l′′00 | l′l′′λ0)(j ′j ′′00 |j ′j ′′λ0)

×W (j ′l′j ′′l′′; Jλ), (11)
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TABLE I. Vibrational and rotational threshold energies (in eV) for the nitrogen molecule. Here v and j label the vibrational and rotational
quantum numbers, respectively.

v = 0 v = 1 v = 2 v = 3 v = 4

j = 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4

0.0 0.002 0.005 0.289 0.290 0.294 0.574 0.576 0.579 0.856 0.857 0.861 1.134 1.135 1.135

where (ab00 |abλ0) and W (j ′l′j ′′l′′; Jλ) are the familiar
Clebsch-Gordan and Racah coefficients, respectively. In
Eq. (10) the integration is over the nuclear coordinate R only.

As is evident from Eq. (10), to calculate the matrix
element, one needs the vibrational wave functions of the
molecule. These vibrational wave functions of the molecule
are calculated using the differential equations(

d2

dR2
+ 2μ[εv − ε(R)]

)
ϕv(R) = 0, (12)

where μ is the reduced mass of the molecule and ε(R) is
electronic energy for different nuclear geometries that support
the different vibrational bound states.

The interaction term Vp−mol(�rp,�re, �R) is the sum of two
terms. One is the static term, which is calculated using the
standard procedure. The well-known model PCOP, specially
designed to describe the interaction between the positron and
distorted molecule in the presence of the positron, is used to
obtain the very important correlation-polarization potential.
The details and its functional form are given elsewhere, viz.,
in [11].

The solution of rotationally and vibrationally coupled dif-
ferential equations give the T-matrix elements T J (v′j ′l′,vj l)
and using these elements we calculate the rotationally elastic
and state-to-state integrated cross section (ICS) (angle inte-
grated cross section), the vibrationally elastic and state-to state
ICS (summed over the rotational ICS), and the total cross
section (TCS) (summed over rotational and vibrational ICS).
Besides these here we also calculate the quantity, the average
vibrational energy transfer, defined as

〈	Ev〉 =
∑v′

v �=0 	Ev→v′σ (v → v′)∑v′
v=0 σ (v → v′)

. (13)

This term describes the overall probability of transferring
energy into the molecular degrees of freedom from a given
initial level (here the vibrational level v = 0).

III. COMPUTATIONAL DETAILS

To get the T-matrix elements and hence to calculate the
cross sections the coupled differential equation (5) is solved
using the variable-step-size Numerov method up to the radial
distance of the positron 100a0 measured from the center of
mass of the molecule. To obtain the potential matrix elements
defined in Eqs. (6) and (7) one needs to know the ground-
state electronic wave function χ0(�re, �R) and the vibrational
wave function ϕv(R). We have used Gaussian-type orbital
expanded self-consistent-field electronic wave functions for
17 nuclear distances ranging from 1.4a0 to 7.5a0, which are
the same as those used by Gianturco and Mukherjee [15].

The vibrational wave functions are obtained using Eq. (12).
To get the converged cross sections the static potential is
calculated up to the angular momenta λmax = 16. The coupled
differential equations are solved for the maximum vibrational
states vmax = 4, the maximum rotational states jmax = 4, the
maximum partial waves lmax = 8, and the maximum total
quantum number Jmax = 4. The maximum number of coupled
equations solved is 45. In Table I we have tabulated the
rotational and vibrational threshold energies for N2.

IV. RESULTS AND DISCUSSION

In the present work we calculate the angle ICSs, viz., the
elastic and (state-to-state) rotational, elastic, and (state-to-
state) vibrational and TCSs for positron–nitrogen-molecule
collisions. We compare our present results with the other
theoretical and experimental results. Before studying the
cross-section results we first present a discussion on the
coupling potentials that play important roles in the scattering
processes. There are two types of coupling that appear in
the close-coupling method: potential coupling and dynamical
coupling. The potential coupling is included via the terms
〈v,j,l|vλ|v′,j ′,l′〉 in the differential equation (5) (expressed in
an elaborate form). The dynamical coupling effect appears in
solving the coupled differential equation (5) where the solution
of a particular channel depends on the influence of other
channels. A number of coupling potentials appear in solving
Eq. (5) whose number depends on the number of vibrational v

