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Single charge exchange in collisions between bare projectiles and heliumlike atomic systems at intermediate
and high incident energies is examined by using the four-body formalism of the first- and second-order theories.
The main purpose of the present study is to investigate the relative importance of the intermediate ionization
continua of the captured electron compared to the usual direct path of the single electron transfer from a target
to a projectile. In order to achieve this goal, comprehensive comparisons are made between the four-body
boundary-corrected continuum-intermediate-states (BCIS-4B) method and the four-body boundary-corrected
first Born (CB1-4B) method. The perturbation potential is the same in the CB1-4B and BCIS-4B methods. Both
methods satisfy the correct boundary conditions in the entrance and exit channels. However, unlike the CB1-4B
method, the second-order BCIS-4B method takes into account the electronic Coulomb continuum-intermediate
states in either the entrance or the exit channel depending on whether the post or the prior version of the transition
amplitude is used. Hence, by comparing the results from these two theories, the relative importance of the
intermediate ionization electronic continua can be assessed within the four-body formalism of scattering theory.
The BCIS-4B method predicts the usual second-order effect through double scattering of the captured electron
on two nuclei as a quantum-mechanical counterpart of the Thomas classical two-step, billiard-type collision. The
physical mechanism for this effect in the BCIS-4B method is also comprised of two steps such that ionization
occurs first. This is followed by capture of the electron by the projectile with both processes taking place on
the energy shell. Moreover, the role of the second, noncaptured electron in a heliumlike target is revisited. To
this end, the BCIS-4B method describes the effect of capture of one electron by the interaction of the projectile
nucleus with the other electron via the static electron-electron correlations in the target. This effect yields a
novelty seen as the second Thomas peak. As an illustration, detailed computations were carried out involving
both the differential and total cross sections for one-electron capture in the p − He collisions at intermediate and
high impact energies. The results obtained in the BCIS-4B method are compared with those from the CB1-4B
method and with the available experimental data. The overall usefulness of the BCIS-4B method is assessed in
predicting experimental data for four-body single charge exchange both qualitatively (shapes of cross sections)
and quantitatively (numerical values from measurements).
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I. INTRODUCTION

Fast ion-atom collisions have attracted a great deal of
attention by both theoretical and experimental investigations
over many decades. There are several reasons for this. First,
high-energy collisions are of paramount practical importance
across interdisciplinary fields ranging from astrophysics to
medicine [1–8]. Among these collisions, the central place was
and still is within charge exchange and ionization both for one-
and two-electron processes. Second, the emergence of more
detailed and more accurate experimental data has prompted
the development of new theoretical methods aimed at better
understanding the fundamental aspects of few-body dynamics.

In the past, an accurate technique known as the cold target-
recoil ion momentum spectroscopy (COLTRIMS) has been
developed for experimental study of atomic collision systems.
The COLTRIMS technique has proven to be a powerful tool
for revealing the details of the interactive dynamics of atomic
collisions [9]. For example, within the past decade a number
of experimental measurements [10–18] of differential cross
sections for single charge exchange in p − He collision via the
COLTRIMS technique have spurred renewed interest in theo-
retical calculations by means of a variety of methods [19–30].

The present work is aimed at a thorough theoretical
investigation of single electron capture from heliumlike atomic

systems by bare projectiles using the four-body boundary-
corrected continuum-intermediate-state (BCIS-4B) method.
This approximation is an adaptation of the same method
introduced by Belkić [31] in 1993 for double electron capture
in collisions of fast nuclei with heliumlike atomic systems.
The forerunner of this formalism is the three-body continuum-
intermediate state (CIS-3B) method for charge exchange be-
tween bare nuclei and hydrogenlike atomic systems proposed
by Belkić [32] in 1977. Both the CIS-3B method and its
four-body counterpart, the CIS-4B method, satisfy the correct
boundary conditions only in one channel (entrance or exit,
depending on whether the post or the prior form of the
transition amplitude is used). For example, in the prior version,
the CIS-4B and BCIS-4B methods for single charge exchange
between completely stripped nuclei and heliumlike targets
have the identical description of the exit channel with the
electronic Coulomb wave function centered on the screened
target nuclear charge. The difference is in the asymptotic
wave function and the perturbation potential in the entrance
channel, where the undistorted initial state is multiplied by
the two unequal logarithmic Coulomb phases due to the
nonscreened and screened (via two electrons) internuclear
potential in the prior versions of the CIS-4B and BCIS-4B
method, respectively.
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Collisional processes in which two nuclei and two electrons
take part represent pure four-body problems. Such a simple
four-body system provides substantial information for a better
comprehension of the fundamental dynamics in more involved
few-body collision systems. A large number of theoretical
studies have been performed using different four-body meth-
ods for studying various one- and two-electron transitions in
scattering of completely stripped projectiles on heliumlike
atomic systems or in collisions between two hydrogenlike
atoms or ions, as recently reviewed in Refs. [1–8].

It is well known that ion-atom collisions involve long-range
Coulomb potentials that persist even when the scattering
particles are located at infinite separations from each other.
Such an effect causes Coulombic phase distortions of the un-
perturbed channel states. This, in turn, modifies the associated
perturbation potentials. The concept of the correct Coulomb
boundary conditions is equivalent to the concept of asymptotic
convergence [1,2,5,6,33,34]. This is because both concepts
share the same physical basis which aims at distinguishing
the asymptotically free states from those stemming from
the interactive dynamics. Such a disentangling is a key to
unequivocal predictions for which it is essential to infer what
actually happened during the collisional event by using the
final state of the system. At first, this seems to be untenable
for Coulombic collisions. Namely, an asymptotically present
Coulombic potential would continue to distort the channel
states that, therefore, cannot ever become free. This difficulty
is circumvented by way of asymptotic convergence, i.e., the
correct boundary conditions. Such an obstacle is far from being
of a formal nature. Quite the contrary, without having attained
the asymptotically free state of the collision system, the Møller
wave operator would not exist, which means that the scattering
or the S operator and the related cross sections would be void
of any physical meaning.

The asymptotic convergence problem [34] is formally
solved in such a way that the operator-valued Coulomb phase
is subtracted from the total Hamiltonian to produce a Coulomb
modified Møller wave operator which is well defined in the
sense of securing the existence of the asymptotically free states
of the entire system. Although such a modification of the
Hamiltonian is formally adequate, it is, nevertheless, difficult
to implement in practice because of the complicated form of
the time evolution operator containing an exponential function
of the square root of the kinetic-energy operator.

The correct boundary condition problem in the coordinate
representation [1] comes to the rescue, since it consists of
subtracting the Coulombic scalar phases from the channel
states rather than having to deal with the associated operator-
valued phases encountered in the asymptotic convergence
problem [34]. However, and most importantly, this latter
scalar phase modification [1] must simultaneously be followed
by the associated alteration (also in the scalar form) of the
perturbation potential. So here too (i.e., within the concept of
the correct boundary conditions [1]) there are modifications
of operators, albeit in a much less complicated form than
in the Dollard evolution operator [34]. It is because of
this simultaneous circumstance (both the phase of the wave
function and the perturbation potential ought to be consistently
modified) that it must always be born in mind that the
correct boundary conditions consist of establishing the proper

asymptotic behaviors of the scattering wave functions and
the consistently devised perturbation potentials. This is also
evident from the fact that the perturbation potential can
alternatively be defined as the residual potential left after the
application of the operator H − E on the ansatz scattering
state χ of the selected model. Here H and E are the total
Hamiltonian operator and the total scalar energy of the whole
system under investigation. The quantity (H − E)χ appears
directly in the transition amplitude and, thus, is critical to all the
ensuing observables, such as probabilities, cross sections, etc.

The BCIS-4B method is a fully quantum-mechanical four-
body formalism and it strictly preserves the correct boundary
conditions in both collisional channels. This is a second-order
theory which provides a fully adequate description of the
fact that, in an intermediate stage of collision, the captured
electron moves in a Coulomb field rather than propagating
freely according to a plane-wave formalism in the Jackson-
Schiff first Born (JSB1-4B) approximation [2,6] with incorrect
boundary conditions. The four-body boundary-corrected first
Born (CB1-4B) method for single-electron capture [35,36],
which also obeys the asymptotic convergence criteria for
Coulomb potentials [1,5,34] can be obtained as a further
simplification of the BCIS-4B method, if the invoked electron
Coulomb wave from the latter method is replaced by its
long-range logarithmic phase factor for the relative motion
of heavy nuclei and, as such, redefined in terms of the
corresponding interaggregate separation R.

A comparison of the transition amplitudes in the BCIS-4B
and CB1-4B methods reveals that they both have the same
perturbation potentials. Furthermore, in the case of the prior
version, the total scattering wave functions of the BCIS-4B
and CB1-4B methods are the same in the entrance channel.
The only difference is, however, in the exit channel since the
BCIS-4B method employs the electronic Coulomb continuum-
intermediate wave function centered on the screened target
nuclear charge. Hence, by comparing these two theories, we
would learn about the relative importance of these intermediate
ionization electronic continua and this is one of the main goals
of the present study. Another goal is to critically assess the
validity of the BCIS-4B method by comparing the obtained
results with the available experimental data, not only for total,
but also for differential cross sections at intermediate as well
as high impact energies. Especially at high energies, double
Thomas scattering processes become very significant and it
is important to see how this is predicted by the BCIS-4B
method. The differential cross sections give more detailed
information and provide a more sensitive and more accurate
test for establishing the validity of the theories.

Atomic units will be used throughout unless otherwise
stated.

II. THEORY

A. Kinematics and dynamics of four-body
single charge exchange

We consider single charge exchange between fast heavy
atomic nuclei as projectiles and heliumlike targets. The
quantum-mechanical nonrelativistic scattering theory will be
used throughout without accounting for the spin effects. In
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FIG. 1. Coordinate system for the projectile-heliumlike atomic
collision.

the spin-independent formalism, the two target electrons can
be considered as distinguishable from each other. In such a
case, we shall consider that electron e1 is captured, whereas
electron e2 will remain in the target rest. Since e1 and e2 can, in
fact, be captured with equal probabilities, the cross section for
single-electron capture should be multiplied by 2. This charge
exchange process under study is symbolized as follows:

ZP + (ZT; e1,e2)i −→ (ZP,e1)f1 + (ZT,e2)f2 , (1)

where ZK is the charge of the Kth nucleus, subscript
j (=f1,f2) is the collective label for the set of the hydrogenlike
quantum numbers, j = {nj,lj,mj}, and index i refers to the
quantum numbers of the initial heliumlike state. The parenthe-
ses symbolize the bound states in the initial and final channels.
Let �s1 and �s2 (�x1 and �x2) be the position vectors of e1 and e2

relative to the nuclear charge of the projectile ZP (target ZT).
Further, let �R denote the position vector of ZP with respect to
ZT, where �R = �x1 − �s1 = �x2 − �s2. The vector of the distance
between the active or captured (e1) and passive or noncaptured
(e2) electrons is labeled by �r12 = �x1 − �x2 = �s1 − �s2. Further,
in the entrance channel, let �ri be the relative vector of ZP with
respect to the center of mass of (ZT; e1,e2)i. Likewise, in the
exit channel let �rf be the position vector between the center
of mass of the (ZP,e1)f1 and (ZT,e2)f2 systems. The relative
vectors for the configuration in the entrance channel are also
visualized schematically in Fig. 1.

The unperturbed initial channel state �i is defined by
�i = ϕi(�x1,�x2)ei�ki·�ri , where ϕi(�x1,�x2) represents the two-
electron bound-state wave function of the atomic target system
(ZT; e1,e2)i, whereas �ki is the initial wave vector. The exact
nonrelativistic total Hamiltonian H of the collision system in
(1) is defined by

H = − 1

2μi
∇2

ri
− 1

2b
∇2

x1
− 1

2b
∇2

x2
+ ZPZT

R
− ZP

s1
− ZP

s2

− ZT

x1
− ZT

x2
+ 1

r12
. (2)

Here, μi = MP(MT + 2)/(MP + MT + 2) and b = MT/

(MT + 1), where MP and MT are the masses of the projectile
and target, respectively. The perturbation potential Vi and Vf

in the entrance and exit channel read as

Vi = ZPZT

R
− ZP

s1
− ZP

s2
, Vf = ZPZT

R
+ 1

r12
− ZT

x1
− ZP

s2
.

(3)

The first three terms in Eq. (2) represent the usual kinetic-
energy operators, whereas the remaining terms are the
potential-energy operators of the entire system of two electrons
and two nuclei. These latter three terms are the Coulomb
interactions ZPZT/R (between the two nuclear charges ZP

and ZT), −ZP/s1,2 (between ZP and e1,2), −ZT/x1,2 (between
ZT and e1,2), and 1/r12 (between e1 and e2).

B. Entrance channel

Bearing in mind the long-range nature of the Coulomb inter-
action, the initial unperturbed state �i in the entrance channel
should be distorted even at infinite distances between the
colliding aggregates. This is due to the presence of the asymp-
totic Coulomb repulsive interaction V ∞

i = ZP(ZT − 2)/R ≈
ZP(ZT − 2)/ri between the projectile and the screened target
nuclear charge ZT − 2. Here, ZT is screened by the unit
charges of the two electrons e1 and e2 to become ZT − 2.

In the limit ri → ∞, the potential V ∞
i is deduced from Vi

which appears in (3). Here, ZP(ZT − 2)/ri and ZP(ZT − 2)/R
would be equivalent if ri could be approximated by R.

Replacement of R by ri entails resorting to the heavy-mass
approximation (MT � 1). This can be seen by using the Taylor
expansion of 1/ri around 1/R and retaining the first two
terms. The outcome shows that 1/R − 1/ri is by a factor of
δ smaller than the short-range potential [ �R · (�x1 + �x2)]/R3,

where δ = 1/(MT + 2). Thus, in the mass limit MT � 1,

the short-range potential 1/R − 1/ri is negligibly small.
Consequently, for MT � 1, we have 1/ri ≈ 1/R. Moreover, in
the asymptotic region R → ∞, it also follows that 1/s1 ≈ 1/R

and 1/s2 ≈ 1/R. This implies that at R → ∞ the perturbation
potential Vi = ZPZT/R − ZP/s1 − ZP/s2 from (3) has the
following Coulombic tail Vi ≈ ZPZT/ri − ZP/ri − ZP/ri =
ZP(ZT − 2)/ri, so that Vi ≈ ZP(ZT − 2)/ri ≡ V ∞

i .

Thus, the perturbation Vi is reduced to the Coulomb
potential V ∞

i in the asymptotic region of the entrance channel.
This means that the corresponding unperturbed state �i does
not conform to Vi. To avoid such an inconsistency, �i must
be multiplied by the distorted wave stemming from V ∞

i =
ZP(ZT − 2)/ri. This is accomplished through replacement of
�i by the distorted wave function �+

i :

�+
i = �iN+(νi)1F1(−iνi,1,ikiri − i�ki · �ri), (4)

where the long-range distortion effects are present through the
Coulomb wave function N+(νi)ei�ki·�ri

1F1(−iνi,1,ikiri − i�ki ·
�ri) for the relative motion of heavy nuclei. Here, N+(νi) is
the Coulomb normalization constant (the Coulomb density
of state) given by N+(νi) = e−πνi/2�(1 + iνi), where νi =
ZP(ZT − 2)/v and v is the velocity of the projectile. The
symbol � stands for the standard Gamma function. In (4),
we used the potential V ∞

i = ZP(ZT − 2)/ri rather than its
formally equivalent eikonal form V ∞

i ≈ ZP(ZT − 2)/R, for
the reason of working with the three independent variables
{�ri,�x1,�x2} in which the eigenvalue problem becomes com-
pletely separable. This would not be the case with the set
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{ �R,�x1,�x2} which is not comprised of independent variables
because �R = �x1 − �s1 = �x2 − �s2.

The mentioned mass approximation is usually referred to as
the eikonal approximation where all the terms of the order of
or smaller of the reciprocal of the heavy particle mass (1/MP

and/or 1/MT) are neglected throughout. In particular, as we
saw, this implies ri ≈ R. Physically, the eikonal approximation
is associated with scattering at small angles. This is completely
justified for heavy particles that, due to their large mass,
predominantly scatter in a narrow forward cone. The net
consequence of this effect is that the Coulomb logarithmic
phase factors in the scattering states fully suffice to account
for any distortion effect due to the relative motion of heavy
particles. In principle, the corresponding full Coulomb waves
could be kept, as done, e.g., in (4), but the difference between
their contributions and those from the associated logarithmic
phases would be of the order of the reciprocal of the heavy
particle masses.

Unlike �i, the wave function �+
i has the the proper eikonal

asymptote which is denoted by �+
i,eik:

�+
i ≈ �+

i,eik, �+
i,eik = �ie

iνi ln(kiri−�ki·�ri), ri → ∞. (5)

The replacement of �i by �+
i is dictated by the requirement

of satisfying the correct asymptotic behavior of the entrance
channel state. However, this is a necessary, but not a sufficient
condition. The sufficient condition would be fulfilled if the
total Hamiltonian could be modified so as to adjust to the
replacement of �i by �+

i . As emphasized, the logarithmic
Coulomb phase factor in �+

i is due to the asymptote V ∞
i of

Vi. Therefore, V ∞
i must be subtracted from Vi in H, and this is

the sought sufficient condition. Such a procedure corresponds
to the following decomposition or rearrangement of the total
Hamiltonian H :

H = Hd
i + V d

i , (6)

with

Hd
i = − 1

2μi
∇2

ri
+ ZP(ZT − 2)

ri
− 1

2b
∇2

x1
− 1

2b
∇2

x2

− ZT

x1
− ZT

x2
+ 1

r12
, (7)

where V d
i is a model potential,

V d
i ≡ Vi − V ∞

i =
(

ZPZT

R
− ZP

s1
− ZP

s2

)
− ZP(ZT − 2)

ri
.

(8)

The superscript d stands for “distortion” and it is introduced
to indicate that the asymptotic Coulomb distortion effects
are brought into the formalism. The quantity Hd

i is the
noneikonalized model Hamiltonian of the entrance channel in
which ZT is free, whereas ZT, e1, and e2 are bound in the initial
state (ZT; e1,e2)i. The wave function �+

i from (4) is now seen
to be the solution of the exact Schrödinger eigenvalue problem
in the entrance channel:(

Hd
i − Ei

)
�+

i = 0, Ei = εi + 1

2μi
k2

i , (9)

where εi is the binding energy of the two-electron target. The
total Hamiltonian H from (6) is still exact, since we merely
added and subtracted the Coulomb asymptotic tail V ∞

i to the
right-hand side of Eq. (2).

Overall, we see that the necessary and sufficient condition
to fulfill the correct boundary conditions of collision in
the entrance channel is secured only when simultaneously
replacing �i by �+

i and Vi by V d
i . This procedure from

Refs. [1,5] is much simpler and, by far, more manageable
in subsequent computations of the transition matrix elements
than the corresponding prescription of Dollard [34], who
also subtracts an operator from H . However, his Coulomb-
modified Hamiltonian contains the practically unmanageable
exponential function of the square root of the kinetic-energy
operator.

C. Perturbation potentials

Regarding the correct boundary conditions, it is important
to determine the behavior of perturbation V d

i at asymptotic
distances R between the colliding aggregates. To this end, it
suffices to consider the difference 1/R − 1/ri from V d

i in (8).
This has already been done when passing from Vi to V ∞

i ,

where in the mass approximation MT � 1, we have 1/R ≈
1/ri. In the same vein, we have V d

i = ZPZT/R − ZP(ZT −
2)/ri − ZP/s1 − ZP/s2 ≈ 2ZP/R − ZP/s1 − ZP/s2, so that
V d

i ≈ ZP[(1/R − 1/s1) + (1/R − 1/s2)]. Since both 1/R −
1/s1 and 1/R − 1/s2 are of a short range at R → ∞, it follows
that V d

i also behaves as a short-range potential at infinitely
large distances between the two aggregates. All told, within the
heavy-mass limit, the perturbation V d

i in the entrance channel
can be replaced by its eikonal counterpart which is labeled by
V d

i,eik:

V d
i ≈ V d

i,eik, V d
i,eik = VPR + VP1 + VP2

VPR = 2ZP

R
, VP1 = −ZP

s1
, VP2 = −ZP

s2
. (10)

The complete perturbation V d
i,eik from (10) contains three

Coulomb electrostatic interactions. Therein, the repulsive
potential VPR = 2ZP/R describes the Rutherford scattering
which dominates at larger scattering angles in differential
cross sections. Potential VP1 = −ZP/s1 is the Coulomb
interaction between ZP and the active target electron e1.
Interaction VP2 = −ZP/s2 is the Coulomb potential between
ZP and the passive target electron e2. Combined together,
the perturbation VP1 and the confluent hypergeometric func-
tions 1F1(iνT,1,ivx1 + i�v · �x1) with νT = (ZT − 1)/v from the
corresponding Coulomb wave centered at ZT − 1 give the
contribution from double scattering effects. Such effects are
a quantum-mechanical counterpart of the classical Thomas
billiard-type ZP − e1 − ZT collisions. The result is the Thomas
peak at θlab = (1/MP) sin (60◦) 
 0.47 mrad in the angular
distribution within the laboratory reference system.

Potential VP2 in (10) also describes capture of electron e1.
However, here the nuclear charge ZP first interacts with e2

via VP2 and, in the end, it is the electron e1 which is captured
by the projectile. This is mediated by the static correlations
of the two electrons in the bound state of the heliumlike wave
function ϕi(�x1,�x2). Such an effect coupled with the influence of
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the Coulomb wave functions yields the second Thomas peak
at the same angle θlab ≈ 0.47 mrad. Thus, for single charge
exchange (1), at sufficiently high impact energies, differential
cross sections computed using (25) should clearly exhibit
two double-scattering effects with two pronounced peaks for
two Thomas processes (ZP − e1 − ZT and ZP − eS

1 − eS
2 ). The

superscript S on the two electrons in the Thomas process
ZP − eS

1 − eS
2 is used to indicate that this Thomas peak is

enabled by the static correlations of electrons in the target
wave function ϕi(�x1,�x2). This nomenclature is adopted to
avoid a potential confusion of the described Thomas process
ZP − eS

1 − eS
2 with the Thomas process ZP − e1 − e2 in which

ZP scatters first on e1, which subsequently collides with e2

and thus becomes captured by the projectile. Such a Thomas
process is mediated by the dynamic correlations in which the
Coulomb repulsion V12 = 1/r12 is directly included.