and rotational j states of the molecule as well as the number of
partial waves l considered. In Figs. 1 and 2 we plot such state-
to-state potentials along with the other theoretically calculated
values of Tenfen et al. [12] and Mazon et al. [16]. The present
vibrationally elastic coupling potentials for two different
moments (spherical and nonspherical components λ = 0,2)
〈0,0,0|v0−tot|0,0,0〉, 〈0,2,2|v0−tot|0,2,2〉, 〈0,2,2|v2−tot|0,2,2〉,
and 〈0,2,2|v2−tot|0,2,2〉NRC are plotted in Fig. 1 [x-tot means
the total (static plus polarization) potential and NRC implies
that the angular coupling factor fλ(j ′,l′,j ′′,l′′; J ) defined in
Eqs. (10) and (11) is omitted from the summation]. By omitting
this factor from the summation we effectively ignore the
angular coupling. It may be noted that the no-rotational-
coupling data shown here are for comparison only and are
not used in the present calculation. As the nitrogen molecule
is a homonuclear diatomic molecule, only even values of the
j , l, and λ components for potentials are nonzero. Figure 1
shows that the variation of the spherical components of the
potential with the distance is almost the same in nature,
although the magnitudes differ from each other. It should
be noted that the correlation-polarization potential used in
the present calculation and used by Mazon et al. [16] is
the same (the PCOP) and both calculations consider the
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FIG. 1. (Color online) Present computed rovibrational state-to-
state coupling potentials for spherical and non-spherical (λ = 0,2)
components along with the other theoretical results. The potential
matrix elements are defined in the text.

vibrational excitation processes. Thus the calculated spherical
component of the potential by Mazon et al. is nearly the same
as the present 〈0,2,2|v2−tot|0,2,2〉NRC component as this has no
angular dependence or rotational angular momentum coupling.
However, the small difference may be attributed to the use of
different vibrational wave functions in computing the coupling
potentials. The difference between the potentials calculated by
Tenfen et al. [12] and the present one is due to the use of a
different correlation-polarization potential. For comparison, in
Fig. 1 we also plot the component 〈0,2,2|v0−tot|0,2,2〉. From
the figure it is evident that the magnitude of this component
is the same as that of the component 〈0,0,0|v0−tot|0,0,0〉 (the

units of

FIG. 2. (Color online) Present computed rovibrational state-to-
state coupling potentials for nonspherical (λ = 2) components. The
potential matrix elements are defined in the text.

et. al.
et. al.

et. al.

et. al.
et. al.

FIG. 3. (Color online) Comparison between present computed
angle integrated total cross sections and the theoretical results of
Tenfen et al. and different measured values for positron–nitrogen-
molecule scattering.

two graphs merge with each other), although j and l differ as
no angular factor appears for λ = 0. Another very interesting
result is seen when we compare the 〈0,2,2|v2−tot|0,2,2〉 and
〈0,2,2|v2−tot|0,2,2〉NRC components. They show that inclusion
of rotational coupling makes the final effective potential less
repulsive for positron-molecule collisions, which affects the
cross-section results. In Fig. 2 we present two other coupling
potentials 〈0,2,2|v2−tot|0,2,2〉 and 〈0,4,4|v2−tot|0,4,4〉, two
nonspherical components of the potential. This figure shows
that the nature of variation of the two components is the same
and the magnitudes are also comparable. This indicates that,
although the scattering probability for the j = 4 state may be
less than that for the j = 2 state, with j = 4 being the higher
excited state, the coupling effect of the higher excited states in
the scattering dynamics on the other probabilities is not to be
ignored.