D. Exit channel

The analysis in the exit channel is similar to the initial chan-
nel as far as the correct boundary conditions are concerned.
Here, however, the BCIS-4B method accounts for an additional
effect and this is intermediate ionization of electron e1. This
can be accomplished in, e.g., exactly the same manner as in
the four-body continuum distorted wave (CDW-4B) method
[37]. Thus, the BCIS-4B method uses the same exit channel
wave function as in the CDW-4B method:

�−
f = �fN−(ν)N−(νT)1F1(−iνT,1, − ivx1 − i�v · �x1)

× 1F1(iν,1,−ikfrf + i�kf · �rf), (11)

where �f is the unperturbed final state �f = ϕP(�s1)
ϕT(�x2)e−i�kf ·�rf . Here, N−(νT) = eπνT/2�(1 + iνT), N−(ν) =
e−πν/2�(1 − iν), and ν = ZP(ZT − 1)/v. The function
N−(νT)1F1(−iνT,1, − ivx1 − i�v · �x1) in �−

f is a part of the
electronic continuum Coulomb wave function in the attractive
electrostatic field V ′

T1 = −(ZT − 1)/x1. The quantity ZT − 1
represents the charge of the screened target nucleus, i.e., of the
target core (ZT,e2)f2 . This screening is introduced because at
infinitely large values of x1, the captured electron e1 from
(ZP,e1)f1 cannot discern the individual constituents in the
target rest (ZT,e2)f2 . In other words, at x1 → ∞, the electron
sees the hydrogenlike system (ZT,e2)f2 as a point charge
ZT − 1. The state �−

f possesses the correct asymptote in its
eikonal form �−

f,eik given by

�−
f ≈ �−

f,eik,

�−
f,eik = �fe

−iν ln(kfrf−�kf ·�rf )N−(νT)

× 1F1(−iνT,1,−ivx1 − i�v · �x1), rf → ∞. (12)

E. Heliumlike bound-state wave functions

The post version of the BCIS-4B method has the per-
turbation potential Vf, which explicitly contains the e1 − e2

interaction 1/r12 as per (3). This version of the theory
possesses both the static and dynamic correlations. Static
correlations are those present in the heliumlike wave function
ϕi(�x1,�x2) with no necessary reference to any collision. Thus,
the static correlations of electrons are of a spectroscopic
nature. The dynamic correlations are those present in the

perturbation potentials that cause the transition in a collision.
The static correlations are also included in the prior variant of
the BCIS-4B method, but not the dynamic correlations, since
the electronic repulsion 1/r12 is not a part of the complete
perturbation V d

i,eik in (10). Of course, both the static and
dynamic correlations are due to the same Coulomb repulsion
(1/r12) of the two electrons e1 and e2.

Static correlations can be included, e.g., using the wave
function which explicitly contains the coordinate r12 :

ϕi(�x1,�x2) =
k1+k2+k3�K∑

k1,k2,k3

Ak1,k2,k3x
k3
12

× (
x

k1
1 x

k2
2 e−a1x1−a2x2 + x

k1
2 x

k2
1 e−a1x2−a2x1

)
, (13)

where K is the total number of terms. Another alternative is to
employ the concept of configuration interactions (CIs). These
involve a linear combination of the products of one-electron ra-
dial orbitals dependent only on x1 and x2 multiplied altogether
by the Legendre polynomial Pl(cos θ12) ≡ Pl( cos (̂�x1 · �̂x2)) as
a function of the angle θ12 between �x1 and �x2 [38]:

ϕi(�x1,�x2) = 1

4π

L∑
λ=0

R(x1,x2)Pλ(cos θ12), (14)

R(x1,x2) =
k1+k2�kmax∑
k1,k2;k1�k2

Bλ,k1,k2x
λ
1 xλ

2

× (
x

k1
1 x

k2
2 e−b1x1−b2x2 + x

k1
2 x

k2
1 e−b1x2−b2x1

)
. (15)

Here, L is the maximal value of the angular momentum
quantum number, whereas Bλ,k1,k2 are linear and {b1,b2} are
nonlinear variational parameters. For L = 3, b1 = b2, kmax =
6 and with 109 parameters in the CI wave function (14),
the binding energy is found to be εi = −2.902 67 [38]. This
estimate, which remarkably accounts for 97% of the correla-
tion energy, is in excellent agreement with the corresponding
value εi = −2.903 724 377 0 obtained by Drake [39] using
(13) with K = 8 and 269 parameters. Moreover, in Ref. [39],
the accuracy of εi has been increased to a fascinating 21
decimals for K = 20 and 2358 parameters. We see, however,
that even without an explicit inclusion of �r12, the CI wave
function (14) can still accurately account for both radial and
angular correlations of the two electrons in heliumlike atoms.
It should be noted that the significant improvements in the
accuracy of the estimates of the binding energies of heliumlike
systems do not necessarily imply that similarly marked effects
are to be expected in single charge exchange cross sections
computed by way of the associated highly correlated wave
functions. Actually, the abundant practice [2,6,36] has shown
that the much simpler helium wave functions containing barely
few parameters and exhibiting only radial correlations suffice
to describe single-electron capture processes. For small-angle
scattering, charge exchange cross sections are principally
determined by the initial and final distributions of velocities
of electrons around both Coulomb centers. The final velocity
distributions of electrons bound to two hydrogenlike systems in
process (1) are quantum-mechanically exact. As to the momen-
tum space representations of relatively simple few parameter
wave functions of heliumlike atomic systems they are also
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able to provide reasonable good electronic distributions of
velocities in the initial state of the target, and thus secure an
adequate contribution to charge exchange cross sections for
process (1). The practical utility of the CI wave functions for
multielectron atomic systems is that they facilitate analytical or
semianalytical calculations of bound-free form factors, much
in the same fashion as in the case of single charge exchange in
purely three-body collisions involving only the hydrogenlike
wave functions of one-electron atomic systems. This has
been illustrated by Belkić [3,40,41] for single ionization in
the H+ − H−(1s2) collision using the highly correlated CI
wave function of H− with some 61 variational parameters
[38] in the four-body modified Coulomb-Born (MCB-4B),
or equivalently, the four-body continuum distorted wave and
eikonal initial state (CDW-EIS-4B) method.

The use of either (13) or the fully correlated (both radially
and angularly) CI wave function (14) is very computer-time
consuming for four-body single charge exchange treated by
the BCIS-4B method. Instead, we shall employ a simpler
alternative with only radially correlated CI wave functions for
heliumlike system. In these functions, the angular momentum
is equal to zero and the only present radial correlations are
manifested in the exponential damping and the coefficients
of the linear combination of one-electron radial orbitals.
Specifically, for the initial ground state of a two-electron target,
we choose the following factorized form CI wave function:

ϕi(�x1,�x2) =
∑
k,l

ϕαk
(�x1)ϕαl

(�x2), (16)

where ϕαj
(�r ) = Nαj

exp(−αj r), Nαj
= aj

√
N (j = k,l), and

N is the normalization constant. The values of the summation
indices k and l, as well as the variationally determined
parameters αj and aj depend on the concrete choice of the
wave function.

Such a generic form encompasses a number of the existing
wave functions proposed by different authors, e.g., as follows:

(i) The one-parameter wave function of Hylleraas [42]:

ϕi(�x1,�x2) = α3

π
e−α(x1+x2), (17)

where α = 1.6875 for helium with the binding energy εi =
−2.847 656.

(ii) The two-parameter wave function of Eckart [43] or
Silverman et al. [44]:

ϕi(�x1,�x2) = N (e−α1x1−α2x2 + e−α2x1−α1x2 ), (18)

with α1 = 2.183 171 and α2 = 1.188 53 for helium and εi =
−2.875 661 4.

(iii) The three-parameter function of Green et al. [45]:
ϕi(�x1,�x2) = N (e−α1x1 + ae−α2x1 )(e−α1x2 + ae−α2x2 ) where
a = 0.6, α1 = 1.455 799 and α2 = 2.911 598 for helium with
the binding energy εi = −2.861 67.

(iv) The four-parameter wave function of Löwdin [46]:
ϕi(�x1,�x2) = N ( a1e

−α1x1 + a2e
−α2x1 )(a1e

−α1x2 + a2e
−α2x2 ),

where a1 = 2.7626, a2 = 1.9104, α1 = 1.4287, α2 = 2.7022
for helium and εi = −2.861 525.

(v) The four-parameter wave function of Byron and
Joachain [47] (an analytical fit to the numerically given
Hartree-Fock wave function): ϕi(�x1,�x2) = ϕ(x1)ϕ(x2) where

ϕ(x) = (1/
√

4π )(Ae−αx + Be−βx) with A = 2.605 05, B =
2.081 44, α = 1.41 and β = 2.61 for helium and εi =
−2.861 67.

F. Transition amplitude

As discussed, a consistent application of the eikonal
approximation requires neglecting every term of the order of
or less than the reciprocal of the mass of heavy nuclei. This
amounts to the use of the corresponding eikonal forms of the
channel wave functions and perturbation potentials according
to

�+
i ≈ �+

i,eik, V d
i ≈ V d

i,eik, �−
f ≈ �−

f,eik. (19)

With such a coherent setting, the prior form of the eikonal
transition amplitude in the BCIS-4B method is given by

Tif = 〈�−
f,eik|V d

i,eik|�+
i,eik〉. (20)

Advantageously, by employing the eikonal approximation, the
product of the logarithmic Coulomb factors from the wave
functions �+

i,eik and �−
f,eik can be reduced to a single phase:

exp[iνi ln(kiri − �ki · �ri) + iν ln(kfrf − �kf · �rf)]

≈ exp[iνi ln(vR − �v · �R) + iν ln(vR + �v · �R)]

= (ρv)2iνi (vR + �v · �R)iξ , (21)

where ξ = ZP/v and �ρ is the projection of vector �R onto the
XOY plane ( �ρ = �R − �Z, �ρ · �Z = 0). The overall phase factor
(ρv)2iνi ≡ (ρv)2iZP(ZT−2)/v is due to the Coulomb repulsion
between ZP and ZT − 2. This latter multiplying term (ρv)2iνi

does not contribute to the total cross section for any values
of ZP and ZT. Such a feature is not limited to the BCIS-4B
method. Namely, Belkić et al. [1] have shown that it holds
true in the case of the exact eikonal transition amplitude for
charge exchange. Evidently, in the special case with helium
as a target (ZT = 2), the same phase (ρv)2iZP(ZT−2)/v reduces
to unity and, as such, makes no contribution whatsoever. This
latter situation with a helium target is especially convenient
for computations of differential cross sections in the CB1-4B
and BCIS-4B methods because for (ρv)2iZP(ZT−2)/v = 1 the
defining angular distributions become directly proportional to
the absolute value squared of the transition amplitudes with
no need to carry out any additional quadrature.

Overall, within the consistent eikonal approximation valid
at the small-angle collisions of heavy particles, we have

�ki · �ri + �kf · �rf = �α · �s1 + �β · �x1 = −�v · �x1 − �α · �R, (22)

where the two momentum transfers �α and �β are

�β = −�η − βz �̂v, �α = �η − αz �̂v, �α + �β = −�v, (23)

αz = v

2
− �E

v
, βz = v

2
+ �E

v
, (24)

with �E = εi − εf and εf = −Z2
P/2 − Z2

T/2. The transverse
component of the change in the relative linear momentum of
a heavy particle is denoted by �η = (η cos φη,η sin φη,0) where
�η · �v = 0.
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Therefore, the prior form of the eikonal transition amplitude
in the BCIS-4B approximation for process (1) becomes

Tif (�η ) = [N−(νT)]∗
∫ ∫ ∫

d �x1d �x2d �Rϕ∗
P(�s1)ϕ∗

T(�x2)

×
(

2ZP

R
− ZP

s1
− ZP

s2

)
ϕi(�x1,�x2) e−i �α· �R−i�v·�x1

× 1F1(iνT,1,ivx1 + i�v · �x1)(vR + �v · �R)iξ . (25)

Notice that the CB1-4B method can formally be obtained
from Eq. (25), first through the replacement of the confluent
hypergeometric function N−(νT)1F1(−iνT,1,−ivx1 − i�v · �x1)
by its asymptotic form exp[iνT ln(vx1 + �v · �x1)] and then
via the use of the limit t → ∞ as limt→∞(vx1 + �v · �x1) =
limt→∞(vR + v2t). This latter step is due to the fact that �x1 is
indistinguishable from �R at t → ∞.

The prior form of the transition amplitude Tif (�η ) from
Eq. (25) can be interpreted in the following plausible way.
In the entrance channel, the collision between the projectile P

and target (T ,2e) results in an accumulation of the Coulombic
phase factor exp[(i/v)ZP(ZT − 2) ln(vR − �v · �R)]. On the
other hand, in the exit channel, the scattered projectile P

interacts with the screened target nucleus accumulating the
phase factor exp[−(i/v)ZP(ZT − 1) ln(vR + �v · �R)]. At the
same time, the interaction of P with the target leads to single
ionization of the target (T ,2e). The ionized electron propagates
in the Coulomb field of charge ZT − 1 in a particular direction
with the momentum �k = �v. Finally, capture of the electron
occurs from these intermediate ionizing states (capture from
the continuum) because the electron is traveling together with
the projectile in the same direction and the attractive Coulomb
interaction between ZP and e1 is sufficient to bind them
together into the hydrogenlike atomic system (ZP,e1)f1 .

It is interesting to see how different second-order methods
conceive certain quantum-mechanical counterparts of the
classical Thomas double scattering [1]. For example, in the
four-body boundary-corrected second Born (CB2-4B) method
[6], the Thomas process ZP − e1 − ZT has its quantum-
mechanical analog in the transition operator VP1G0VT1, where
G0 is the free-particle Green or resolvent operator. Here, one
of double scatterings is present by way of two potentials VP1

and VT1 on each side of G0. By comparison, in the BCIS-
4B method, instead of the second-order transition operator
VP1G0VT1, we have the first-order transition operator V d

i,eik
in (3), which is in (25) taken between the Coulomb-distorted
channel wave functions �+

i,eik and �−
f,eik. Nevertheless, the two

different Coulomb centers, necessary for the Thomas double
scattering, are also actively involved in the BCIS-4B method.
One is via the projectile nuclear charge ZP in V d

i . The other is
through the screened nuclear charge ZT − 1 in the electronic
Coulomb wave function from �−

f,eik. Thus, the physics of the
Thomas mechanism for double collisions ZP − e1 − ZT in the
prior BCIS-4B method proceeds first by having ZP scattered
off the electron e1 via the potential VP1 = −ZP/s1. As a result,
e1 is deflected towards the point charge ZT − 1 the interaction
with which, by way of the potential V ′

T1 = −(ZT − 1)/x1,

leads to emission of e1 into the state described by the Coulomb
wave centered on the screened nuclear charge ZT − 1 of the
target rest (ZT,e2)f2 in the exit channel.

In Eq. (25), it will prove convenient to express the
confluent hypergeometric function (the Kummer function)
1F1(iνT,1,ivx1 + i�v · �x1) as the following integral represen-
tation:

1F1(iνT,1,ivx1 + i�v · �x1)

= 1

�(iνT)�(1 − iνT)

∫ 1

0
dττ iνT−1(1 − τ )−iνTei(vx1+�v·�x1)τ ,

(26)

where an infinitesimally small negative imaginary part
−iε (ε > 0) is assumed to be implicitly added to the parameter
νT → νT − iε in order to secure the convergence of the
integral. Upon carrying out the calculation, the limit ε → 0+
should be taken. This procedure is necessary since the integral
representation

1F1(a,c,z) = �(c)

�(a)�(c − a)

∫ 1

0
dtta−1(1 − t)c−a−1ezt (27)

is valid only for Re(c) > Re(a) > 0 and argt = arg(1 − t) =
0. Thus, the transition amplitude can be written in the following
concise form:

Tif = M

∫ 1

0
dτf (τ )Sif (τ ), (28)

where

f (τ ) = τ iνT−1(1 − τ )−iνT , M = [N−]∗

�(iνT)�(1 − iνT)
, (29)

Sif (τ ) =
∑
k,l

Nαk
Nαl

∫
d �Rei �β· �R(vR + �v · �R)iξT ( �R), (30)

T ( �R) =
∫∫

d�s1d�s2ϕ
∗
P(�s1)ϕ∗

T(�x2)e−i�v·�s1

×
(

2ZP

R
− ZP

s1
− ZP

s2

)
e−αlx2�k(�x1)

= ZP

[
2

R
W

(k,l)
R − W (k,l)

s1
− W (k,l)

s2

]
, (31)

�k(�x1) = e−αkx1ei(vx1+�v·�x1)τ , (32)

W
(k, l)
R = AkCl , W (k, l)

s1
= BkCl , W (k, l)

s2
= AkDl . (33)

The explicit expressions for the quantities Ak , Bk , Cl , and
Dl are derived in Appendix A. By employing the results
from Appendix A, we arrived at the following final form for
the transition amplitude Tif in terms of the two-dimensional
integral over real variables τ and t :

Tif = 16π2Z
5/2
P Z

3/2
T �(1 + iξ )M

∑
k,l

Nαk
Nαl

∫ 1

0
dτf (τ )

μ1

ζ 3

×
∫ 1

0
dt

1 − t

�3
1

(ν1 − iξδ1), (34)
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MANČEV, MILOJEVIĆ, AND BELKIĆ PHYSICAL REVIEW A 91, 062705 (2015)

where ν1 = ν2 + ν3 and δ1 = δ2 + δ3,

ν2 = 4F (�1)[3p+2(3p�1−1)D(�1)−2(p�1−1)D(�1)A(�1)
α ],

(35)

ν3 = 4pF (�)

[
3 + 3(ζ + 2�1)D(�) − �1(3ζ + 2�1)D(�)

× A(�)
α

�
− 2ζ�2

1(D(�))2
A

(�)
β

�

]
, (36)

δ2 = 4F (�1)
[
2(3p�1 − 1)D(�1)C(�1)

+ 2(p�1 − 1)D(�1)B(�1)
α

]
, (37)

δ3 = 4pF (�)

[
3(ζ + 2�1)D(�)C(�) + �1(3ζ + 2�1)D(�)

× B(�)
α

�
+ 2ζ�2

1(D(�))2
B

(�)
β

�

]
. (38)

The formulas for the quantities appearing in ν2, ν3, δ2, and δ3

are given in Appendix A.

G. Cauchy regularization of two branch point singularities

The expression for the transition amplitude Tif given by
Eq. (34) requires a numerical computation of an integral of the
type

I = 1

�(iνT)�(1 − iνT)

∫ 1

0
dττ iνT−1(1 − τ )−iνTF (τ ), (39)

where F (τ ) is a regular, analytical function. It is well known
that the Gaussian-Legendre quadrature produces accurate
results, provided that the function to be integrated can be
approximated by a polynomial function within the range
[−1,1]. This quadrature method needs to be regularized
for functions with singularities. The integrand in Eq. (39)
possesses the integrable branch-point singularities at τ = 0
and τ = 1, both of which are regularizable. Following
Refs. [31,48], the standard Cauchy regularization of the whole
integrand is done in the following way. The expression for I

can be rewritten as

I = 1

�(iνT)�(1 − iνT)

{∫ 1

0
dτ

(
τ

1 − τ

)iνT F (τ ) − τF1,0 − F (0)

τ
+F1,0

∫ 1

0
dτ

(
τ

1 − τ

)iνT

+ F (0)
∫ 1

0
dτ

(
τ

1 − τ

)iνT 1

τ

}
,

(40)

where F1,0 = F (1) − F (0). This Cauchy procedure for si-
multaneous regularization of two branch-points singularities
implies

I = F (0) + iνTF1,0 + i sinh(πνT)

π

∫ 1

0
dτ

(
τ

1 − τ

)iνT

× F (τ ) − τF1,0 − F (0)

τ
. (41)

Here, we have employed the following properties of
the γ function:

∫ 1
0 dttp−1(1 − t)q−1 = �(p)�(q)/�(p + q),

�(iν)�(1 − iν) = −iπ/ sinh(πν), and �(1 + iν) = iν�(iν).
The regularized integration over τ in Eq. (41) is now smooth
and thus well adapted for the application of the Gauss-
Legendre numerical quadrature.

H. Dominance of forward scattering for heavy particles

After the outlined Cauchy regularization, the computations
of differential (dQ/d�) and total (Q) cross sections become
feasible. These latter two cross sections are defined by

dQ

d�

(
a2

0/sr
) = μ2

4π2
|Tif (�η )|2, (42)

Q
(
πa2

0

) = 1

2π2v2

∫ ∞

0
dηη|Tif (�η )|2, (43)

where μ = MTMP/(MT + MP) is the reduced mass of the
incident and target nuclei of mass MP and MT. In the
computations of the total cross sections from (43), three-
dimensional quadratures must be performed numerically.

Throughout the computations, the Gauss-Legendre quadrature
is employed for the numerical integration over τ and t . The
remaining integration over η is also performed by means
of the Gauss-Legendre routine, after performing the change
of variable η = √

2(1 + z)/(1 − z) where z ∈ [−1,+1], as
suggested in Ref. [49]. This latter change is very important for
heavy projectiles, since it concentrates the integration points
near the forward cone which contributes dominantly to the
total cross sections.

III. RESULTS, INTERPRETATIONS,
AND DETAILED DISCUSSION

A. Illustrations for proton-helium single charge exchange

Numerical computations of the total and differential cross
sections for process (1) are carried out for proton-helium
charge exchange:

p + He(i) −→ H(f1) + He+(f2), (44)

where i = {ni,li,mi} and fk = {nfk ,lfk ,mfk} (k = 1,2). Further,
for brevity, we shall introduce the following notation for the
principal, angular, and magnetic quantum numbers of atomic
hydrogen in (44): n ≡ nf1 , l ≡ lf1 , and m ≡ mf1 . The initial
target state is taken to be the ground state of helium (i = 1s2 =
1S). Further, since no two-electron transitions are considered,
the final state of the noncaptured electron in the target rest
(He+) is taken to be the ground state (f2 = {1,0,0} = 1s) of
the positive helium ion. As such, the general process (44)
specifies to

p + He(1s2) −→ H(nlm) + He+(1s). (45)
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TABLE I. Total cross sections (in cm2) in the prior version of the BCIS-4B method (present computation) for process (45) as a function
of the number of integration points used per each axis of the numerical quadrature for different incident proton energies. The initial ground
state of He(1s2) is described by means of the two-parameter wave function of Silverman et al. [44] from (18). The first column denoted by
NGL represents the number of integration points of Gauss-Legendre quadrature. Notation in square brackets denotes the power of 10 (e.g.,
1.234567[−20] denotes 1.234567×10−20). In the eikonal approximation adopted in the present work, all the computed cross sections should
normally be given with maximally three decimal places. This table is an exception with six decimals that are quoted merely to monitor the
convergence pattern with the increasing value of NGL.