In Fig. 3 we plot the present computed angle integrated total
(summed over rotational and vibrational) cross sections with
the experimental results of Hoffman et al. [18], Charlton et al.
[19], Sueoka and Hamada [20], Karwasz et al. [21], and Zecca
et al. [22] up to 10.0 eV. In this figure the calculated result of
Tenfen et al. [12] is also included for comparison. The figure
shows that the present result is in very good agreement with
the measured values above about 2.0 eV. It can be seen that the
measured cross sections differ from each other substantially
in the lower-energy region, i.e., below 3.0 eV. Zecca et al.
attributed the difference of their results with the other measured
values to the superior angular resolution of their apparatus
compared to those of other measurements. Tenfen et al. [12]
compared their result with the previously calculated results and
experimental values. Their results are in close agreement with
the recently measured values of Zecca et al. They attributed this
agreement to the fairly described ab initio target polarization
potential. In the present calculation we do not use any such ab
initio potential, but have used the so-called model correlation
polarization potential, like the PCOP in the framework of the
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rovibrational close-coupling scheme. However, it is interesting
to note that the trend of the present result, especially in the
lower-energy region, matches well with the results of Tenfen
et al. and Zecca et al. except for the appearance of a minimum
in the present result. Tenfen et al. in their paper discussed the
utility of using an ab initio potential over the model potential
like the PCOP in determining the scattering cross sections. In
their discussion they pointed out the important differences in
the construction of ab initio and model potentials. These are
mainly (i) the choice of cutoff radius and (ii) the consideration
of the target molecule as a free-electron gas in the presence of
a positron to construct the PCOP. In the present calculation,
as we are using the PCOP, the effect of the choice of cutoff
radius may give rise to the minimum in the computed cross
section shown in Fig 3. However, in the present rovibrational
close-coupling formalism the target effect appears through the
inclusion of (nuclear) state-to-state coupling. The larger values
of the cross sections obtained by Tenfen et al. are due to
the use of the ab initio polarization potential, which includes
the target distortion effect and produces a more attractive
polarization potential than the other polarization potential
used. To calculate this potential Tenfen et al. took the distorted
target molecule and calculated the electronic wave function,
which depends parametrically on the nuclear coordinates.
Thus their calculated distortion potential is electronic in
nature where the effect of the nuclear degree of freedom
is included parametrically. On the other hand, the present
calculation includes the distortion of the target under the
model PCOP and that of the nuclear motion dynamically under
the rovibrational coupling scheme whose collective effect
makes the potential less repulsive and produces the higher
cross sections comparable to the theoretical results of Tenfen
et al. and measured values especially in the lower-energy
region.

In Fig. 4 we plot the present calculated TCS along with some
of the theoretically calculated results, viz., the results by Elza

et. al.
et. al.

et. al.

et. al.
et. al.

un
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FIG. 4. (Color online) Comparison between present computed
angle integrated total cross sections and the other theoretical results
for positron–nitrogen-molecule scattering.

et al. [23] including nonadiabatic (correlation) effects, the R-
matrix calculation result of Danby and Tennyson [24], and the
results using the Schwinger multichannel calculation (SMC)
by Carvalho et al. [25] as well as the values of Tenfen et al.
[12]. One of the motivations of the present work is to study
the importance of the coupling effect of nuclear motion on the
total scattering process, especially in the lower-energy region
where the positron spends much time interacting with the target
molecule. To show this nuclear effect, in Fig. 4 we also plot
the values calculated using the BFVCC approximation [15]
and the method of continued fractions (MCF) [16] extended
to vibrational excitation processes by Mazon et al. From the
figure it is evident that the results obtained by Tenfen et al.
are higher compared to all other theoretical data presented
in the figure and the reason for this is explained by them as
due to the effect of the long-range interaction potential. The
figure also shows that the present results lie between all the
theoretical numbers. This reflects the fact that the state-to-state
coupling effect gives rise to a stronger effective potential,
resulting in a higher cross section than the data obtained
using the BFVCC method, the MCF, and the R-matrix method.
However, this effective potential is not strong enough to give
the high values as obtained using the SMC and nonadiabatic
(correlation) processes. It should be noted that the BFVCC and
MCF calculations use the same model PCOP. Moreover, these
two studies have included the vibrational dynamics in their
calculations but solved with different methods, whereas the
present calculation includes the rotational motion of the nuclei
along with the vibrational motion. From Fig. 4 it is evident that
the two previously calculated values are almost the same, as
they should be, but the present values are higher. In the present
rovibrational close-coupling method the coupling between
the projectile and the target molecule, which happens to be
effective through the angular momentum coupling (coupling
between the nuclear rotational angular momentum �j and the
projectile angular momentum �l giving total angular momentum
�J = �j + �l), appears to be attractive. Thus, in the present case

of the positron-molecule collision the net scattering potential
becomes less repulsive and bears the reason behind the higher
value of the cross section compared to the BFVCC and MCF
results.