NGL 100 keV 500 keV 1000 keV 5000 keV 7500 keV 10000 keV

8 2.110632[−17] 5.602142[−20] 4.255470[−21] 2.782764[−23] 8.618687[−24] 3.364091[−24]
16 2.147336[−17] 6.877709[−20] 3.447023[−21] 1.911654[−24] 4.102552[−25] 3.564143[−25]
24 2.144829[−17] 7.023672[−20] 3.021237[−21] 5.862063[−25] 1.295930[−25] 1.144838[−25]
32 2.141982[−17] 7.053172[−20] 3.007754[−21] 7.199619[−25] 5.066201[−26] 1.764407[−26]
40 2.140066[−17] 7.059236[−20] 3.064864[−21] 8.355055[−25] 7.256210[−26] 1.200230[−26]
48 2.138811[−17] 7.060442[−20] 3.075047[−21] 5.618837[−25] 1.159952[−25] 1.792922[−26]
64 2.137390[−17] 7.060766[−20] 3.062222[−21] 6.419846[−25] 6.688589[−26] 1.016979[−26]
80 2.136678[−17] 7.060796[−20] 3.064503[−21] 7.214781[−25] 5.920439[−26] 1.661608[−26]
96 2.136286[−17] 7.060790[−20] 3.064159[−21] 6.224207[−25] 7.520591[−26] 1.056388[−26]
112 2.136055[−17] 7.060776[−20] 3.064216[−21] 6.146686[−25] 5.892633[−26] 1.583965[−26]
128 2.135911[−17] 7.060760[−20] 3.064214[−21] 6.606044[−25] 7.348714[−26] 1.115517[−26]
144 2.135818[−17] 7.060746[−20] 3.064217[−21] 6.461175[−25] 6.316485[−26] 1.483549[−26]
160 2.135756[−17] 7.060733[−20] 3.064218[−21] 6.293159[−25] 6.576076[−26] 1.151011[−26]
176 2.135714[−17] 7.060722[−20] 3.064218[−21] 6.401141[−25] 6.673301[−26] 1.415917[−26]
192 2.135684[−17] 7.060713[−20] 3.064219[−21] 6.452928[−25] 6.341411[−26] 1.185352[−26]
208 2.135663[−17] 7.060705[−20] 3.064219[−21] 6.380397[−25] 6.744594[−26] 1.370539[−26]
224 2.135648[−17] 7.060698[−20] 3.064219[−21] 6.377379[−25] 6.415314[−26] 1.210353[−26]
240 2.135637[−17] 7.060693[−20] 3.064218[−21] 6.414298[−25] 6.607287[−26] 1.338578[−26]
256 2.135629[−17] 7.060687[−20] 3.064218[−21] 6.403798[−25] 6.537978[−26] 1.228189[−26]
272 2.135623[−17] 7.060683[−20] 3.064218[−21] 6.388801[−25] 6.503980[−26] 1.317513[−26]
288 2.135619[−17] 7.060679[−20] 3.064218[−21] 6.398719[−25] 6.591393[−26] 1.241592[−26]
304 2.135616[−17] 7.060676[−20] 3.064218[−21] 6.403026[−25] 6.494588[−26] 1.303354[−26]
320 2.135614[−17] 7.060673[−20] 3.064218[−21] 6.396701[−25] 6.572784[−26] 1.251102[−26]
336 2.135613[−17] 7.060670[−20] 3.064218[−21] 6.396590[−25] 6.526390[−26] 1.293647[−26]
352 2.135612[−17] 7.060667[−20] 3.064218[−21] 6.399755[−25] 6.539910[−26] 1.257888[−26]
368 2.135611[−17] 7.060665[−20] 3.064217[−21] 6.398794[−25] 6.550031[−26] 1.287086[−26]

For both differential and total cross sections, the helium
ground state is presently described by the two-parameter wave
function (ii) of Silverman et al. [44] from Eq. (18). Our
earlier study [36] has shown that, e.g., total cross sections
for process (45), computed using the CB1-4B approximation,
are practically the same for the helium wave functions (ii) and
(iv) of Silverman et al. [44] and Löwdin [46], respectively. For
all the differential and total cross sections from the BCIS-4B
method, the final states of the atomic hydrogen H(nlm) are
taken to be the ground state, {n,l,m} = {1,0,0} = 1s. The
same applies to the CB1-4B method with only two exceptions,
and these are the differential cross sections at the impact
energies 100 keV and 7.5 MeV for which the whole manifold
of the excited states (1 � n � 4) has explicitly been taken
into account, including all the possible sublevels characterized
by l and m. The obtained results for differential and total
cross sections from the BCIS-4B method are compared with
those from the CB1-4B method as well as with the available
experimental data.

B. Total cross sections

In order to approximately include the contributions from
the excited states of atomic hydrogen, the obtained total

cross sections are multiplied by 1.202. This numerical factor
comes from the scaling law of Oppenheimer [50,51] for
process (45) with respect to the states of atomic hydro-
gen H(n) where the sums over l and m are carried out
(Appendix B).

Special attention has been paid to convergence during
numerical integrations in order to check the effect of the above
described regularization. In Table I, the results for the total
cross sections are shown at six impact energies for different
sets of the quadrature order NGL associated with some 8–368
integration points per each integration axis (NGL denotes the
number of integration points of Gauss-Legendre quadrature).
As expected, at lower impact energies fewer integration points
are required to achieve good convergence. Particularly at the
highest energies, cross sections as a function of NGL are seen in
Table I to oscillate. This occurs because with a large increase in
the incident velocity v, the Sommerfeld parameter νT becomes
very small with the ensuing heavy oscillations of the function
f (τ ) = τ iνT−1(1 − τ )−iνT from (29) within the integral (39).
Such a circumstance becomes a very challenging task for the
Cauchy regularization of the integral in (41) and this, in turn,
necessitates a very large number of quadrature points.

The results of the computations of total cross sections for
process (45) at impact energies 20–10 000 keV are also shown
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FIG. 2. Total cross sections (in cm2) as a function of the
laboratory incident energy for process p + He −→ H + He+. The
solid curve represents the prior total cross sections in the prior
BCIS-4B method (present computation). The dashed curve represents
the results from the prior form of the prior CB1-4B method [35].
The initial ground state of He(1s2) is described by means of the
two-parameter wave function of Silverman et al. [44]. The explicit
computations are carried out only for the ground state of H(1s) and
the Oppenheimer n−3 scaling law with the multiplying factor 1.202 is
used for H(n) to estimate the contribution from the whole spectrum of
the excited states. Experimental data: � Shah et al. [52], � Schryber
[53], ◦ Shah and Gilbody [54], � Horsdal-Pedersen et al. [60], ♦
Berkner et al. [55], � Williams [56], � Martin et al. [58], • Welsh
et al. [57].

by way of graphs in Fig. 2. As can be seen from Fig. 2, above
50 keV, the present results from the BCIS-4B approximation
are found to be in excellent agreement with the available
experimental data in an extended energy range which covers
nearly three orders of magnitude (abscissa) alongside the
formidable 11 orders of magnitude of cross sections (ordinate).

In order to critically assess the role of the continuum-
intermediate states, a comparison with the corresponding total
cross sections from the CB1-4B method is made, and this is
shown in Fig. 2. Therein, both theoretical curves are obtained
with the complete perturbation potential V d

i,eik = 2ZP/R −
ZP/s1 − ZP/s2 from (10). As mentioned, the perturbation
potential V d

i,eik is the same in the BCIS-4B and CB1-4B
theories. However, unlike the CB1-4B approach, the BCIS-4B
method takes full account of the Coulomb-intermediate states
of the captured electron in the exit channel.

According to Fig. 2, the BCIS-4B method provides the total
cross sections that are slightly smaller than the corresponding
results of the CB1-4B method throughout the energy range
under consideration. Such a pattern is explained by the
following argument. Before the actual capture takes place,

the transferred electron is intermediately found in the on-shell
continuum state of the Coulomb point charge ZT − 1 of
the target rest He+. Since the electron is not staying in
this continuum state in the final stage of the collision, the
probability for electron transfer to a discrete state in the
projectile Coulomb field is reduced. The obtained reduction
seen in Fig. 2 is significant.

We see that the mechanism of having one electron in the
continuum-intermediate state, as in the BCIS-4B method for
single charge exchange, becomes dominant over the simple
picture described by the CB1-4B method. In the CB1-4B
method, the captured electron is free in the intermediate stage
of collision involving single charge exchange. It should be
noted that the like reduction of the total cross sections due
to the inclusion of continuum-intermediate states is much
more pronounced in the case of double electron capture,
as demonstrated by Belkić [31] for the α + He → He + α

collisions. The reason for this is that the prior form of the
BCIS-4B method for double charge exchange contains the
product of the two electronic Coulomb wave functions (one for
e1 and the other for e2) both centered symmetrically on the
target rest which is bare target nuclear charge ZT in the exit
channels.

C. Differential cross sections

Next, we shall analyze differential cross sections. These
provide a more sensitive test for theoretical methods and give
more detailed information about the collision under study.
The results from the BCIS-4B method together with those
of the CB1-4B method for differential cross sections at
intermediate impact energies 100, 150, and 300 keV, as well
as at higher incident energies 1.3, 2.5, 5.0, 7.5, and 12.5 MeV
are depicted in Figs. 3–10.

1. Intermediate impact energies

The angular distributions, or equivalently, the differential
cross sections for an incident energy of 100 keV obtained by
means of the BCIS-4B method are displayed by the solid curve
in Fig. 3. The theoretical results computed using the CB1-4B
approximation are also shown in the same figure (dashed
curve). A comparison of our results is made with the two sets of
experimental measurements, one of Schöffler et al. [13] and the
other Guo et al. [16]. Using the so-called reaction microscope,
as the COLTRIMS technique is sometimes called, Guo et al.
[16] have recently measured differential cross sections at
100 keV for process (45) and obtained results that are similar
to those of Schöffler et al. [13]. This can be seen in Fig. 3. In the
early 1980s, Martin et al. [58] reported on the differential cross
sections for p − He collisions at 100 keV by using an energy-
loss spectrometer. This experiment belongs to the category
of measurement of so-called translational spectroscopy. The
results from Ref. [58] (not shown in Fig. 3 to avoid clutter) are
close to the data from Refs. [13,16]. The CB1-4B method is
seen here to significantly overestimate the experimental data
after the dip at larger scattering angles. This indicates that the
Rutherford scattering due to the nucleus-nucleus interaction
is not sufficiently countered by the potentials between the
projectiles and the two electrons of the target.
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FIG. 3. Differential cross sections as a function of scattering
angle θ ≡ θlab(rad) in the laboratory frame of reference at incident
energy E = 100 keV for single-electron capture by protons from
He(1s2). The solid curve represents the theoretical results obtained
by using the prior BCIS-4B method (present computations). The
dashed curve represents the theoretical results of the prior CB1-4B
method (present computations). The initial ground state of He(1s2) is
described by means of the two-parameter wave function of Silverman
et al. [44]. The explicit computations are carried out only for the
ground state of 8H(1s) and the Oppenheimer n−3 scaling law with the
multiplying factor 1.202 is used for H(n) to estimate the contribution
from the whole spectrum of the excited states. Experimental data: �
Schöffler et al. [13], ◦ Guo et al. [16].

As can be seen from Fig. 3, both the CB1-4B and BCIS-4B
methods exhibit an unphysical and experimentally unobserved
dip due to a severe cancellation of the contributions from the
two potentials with different signs contained in the complete
perturbation 2ZP/R − ZP/s1 − ZP/s2 from (10). The angle
at which this dip occurs is sometimes called the dark angle.
A comparison between the minimae around the dark angles
shows that the CB1-4B method exhibits a sharper, narrower,
and deeper minimum than that from the BCIS-4B method.
Except for the angular region around the dark angle, the results
from the BCIS-4B method are seen to be in overall very good
agreement with the experimental data of Schöffler et al. [13].

A similar discussion can also be made regarding Figs. 4
and 5 that deal with the incident energies of 150 and 300 keV,
respectively. The disagreement between the results of the
BCIS-4B and CB1-4B methods is again attributed to the
influence of intermediate-continuum states that are included
in the former and neglected in the latter approximation.

2. High impact energies and double scattering

Figures 6–10 show the angular distributions at higher
energies (1.3–12.5 MeV). Therein, it is seen that the shapes

FIG. 4. The same as in Fig. 3, except for the incident energy of
150 keV.

of these differential cross sections in the BCIS-4B method
are all similar to each other. They all have maximae at the
forward angle (θ = 0) as well as at the Thomas angle located
at about 0.47 mrad. The emergence of the Thomas peaks,

FIG. 5. The same as in Fig. 3, except for the incident energy
of 300 keV and for a different measurement. Experimental data: �
Schöffler et al. [13], ◦ Loftager [59].

062705-11



MANČEV, MILOJEVIĆ, AND BELKIĆ PHYSICAL REVIEW A 91, 062705 (2015)

FIG. 6. Differential cross sections as a function of scattering
angle θ ≡ θlab(rad) in the laboratory frame of reference at incident
energy E = 1.3 MeV for single-electron capture by protons from
He(1s2). The solid curve represents the theoretical results obtained by
using the prior BCIS-4B method (present computations). The dashed
curve represents the theoretical results of the prior CB1-4B method
(present computations). The initial ground state of atom He(1s2) is
described by means of the two-parameter wave function of Silverman
et al. [44]. The explicit computations are carried out only for the
ground state of H(1s) and the Oppenheimer n−3 scaling law with the
multiplying factor 1.202 is used for H(n) to estimate the contribution
from the whole spectrum of the excited states. Experimental data: •
Fischer et al. [14].

as predicted by the BCIS-4B method, is clearly visible in
Figs. 6–10, as also summarized in Fig. 11. It is seen in
Fig. 11 that the intensity of the Thomas peak increases with
augmentation of the projectile velocity. It is then expected,
in the case of nonradiative transitions, that at still higher
incident velocities (not shown), the Thomas peak will yield
the dominant contribution to single-electron capture cross
sections. In general, and at least in the high-energy limit, all
the second-order methods are anticipated to predict that the dip
and the Thomas peak should be located at 0.28 and 0.47 mrad,
respectively.

Horsdal-Pedersen et al. [60] experimentally detected the
Thomas peak for electron capture from helium by protons
using single-pass measurements by sweeping directly through
the projectile scattering angles. This is a type of “counts per
channel” measurement. Counts are the events associated with
the generated hydrogen atoms that hit a detector at fixed
scattering angles. Each scattering angle represents a channel in
the measurement. As such, counts per channel are proportional
to dimensionless differential cross sections taken as a function

FIG. 7. The same as in Fig. 6, except for the incident energy of
2.5 MeV.

FIG. 8. The same as in Fig. 6, except for the incident energy of
5.0 MeV.
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FIG. 9. The same as in Fig. 6, except for the incident energy
of 7.5 MeV. The additional dotted and dot-dashed curves represent
the results from the prior BCIS-4B method obtained using the two-
dimensional Gauss-Legendre numerical integrations with 96 and 288
quadrature points per axis, respectively.

FIG. 10. The same as in Fig. 6, except for the incident energy of
12.5 MeV.

FIG. 11. Differential cross sections for single-electron capture by
protons from He(1s2) as a function of scattering angles at different
incident energies. The curves represent the theoretical results obtained
by using the prior BCIS-4B method (present computation).

of scattering angles. The subsequent multiplication of these
latter observables by a constant of proportionality, relating the
output and input flux of particles per unit of surface, yields
differential cross sections in units of area per steradian.

Decades later [12,14,15], also for the p-He collisions,
the Thomas peak was recorded by multipass experiments
that measure the momenta of recoiled ions. This was the
COLTRIMS technique implemented within ion storage ring
accelerators equipped with electron cooling. In such measure-
ments, momentum and energy conservation laws are exploited
to arrive at the differential cross sections as a function of
scattering angles. Ion recoil momenta are very small (of
the order of atomic units of momentum) and, thus, their
measurements, being extremely difficult, necessitate cooling
of both the target and projectiles. Projectiles are cooled by
cold electron beams immersed into the ring from the electron
gun in a direction parallel to the incident beam. This is done
within a very small part of the path of the circulating hot
projectiles. Cold cathode-produced electrons are adiabatically
expanded prior to injection into the ring. Subsequently, these
electrons are diverted from the primary beam away from the
ring. In the said short overlapping part (about 1 m out of
typically 50 m of the circumference of the ring), the parallel
projectile and electron beams exchange their temperatures
from hot to cold as dictated by the kinetic theory of gases. In
this way, electrons become warmer and, as such, are diverted
from projectiles. Simultaneously, projectiles become cooler,
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as observed through monitoring the Schottky signal showing
a much narrower beam profile (a Gaussian) of the incident
beam. Here, hot and cold particle beams are the spread-out
and narrow beams, respectively. This is clear from the fact
that the beamwidth �v in the Boltzmann distribution of the
incident velocities v is proportional to the “gas” temperature
T (here, a particle beam is referred to as particle “gas”).
This is how the kinetic theory of gases is advantageously
used for the primary beam collimation. This replaces the
old-fashioned collimation achieved by making the projectiles
pass through a sequence of well-aligned small holes in several
parallel diaphragms. The target, on the other hand, is cooled by
cryogenic molecular pumps. Overall, the purpose of projectile
cooling is to collimate the stream of incident particles to a very
narrow beam directed at the target. The goal of target cooling is
to reduce the Brownian random motion in the target. With such
a synergistic double cooling effect, the COLTRIMS technique
is able to dramatically increase the angular resolution in
measurements of differential cross sections and, thus, to peer
into the collisional dynamics in an unprecedented way, as if it
were a kind of a “reaction microscope” as noted earlier.

In Fig. 9, the three curves resulting from the BCIS-
4B method are displayed at the impact proton energy of
7.5 MeV. They are obtained by employing three different
sets of Gauss-Legendre quadratures with NGL = 96, 288,
and 368, where NGL is the number of integration points.
As can be seen from this figure, the results with NGL = 96
have not converged. However, convergence is achieved with
NGL = 288 and persisted with NGL = 368, in the sense that the
angular distributions for these latter two sets are of practically
indistinguishable shapes (moreover, a quantitative agreement
between the full and dot-dashed curves is also seen with
a slight difference appearing only above 0.6 mrad). The
importance of this convergence test is best appreciated by
observing that the Thomas peak is completely absent from
the nonconverged angular distribution (NGL = 96). In fact,
the set of 96 integration points, although itself quite large,
is still insufficient to exhibit the double structure after the
first dip around 0.28 mrad. For NGL = 96 the constructive
interference prevails over the destructive ones, such that this
double structure is washed out and, as a result, a flattened curve
emerges after the dark angle.

With increasing projectile energy, the dark angle positions
slowly move to the asymptotic scattering angle of the dip
(0.28 mrad). Thus, at 12.5 MeV, both the CB1-4B and
BCIS-4B methods show the same location of the dark angle
at 0.28 mrad, as can be seen from Fig. 10. Of course, no
Thomas peak is detected by the CB1-4B method which,
as the first-order approximation, neglects the intermediate-
continuum state of the active electron.

Many studies on ion-atom collisions concluded that the
Thomas peak should appear exclusively at asymptotically high
impact energies. This is not the case at all in the BCIS-4B
method, which predicts the Thomas peak at both intermediate
and high impact energies. For example, even at 300 keV, there
is a hint of this double-scattering effect appearing as a left-
sided shoulder of the Thomas peak lying within the dip (Fig. 3).
Further, already at 630 keV, the Thomas peak becomes clearly
visible and thereafter, with every increase of the impact energy,
the Thomas peak becomes more pronounced (Fig. 11).

At intermediate impact energies (100, 150 keV), the dips
in the BCIS-4B method occur at larger angles (at about
0.53 mrad) than in the case of the CB1-4B method, where they
appear at about 0.48 mrad (Figs. 3 and 4). Interestingly, and by
serendipity, the dark angles in the CB1-4B method at 100 and
150 keV are very close to the Thomas angle θlab = 0.47 mrad.

In both the BCIS-4B and CB1-4B methods, with augmen-
tation of the impact energy, two simultaneous tendencies exist
consisting of decrease of two dark angles and decrease of their
difference (Figs. 4–10). Eventually, at sufficiently high impact
energy, the BCIS-4B and CB1-4B method predict the same
dark angle at 0.28 mrad (Figs. 9 and 10). At high energies the
shapes of the angular distributions are completely different
in the BCIS-4B and CB1-4B methods. At these energies,
in the CB1-4B method, the dip is around 0.28 mrad and is
followed by a broad and diffused maximum and a tail due
to the internuclear Rutherford collision taking place at larger
scattering angles. This latter peak will be hereafter called the
broadband peak whose position converges to 0.48 mrad. The
broadband and the Thomas peak should not be confused with
each other. Despite being located at approximately the same
scattering angle at high energies, the broadband peak in the
CB1-4B method is not a second-order effect, which is a double
scattering, billiard-type collision (ZP − e1 − ZT). Moreover,
this broadband peak in the CB1-4B method diminishes with
increasing energies relative to the forward peak. This latter
trend is opposite to the increase of the Thomas peak height
with respect to the forward peak at high impact energies in
the BCIS-4B method. Further, at intermediate energies, the
heights of the broadband peaks in the CB1-4B method are
larger than those from the Thomas peaks in the BCIS-4B
method with the opposite pattern at high energies. Also with
increasing energies, the widths of the Thomas peaks in the
BCIS-4B method become smaller as opposed to widening of
the broadband peak in the CB1-4B method at higher energies.

In the BCIS-4B method, the dip at the dark angle
(0.28 mrad) is followed by a more involved structure than in
the CB1-4B method. Here, for all energies, at about 0.8 mrad,
there is also a broadband peak and the adjacent tail stemming
from the Rutherford scattering (Figs. 6–11). Additionally, in
between the first dip at the dark angle (0.28 mrad), there is the
Thomas peak at about 0.47 mrad. Finally, the Thomas and the
broadband peak are separated by the second dip at about 0.61
mrad for all high energies (Fig. 11). The double-scattering
peak at 0.47 mrad for the Thomas process ZP − e1 − ZT

is systematically much stronger than the broadband peak at
0.8 mrad. In the BCIS-4B method there are two peak-to-dip
ratios that change with the increasing energy, one associated
with the Thomas peak (0.47 mrad) and the other corresponding
to the broadband peak (0.8 mrad).