In Figs. 5–7 the present vibrational angle integrated
excitation cross sections (vibrational ICSs) for the vibrational
0 → 1, 0 → 2, and 0 → 3 (summed over rotational states)
transition processes, respectively, are plotted along with the
theoretical BFVCC result of Gianturco and Mukherjee [15]
and the MCF result of Mazon et al. [16]. Figures 5–7 show
that the values of the excitation cross sections are much
less than the total cross sections (Fig. 1, dominated by the
elastic cross section). Moreover, the 0 → 2 and 0 → 3 cross
sections are also two orders fewer than the 0 → 1 cross section.
Although the numerical values are small, some interesting
features regarding the coupling effect can be seen from the
results. It is evident from Figs. 5 and 6 that the present 0 → 1
and 0 → 2 cross sections are higher than the results of Mazon
et al. The reason behind this is the effect of the potential
coupling where a reduction of the effective repulsive scattering
potential happens due to the rotational coupling effect as
discussed earlier. This effect also can be seen from Figs. 6
and 7 when the present 0 → 2 and 0 → 3 cross sections are
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FIG. 5. (Color online) Comparison between present computed
angle integrated vibrational state-to-state 0 → 1 excitation cross
sections and the other theoretical results for positron–nitrogen-
molecule scattering.

compared with the BFVCC and MCF results. However, the
interesting result can be seen from Fig. 5 when we compare
the present 0 → 1 cross section to the BFVCC cross section:
The two results are very much comparable to each other in
the lower-energy region, with the BFVCC result being a little
higher than the present value. The present data include both
rotational and vibrational motion of the molecule, whereas
the BFVCC calculations include only the vibrational motion.
The two comparable results indicate that here the dynamical
coupling effect is more dominant than the potential coupling
effect. Here the vibrational dynamics affects the transition
probability at least for the 0 → 1 channel exceeding the effect
of the rotational coupling effect. However, in the cases of
0 → 2 and 0 → 3 channels this dynamical effect seems to

un
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s 
of et. al.

FIG. 6. (Color online) Same as Fig. 5 but for 0 → 2 excitation
cross sections.

un
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FIG. 7. (Color online) Same as Fig. 5 but for 0 → 3 excitation
cross sections.

be less effective compared to the potential effect. We feel
that the competition between these two coupling effects could
be studied more elaborately if measured data for state-to-state
vibrational excitation cross sections as well as other theoretical
calculations were available.

Here we also calculate the rotational angle integrated cross
sections for both elastic and excitation processes. In Fig. 8 we
plot the rotational elastic 0 → 0 and inelastic 0 → 2 processes
for the vibrationally elastic (vibrational 0 → 0) channel. The
figure shows that in the lower-energy region both cross sections
are comparable to each other, whereas in the higher-energy
region the elastic cross section is larger. Like the vibrational ex-
citation process, as there are no measured values of rotational
cross sections, we compare our present rotational 0 → 0 and
0 → 2 results with the calculated values of rotational LFCC

un
it

s 
of

FIG. 8. (Color online) Present computed angle integrated rota-
tional state-to-state (for vibrational elastic 0 → 0) 0 → 0 (elastic)
and 0 → 2 (excitation) cross sections for positron–nitrogen-molecule
scattering.
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FIG. 9. (Color online) Comparison between present computed
angle integrated rotational state-to-state 0 → 0 (elastic) (for vibra-
tional elastic 0 → 0) cross sections with other theoretical result for
positron–nitrogen-molecule scattering.

using the same PCOP result of Mukherjee et al. [14] in Figs. 9
and 10, respectively. We see from both figures that the present
results are higher than the rotational LFCC result except in
the very-low-energy region. As both calculations involve the
same rotational coupling, the responsibility for the different
result may be attributed to the vibrational coupling effect. Thus
the present higher values of the cross sections indicate that
the vibrational coupling (potential or dynamical) effectively
reduces the repulsive potential over the rotational coupling.
However, which coupling effect plays the dominant role over
the other is not clear from these data. More calculations and
measurements are necessary to resolve this issue.