The broadband peak in the BCIS-4B method is, in fact,
an envelope of the angular distributions due to the three
components representing the contributions from three dif-
ferent potentials 2ZP/R,−ZP/s1, and −ZP/s2 in the total
perturbation V d

i = 2ZP/R − ZP/s1 − ZP/s2 from (10). The
first component due to repulsive potential (2ZP/R) describes
the Rutherford scattering with no peak structure at any energy
within the displayed angles on Figs. 12 and 13 at 150 keV and
7.5 MeV, respectively. On the other hand, at high energies,
the second component stemming from the attractive potential
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FIG. 12. Separate contributions from three different potentials
in the complete perturbation V d

i in the prior BCIS method
at the incident energy 150 keV (present computation): dashed
curve (VP1 = −ZP/s1), dash-dotted curve (VP2 = −ZP/s2), dotted
curve (VPR = 2ZP/R), and solid curve (V d

i = VPR + VP1 + VP2 =
2ZP/R − ZP/s1 − ZP/s2).

(−ZP/s2) has a well-delineated Thomas peak located at
0.47 mrad (Fig. 13). This is the earlier described Thomas
process ZP − eS

1 − eS
2 , which involves the static correlations

of the electrons in the target wave function. According to
Fig. 13, the ratio of the order of about 10−4 of the heights of
the two Thomas peaks (dash-dotted curve: ZP − eS

1 − eS
2 and

dashed curve: ZP − e1 − ZT) points to the relative weakness
of the static correlations in helium. The peak for the Thomas
process ZP − e1 − ZT (dashed curve in Fig. 13), up to the level
of the first dip, is a perfectly symmetric Lorentzian. However,
the Thomas peak in the solid line which includes the three
potentials via V d

i is asymmetric with a shoulder on the left-
hand side. This is due to the constructive interference between
the contributions from VP1 = −ZP/s1 and VPR = 2ZP/R in
V d

i (the Thomas peak associated with VP2 = −ZP/s2 is too
weak to participate in this interference). Notice that in the post
version of the CDW-4B method for process (45), the two peaks
for the Thomas processes ZP − e1 − ZT and ZP − e1 − e2 are
of practically the same height [2,6]. In this latter method
the dynamic correlations are explicitly included in the post
transition amplitude by way of the perturbation Vf from (3),
which contains the electronic repulsion 1/r12.

As stated, in contradistinction with the CB1-4B method,
there are two dips in the differential cross sections from the
BCIS-4B method. Figure 13 at 7.5 MeV is a particularly clear
illustration of the origin of these two dips. Therein, it is seen
that the curves due to −ZP/s1 and 2ZP/R cross each other
twice, precisely at the positions of the two dips (0.28 and

FIG. 13. Separate contributions from three different potentials
in the complete perturbation V d

i in the prior BCIS method
at the incident energy 7.5 MeV (present computation): dashed
curve (VP1 = −ZP/s1), dash-dotted curve (VP2 = −ZP/s2), dotted
curve (VPR = 2ZP/R), and solid curve (V d

i = VPR + VP1 + VP2 =
2ZP/R − ZP/s1 − ZP/s2). The upper Thomas peak (dashed line)
at the critical angle 0.47 mrad is due to the usual distorted-wave
quantum-mechanical counterpart of the classical Thomas billiard-
type double scattering ZP − e1 − ZT. The lower Thomas peak (dot-
dashed line) at the same Thomas critical angle 0.47 mrad stems from
the static-correlation-induced double scattering-type event ZP − eS

1 −
eS

2 , involving the projectile, the active (to be captured) and the passive
(noncaptured) electrons. Here, superscript S, standing for static
correlations, is used for the electrons to avoid confusing ZP − eS

1 − eS
2

with ZP − e1 − e2, which explicitly invokes the electron-electron
repulsion 1/r12 via the perturbation potential Vf in (3) from the
post BCIS-4B method. The Thomas process ZP − e1 − e2 is absent
from the prior BCIS-4B method, since Vi from (3) and its eikonal
approximation V d

i in (10) do not have 1/r12.

0.61 mrad). Thus, in the close vicinity of scattering angles 0.28
and 0.61 mrad, both dips result from destructive interference of
these two contributions of different signs −ZP/s1 and 2ZP/R

in the transition amplitude (25). Hence, in this angular region,
the contribution from −ZP/s2, although relatively small, is
still able to dominate the yield due to the difference 2ZP/R −
ZP/s1 in V d

i from (25). The contribution from −ZP/s1 has
its own dip at 0.38 mrad. This is not due to any cancellation
with another potential, but rather to a destructive interference
of various wavelets from the Coulomb function. The dip at
0.38 mrad is partially filled by the contribution from 2ZP/R,
which also shifts the dip at 0.38 to 0.28 mrad, which is the
final position of the dip in the solid line from V d

i .
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Figure 12 at 150 keV displays an entirely different situation.
Therein, there are no Thomas peaks at all and only one dip
shows up at 0.61 mrad. With the exception of the forward
peak, none of the three component curves that are due to
−ZP/s1,−ZP/s2, and 2ZP/R exhibit any other structure.
Rather these differential cross sections show a systematic trend
of continuously decreasing functions of scattering angles.
Here, the curves due to −ZP/s1 and 2ZP/R cross each
other only once and this is around 0.28 mrad. This does
not lead to a dip, which is shifted to 0.61 mrad. The lack
of destructive interference between the contributions from
−ZP/s1 and 2ZP/R is explained by a significant yield from
−ZP/s2 (which was totally negligible at 7.5 MeV in Fig. 13).
At the dip near 0.61 mrad, there is no crossing of the curves
arising from −ZP/s1 and 2ZP/R. Nevertheless, the dip at 0.61
mrad still appears, and this is due to a near compensation of the
contribution from 2ZP/R and the difference −ZP/s1 − ZP/s2

(again, here too, the yield from −ZP/s2 is significant).
A further inspection of these two latter figures also identifies

the origin of the broadband peak after the first and second
dip in Figs. 12 and 13, respectively. The broadband peak
is due to the different rates of decrease of the contributions
from −ZP/s1,−ZP/s2, and 2ZP/R. With augmentation of
the scattering angles, the differential cross sections due to
−ZP/s2 fall off faster than those from −ZP/s1 and 2ZP/R,

as seen Figs. 12 and 13. Additionally, the wavelets from the
Coulomb function centered at ZT − 1 can also influence the
overall interference pattern. At intermediate energies, this is
evidenced by shifting (towards larger scattering angles) of the
dip predicted by the BCIS-4B method relative to the dip from
the CB1-4B method (Fig. 4).

D. Influence of excited hydrogen states
at intermediate and high energies

We have found that sharp minimae in the differential cross
sections from the CB1-4B method can be partially filled
by inclusion of the excited states of the atomic hydrogen.
A similar effect has previously been reported in Ref. [61]
in the case of single-electron capture treated within the
three-body boundary-corrected first Born (CB1-3B) method.
As an illustration of this effect within the CB1-4B method,
the computations of the state-selective cross sections for the
p − He collisions are performed at 100 keV and 7.5 MeV. The
obtained results are shown in Figs. 14 and 15, respectively.
This effect is more pronounced at 100 keV than at 7.5 MeV,
implying that the contributions from electron capture into the
excited state are more important at lower than at higher impact
energies.

Differential cross sections (dQ/d�)tot for capture summed
over all the final states of atomic hydrogen according to the
Oppenheimer scaling law [50,51] can be written as(

dQ

d�

)
tot

=
4∑

n=1

γn

(
dQ

d�

)
n

(
n ≡ nf1 ,l ≡ lf1 ,m ≡ mf1

)
,

(46)

where (dQ/d�)n=
∑n−1

l=0 (dQ/d�)nl, (dQ/d�)nl=
∑+l

m=−l

(dQ/d�)nlm with γn = 1 (n = 1,2,3) and γ4 = 2.561. Here,

FIG. 14. Differential state-selective cross sections for electron
capture by protons from He(1s2) at the proton energy of 100 keV. The
curves represent the theoretical results obtained using the prior CB1-
4B method (present computations) for different principal quantum
number n of the captured electron in the final channel.

FIG. 15. The same as in Fig. 14, except for the incident energy
of 7.5 MeV.
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the numerical factor 2.561 comes from the Oppenheimer
n−3 scaling law which takes approximately into account the
contributions from all the levels with n � 5 (Appendix B). In
practice, we found that for the p − He collisions, the inclusion
of the higher partial cross sections (dQ/d�)n=5 and beyond
does not influence the results for (dQ/d�)tot. The latter results
explicitly take into account the exact contributions from the
n � 4 states, whereas the yield from the higher excited states
(n � 5) is included approximately by the Oppenheimer scaling
rule. As can be seen from Figs. 14 and 15, the ground-state
transfer is the dominant channel over electron capture to
excited states.

IV. CONCLUSIONS

We have investigated the role of the intermediate ionization
continua in the problem of one-electron capture from two-
electron atomic systems by completely stripped projectiles
at intermediate and high impact energies. The analysis is
carried out by means of the four-body boundary-corrected
continuum-intermediate-state (BCIS-4B) approximation. The
total scattering wave functions of the BCIS-4B theory satisfy
the proper boundary conditions in both the entrance and exit
channels. In addition to the long-range Coulomb distortions
of the plane waves for the relative motion of the two charged
aggregates, the BCIS-4B method accounts for the intermediate
ionization continua of the captured electron in the exit channel.
Detailed comparisons are made between the results from this
second-order method and the four-body boundary-corrected
first Born (CB1-4B) approximation. The latter method ignores
the continuum-intermediate states of the electron and includes
only the logarithmic Coulomb phase distortions due to the
relative motion of heavy particles. The outcome of these com-
parisons provides direct evidence that full Coulomb electronic
continuum-intermediate states of the captured electron play
an important role for single charge exchange. We have carried
out an analytical reduction of the original nine-dimensional
integral for the transition amplitude to a straightforward
and efficient two-dimensional numerical quadrature over the
real variables. A general program is written based upon the
obtained semianalytical expression for the arbitrary nuclear
charges of the bare projectile and heliumlike targets. This
program is presently used to compute differential and total
cross sections for single-electron capture in p − He collisions.

The obtained theoretical results for differential cross sec-
tions are compared with the related experimental data that
are available at several intermediate energies 100, 150, and
300 keV, as well as at higher energies 1.3, 2.5, 5.0, 7.5,
and 12.5 MeV. The results from the BCIS-4B method are in
overall good agreement with the existing experimental data. In
particular, in the narrow forward cone, the agreement between
the BCIS-4B theory and the experiment is excellent. Theory
and experiments do not agree around the so-called dark angle,
as manifested via a dip, which comes from a destructive
interference of the parts of the amplitudes corresponding to
the attractive and repulsive Coulomb potentials.

By increasing the impact energy, the BCIS-4B method
clearly shows the two Thomas peaks both located precisely

at the same scattering angle θlab = 0.47 mrad. One of them is
the usual double scattering involving the two nuclei and the
active electron (the electron to be captured by the projectile).
The other corresponds to capture of the active electron by the
interaction of the projectile nucleus and the nontransferred
electron (the electron to remain bound to the target nucleus
after the collision). This latter mechanism for capture is
assisted by the static correlations between the two electrons
in the target wave function rather than stemming from the
usual billiard-type Thomas double scattering. The height of the
Thomas peak with the captured electron is much stronger than
that of the Thomas peak involving the noncaptured electron in
the case of the presently employed two-parameter ground-
state helium wave function with radial static correlations
alone. The Thomas peak with the nontransferred electron
may become more intense if both radial and angular static
correlations of the electrons are included in the helium wave
function.

For scattering angles above the dark angle, the CB1-
4B approximation systematically and largely overestimates
the experimental data. Significant difference between the
results of the CB1-4B and BCIS-4B methods at this angular
region can be directly attributed to the importance of the
full Coulomb electronic continuum-intermediate states of the
captured electron. It is also shown by way of the CB1-
4B approximation that the contribution from the excited
states of the atomic hydrogen in the p − He collisions can
partially fill in the unphysical and experimentally unobserved
extremely sharp dip. Although not accomplished in the current
study, a similar partial filling in of the dip is expected in
the BCIS-4B method, provided that the contribution from
the excited states of the atomic hydrogen is taken into
account.

The computed total cross sections in the BCIS-4B method
for the investigated one-electron capture in the p − He colli-
sions are found to be in excellent agreement with the available
experimental data above 50 keV. These cross sections vary
within 11 orders of magnitude for impact energies covering
three orders of magnitude. Overall, the present thorough
analysis shows that the BCIS-4B theory can confidently be
further explored for many other collisional systems involving
single-electron capture for important and versatile applications
both in basic and applied physics (thermonuclear fusion energy
research, hadrontherapy, etc.).
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APPENDIX A

The quantity Ak appearing in Eq. (33) from the main text is given by

Ak =
∫

d�s1 e−i�v·�s1�k(�x1)ϕ∗
P(�s1) =

∫
d�s1 e−i�v·�s1ϕ∗

P(�s1)

[∫
d �q e−i �q·�x1�̃k(�q )

]
, (A1)

where �̃k(�q ) = μ1/[π2(|�q + �vτ |2 + μ2
1)2] is the Fourier transform of �k(�x1) with μ1 = αk − ivτ . Further,Ak can be analytically

transformed to the following form:

Ak = 8μ1

√
Z5

P

π3
e−i �β· �R

∫
d �q e−i �q· �R(|�q − �α|2 + Z2

P

)2(|�q + �β1|2 + μ2
1

)2

= 48μ1

√
Z5

P

π3
e−i �β· �R

∫ 1

0
dtt(1 − t)

∫
d �q e−i �q· �R(|�q − �Q1|2 + �2

1

)4

∴ Ak = 2μ1

√
Z5

Pπ e−i �β· �R
∫ 1

0
dt

t(1 − t)

�5
1

(
3 + 3�1R + �2

1R
2
)
e−i �Q1· �R−�1R, (A2)

where �2
1 = v2

1 t(1 − t) + Z2
Pt + μ2

1(1 − t), �β1 = �β + �vτ , �v1 = �v(1 − τ ), and Q1 = �α − �β1(1 − t). Here, the well-known
Feynman identity [62] is also utilized. Applying the technique analogous to the one just outlined for Ak , the quantity Bk

from Eq. (33) becomes

Bk =
∫

d�s1 e−i�v·�s1
ϕ∗

P(�s1)

s1
�k(�x1)

=
∫

d�s1 e−i�v·�s1
ϕ∗

P(�s1)

s1

[∫
d �q e−i �q·�x1�̃k(�q )

]

= 4μ1

√
Z3

P

π3
e−i �β· �R

∫
d �q e−i �q· �R(|�q − �α|2 + Z2

P

)(|�q + �β1|2 + μ2
1

)2

= 8μ1

√
Z3

P

π3
e−i �β· �R

∫ 1

0
dt(1 − t)

∫
d �q e−i �q· �R(|�q − �Q1|2 + �2

1

)3 ,

∴ Bk = 2μ1

√
Z3

Pπ e−i �β· �R
∫ 1

0
dt

(1 − t)

�3
1

(1 + �1R)e−i �Q1· �R−�1R. (A3)

A similar calculation can also be carried out for Dl with the intermediate expression

Dl =
∫

d�s2 ϕ∗
T(�x2)e−αlx2

1

s2

= 2ζ

√
πZ3

T

∫ 1

0
dt1

1 − t1

�3
2

(1 + �2R)e−�2R, (A4)

where ζ = ZT + αl and �2 = ζ
√

1 − t1. Moreover, the remaining integral in Dl can be analytically calculated yielding

Dl = 2

√
πZ3

T

ζ 2

[
4

ζR
− 2e−ζR

(
1 + 2

ζR

)]
. (A5)

It should be noted that the same integral Dl also appears in the CB1-4B calculation. Such a derivation of the closed form for
the integral Dl provides a reduction of the original nine-dimensional integral of the prior CB1-4B transition amplitude [35] to a
one-dimensional quadrature. Finally, a closed form can likewise be derived for the integral Cl from Eq. (33) and the result is

Cl =
∫

d�s2 ϕ∗
T(�x2)e−αlx2 =

√
Z3

T

π

8π

(ZT + αl)3
. (A6)

In this way, the quantity Sif from Eq. (30) in the main text becomes

Sif (τ )

4πZ
5/2
P Z

3/2
T

=
∑
k,l

Nαk
Nαl

μ1

ζ 3

∫ 1

0
dt

1 − t

�3
1

{
12pI

(�1)
0 + 4(3p�1 − 1)I (�1)

1 + 4�1(p�1 − 1)I (�1)
2

+p
[
12I

(�)
0 + 6(ζ + 2�1)I (�)

1 + 2�1(3ζ + 2�1)I (�)
2 + 2ζ�2

1I
(�)
3

]}
, (A7)

where p = ZPt/�
2
1. The quantities I

(�1)
0,1,2 and I

(�)
0,1,2,3 are defined by the remaining integral:

I (λ )
n =

∫
d �RRn−1e−i �Q1· �R−λR(vR + �v · �R)iξ , (λ = �1,�). (A8)
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The integrals from (A8) for 0 � n � 4 have been calculated by
Belkić [63] and the analytical results are given by the following
concise expressions:

I
(λ)
0 = 4π�(1 + iξ )F (λ), (A9)

I
(λ)
1 = 8π�(1 + iξ )D(λ)F (λ)[1 − iξC(λ)], (A10)

I
(λ)
2 = −8π�(1 + iξ )

D(λ )F (λ)

λ

[
A(λ)

α + iξB(λ)
α

]
, (A11)

I
(λ)
3 = −16π�(1 + iξ )

[D(λ)]2F (λ)

λ

[
A

(λ)
β + iξB

(λ)
β

]
. (A12)

The other quantities appearing in Eqs. (A9)–(A12) are

F (λ) = [B(λ)]iξ

Q2
1 + λ2

, B(λ) = 2(vλ − i �Q1 · �v)

Q2
1 + λ2

, (A13)

C(λ) = v

λB(λ)
− 1, A(λ) = λ2

Q2
1 + λ2

, D(λ) = A(λ)

λ
,

(A14)

A(λ)
α = 1 − 4A(λ), B(λ)

α = 1 + 2A(λ)C(λ)
α , (A15)

C(λ)
α = C(λ)[4 + (1 − iξ )C(λ)], (A16)

A
(λ)
β = 6(1 − 2A(λ)), B

(λ)
β = 2A(λ)C

(λ)
β + 3D

(λ)
β , (A17)

C
(λ)
β = C(λ){18 + 9(1 − iξ )C(λ) + (1 − iξ )(2 − iξ )[C(λ)]2},

(A18)

D
(λ)
β = 2 − (1 + iξ )C(λ). (A19)

Notice that in Ref. [64], the more general case of integral (A8),

which additionally involves the spherical harmonics Yl,m( �̂R),
has been considered and the analytical results were obtained
for arbitrary triple {n,l,m}.

APPENDIX B

At sufficiently high impact energies, in the first-
order Oppenheimer-Brinkman-Kramers (OBK1) approxima-
tion [65] for electron capture from hydrogenlike atomic
systems by bare nuclei, the total cross sections corresponding
to two final states with different principal quantum numbers
n and n′ scale according to (n′/n)3. We assume that the
same Oppenheimer scaling also applies to the BCIS-4B
method for electron capture via (1), i.e., ZP + (ZT; e1,e2)i −→
(ZP,e1)nlm + (ZT,e2)f2 . In such a case, high-energy total cross
sections in the BCIS-4B method for electron capture into
any final state with the principal quantum number n of the
hydrogenlike atomic system (ZP,e1)n summed over {l,m} can

be estimated by means of the Oppenheimer n−3 scaling law
[50,51] as

Qn

Qn′
≈

(
n′

n

)3

, Qn =
n−1∑
l=0

Qnl, Qnl =
+l∑

m=−l

Qnlm,

(B1)

Qtot =
N−1∑
n=1

Qn + γ (3,N − 1)QN,

γ (3,N ) = 1 + (N + 1)3ζ (3) −
N+1∑
n=1

(
N + 1

n

)3

. (B2)

Here, there is a similar sum in Qn′ for all the degenerate levels
at each fixed value of the principal quantum number n′. Quan-
tity ζ (s) in (B2) represents the Riemann ζ function ζ (s) =∑∞

n=1 n−s with the specific value ζ (3) ≈ 1.202 056 903 [66].
Parameter N in γ (3,N ) is a positive integer which is chosen to
coincide with the lowest value of n required for convergence
of the sum over all the final bound states of the projectile.

In order to approximately take into account the contri-
butions from all the levels n � 2, we should set N = 1
and use the formula Qtot 
 Q(�1) = γ (3,0)Q1 = ζ (3)Q1 ≈
1.202Q1. This was used in computations of all the presently
reported total cross sections. Similarly, to explicitly ac-
count for the states with n � 4, we should put N = 4 and
employ the expression Qtot 
 Q(�4) = Q1 + Q2 + Q3 +
γ (3,3)Q4 ≈ Q1 + Q2 + Q3 + 2.561Q4. Here, the number
2.561 modifies Q4 by allowing for the approximate contri-
butions from all the levels n � 5, where γ (3,3) = 64[ζ (3) −
251/216] = 2.561 274 ≈ 2.561.

The same n−3 scaling law is supposed to be applicable to
differential cross sections:(

dQ

d�

)
tot

=
N−1∑
n=1

(
dQ

d�

)
n

+ γ (3,N − 1)

(
dQ

d�

)
N

, (B3)

where (dQ/d�)n = ∑n−1
l=0 (dQ/d�)nl and (dQ/d�)nl =∑+l

m=−l(dQ/d�)nlm. All the differential and total cross sec-
tions dQ/d� and Q from the BCIS-4B method in the
main text are from the formulas (dQ/d�)tot ≡ dQ/d� ≈
1.202(dQ/d�)1 and Qtot ≡ Q ≈ 1.202Q1. These formulas
are also employed in the CB1-4B method for nearly all the
differential and total cross sections from the main text. The
only exceptions are Figs. 14 and 15 that display differential
cross sections from the CB1-4B method computed for N = 4
in the general expression (B3), which leads to the numerical
factor γ4 = 2.561 in Eq. (46).
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