Finally, in Fig. 11 we present the vibrational energy transfer
defined by the relation (13) along with the BFVCC result

un
it

s 
of

et. al.

FIG. 10. (Color online) Same as Fig. 9 but for rotational 0 → 2
excitation cross sections.

FIG. 11. (Color online) Comparison between present computed
average vibrational energy transfers as defined in Eq. (13) with other
theoretical result for positron–nitrogen-molecule scattering.

[15]. From the figure it can be seen that the nature of the
variation with the energy is the same for both cases: The
BFVCC values are higher in the lower-energy range and
coalesce with each other for the higher-energy values. The
lower values of the present results are due to the lower values of
the present vibrational 0 → 1 excitation cross section than the
BFVCC cross section, especially in the lower-energy region.
Moreover, the higher values of the rotationally uncoupled
BFVCC result over the present rovibrationally coupled result
show the same trend of higher values of the decoupled
BFVCC adiabatic angular momentum coupling result over the
vibrationally coupled result as demonstrated by Gianturco and
Mukherjee [15]. The higher values of energy transfer using the
decoupled scheme show that the efficiency of energy transfer
into the molecular degree of freedom by the impinging positron
depends on the coupling effect and hence the reduction of the
effective scattering potential.

V. CONCLUSION

In the present work we reported the angle integrated
rotationally elastic and (state-to-state) excitation, vibrational
elastic and (state-to-state) excitation (summed over rota-
tional), and total (summed over vibrational and rotational)
cross sections for positron–nitrogen-molecule scattering up to
3.0 eV of incident positron energy under the rovibrational
close-coupling method. However, the total-cross-section re-
sults were plotted up to 10.0 eV to compare the present data
with the different measured values. The rovibrational coupling
method is an extensive technique used to study the molecular
scattering processes that take into account the rotational and
vibrational motion of the nuclei in a dynamical way. Under the
static polarization approximation, where the ground electronic
state of the molecule is considered, the distortion of the
target can be included via the model correlation polarization
potential. Here to compute the cross sections we used the
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model correlation-polarization potential (the PCOP) specially
designed for the positron as the incident particle. Besides this,
under the rovibrational close-coupling framework, the rovi-
brational state-to-state potential coupling and the dynamical
coupling due to the rotational and vibrational motion of the
nuclei were also included in the determination of the scattering
cross sections. We compared our present total cross sections
with the theoretical calculations of Tenfen et al. [12] and
with other measured values [18–22]. The very interesting
observation is that the present result almost matches the
theoretical values as well as the measured values, specifically
in the lower-energy region, although the two theoretical values
use a different kind of polarization potential. It seems that the
enhanced cross section in the lower-energy region is due to
the reduction of the effective repulsive scattering potential.
In the present case the reduction of the scattering potential
is due to the rotational coupling effect explained before,
whereas the calculation of Tenfen et al. [12] shows that the
reason lies with the use of the ab initio target polarization
potential. The effect of the potential coupling was also
explained by comparing the present total cross section with the
theoretical calculations by Tenfen et al. (using ab initio target

polarization) [12], Gianturco and Mukherjee (BFVCC) [15],
Mazon et al. (vibrational MCF) [16], Elza et al. (nonadiabatic
correlation) [23], Danby and Tennyson (R-matrix method)
[24], and Carvalho et al. (SMC) [25]. We also compared
the present vibrational and rotational cross sections with the
LFCC calculation of Mukherjee et al. [14] and the above two
theoretical calculations up to 3.0 eV. From these comparisons
we found the importance of the dynamical coupling effect on
the scattering process. As there are no measured values for
the nuclear excitation processes, we were unable to make any
specific comments on the coupling effects. Finally, we showed
the vibrational energy transfer using the present rotationally
coupled formalism and compared it with the rotationally
decoupled BFVCC result of Gianturco and Mukherjee. This
also demonstrates the importance of the coupling effect due to
nuclear motion in the molecular scattering process. However,
so far, as far as the total-cross-section results are concerned,
we feel that further investigation is necessary to find the reason
behind the matching of the results of the present coupled
calculation with the model polarization potential and those
of the decoupled calculation using the ab initio polarization
potential.
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