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Electron elastic-scattering phase shifts and cross sections as well as total cross sections of low-frequency
bremsstrahlung and its angular-asymmetry and polarization parameters upon low-energy electron collision with
endohedral fullerenes A@C60 are theoretically scrutinized versus the nature, size, and spin of the encapsulated
atom A. This is achieved by choosing Ar, Xe, Ba, Cr, Mn, and Eu as the case-study atoms A. The aim is to
uncover the variety of effects which might occur in the above processes rather than to make thorough predictions
for one particular spectrum. To that end, the study makes use of a simple model static-exchange approximation.
There, both the encapsulated atom A and the C60 cage are regarded as nonpolarizable targets and the C60 cage
itself is modeled by an attractive spherical annular potential well. Calculated results identify the most interesting
and/or useful future measurements or more rigorous calculations to perform.
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I. INTRODUCTION

Electron elastic scattering and bremsstrahlung (a process of
emission of radiation upon collision of electrons with matter)
on quantum targets are important fundamental phenomena of
nature with significance to both the basic and applied sciences
and technologies. Yet, to date, the knowledge on these phe-
nomena upon electron collision with such important quantum
targets as endohedral fullerenes A@C60 is largely lacking.
Endohedral fullerenes, (also referred to, interchangeably, as
endohedral atoms or just fullerenes in the present paper) are
nanostructure formations where an atom A is encapsulated
inside the hollow interior of a C60 fullerene. They are relatively
novel and important objects of intense modern studies. In fact,
the authors are aware of only one published work on the subject
of low-energy electron elastic scattering off A@C60 [1]. It
is the ultimate aim of the present paper (a) to get a broader
insight into properties of low-energy electron elastic scattering
off A@C60, (b) to provide the initial insight into features of
electron low-frequency bremsstrahlung on A@C60, and (c) to
explore to a greater extent how said properties and features
might evolve with changing the size, softness, and spin of the
encapsulated atom. To meet this goal, the authors pick typical
representatives of atoms from the family of noble gases (Ar
and Xe), 3d transition metals (Cr and Mn), and alkaline (Ba)
and rare-earth (Eu) elements of the periodic table. As a result,
the basic features as well as characteristic similarities and
discrepancies of electron elastic scattering and low-frequency
bremsstrahlung on various endohedral fullerenes A@C60 are
revealed, interpreted, and detailed within the framework of the
model.

The interaction of radiation and charged particles with
endohedral atoms is a complicated multifaceted process. This
is in view of a great variety of various effects that contribute
to the process. It is, therefore, both desirable and important to
understand how each of the “facets” contributes to and results
in this or that effect in the processes of interest, rather than to
get only the cumulative result. In the present paper, we bring
to light the impact of a “static facet” on e + A@C60 elastic
scattering and bremsstrahlung. This is achieved by considering
these processes in the framework of an approximation referred

to as the model static-exchange approximation in the present
paper. In this approximation, the C60 cage is modeled by
an attractive spherical annular-potential well Uc(r) of certain
inner radius r0, width �, and depth U0. The C60 cage, thus, is
regarded as a nonpolarizable target. The encapsulated atom A

is positioned at the center of the potential Uc(r) and is regarded
as a nonpolarizable target as well. The potential of A@C60

is defined as the sum of the potential Uc(r) and nonlocal
Hartree-Fock (HF) potential of the encapsulated atom A. The
corresponding HF equation is then solved in order to determine
the wave functions and electron elastic-scattering phase shifts
upon e + A@C60 collision. Note that this approximation,
where the C60 is modeled by the the potential Uc(r) with the
atom A being at the center of the potential, has been used for the
study of the interaction of photons and charged particles with
endohedral fullerenes A@C60 on numerous occasions; see,
e.g., [1–6] (and references therein). Also, the replacement of
the C60 cage by the same potential Uc(r) was employed in work
[7] for the study of electron elastic scattering off empty C60

as well. In the same work, the study of e + C60 scattering was
paralleled by the calculation performed in the framework of a
sophisticated ab initio molecular-Hartree-Fock approximation
combined with the Schwinger multichannel scattering theory.
The work [7] provided a thorough, detailed comparison of
calculated results for the e + C60 scattering phase shifts
as well as partial and total elastic-scattering cross sections
obtained in the frameworks of these two approximations. A
reasonable qualitative, and even semiquantitative, agreement
between some of the most prominent features of e + C60

elastic scattering, predicted by the two calculations, was
demonstrated. Such agreement speaks in favor of the overall
usability of the Uc-model-potential approximation to electron-
fullerene collision.

In the present work, the electron collision energy ε is
assumed to be sufficiently small (ε � 15 eV). At such energies,
the electron wavelength λ > 3 Å. It, thus, exceeds noticeably
the bond length D ≈ 1.44 Å between the carbon atoms in
C60. Correspondingly, the incoming electrons will “see” the
C60 cage as a homogeneous rather than “granular” cage. This
justifies the modeling of the C60 cage by a smooth potential,
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in general, such as the above introduced potential Uc(r), in
particular. Furthermore, in the present work, the emphasis is
on low-frequency bremsstrahlung, ω → 0. In the latter case,
(a) the bremsstrahlung phenomenon can easily be attacked
in the framework of a low-frequency approximation [8] and
(b) the contribution of a tricky “polarization bremsstrahlung”
amplitude [9–11] (and references therein) can be safely
excluded from the study. (The “polarization bremsstrahlung”
amplitude is the amplitude of the photon emission by a target
during its dynamical polarization by an incoming electron.)

Thus, the model static-exchange approximation employed
in the present paper for the study of both low-energy electron
elastic scattering and low-frequency bremsstrahlung upon
e + A@C60 collision is overall reasonable. It has, however,
obvious drawbacks such as the omission of accounting for
electron correlation in and polarization by an incident electron
of an e + A@C60 system. It also leaves out of consideration
various molecular effects associated with the g and u parity
of molecular terms, LUMO and HOMO molecular orbitals,
σ -bound and π -unbound orbitals, etc. A thorough discussion
of the impact of these molecular-structure effects on electron
elastic scattering off empty C60, resulting in the prediction
of resonances, in particular, π∗-shape resonances, neither of
which can be accounted for in the framework of the simple
model static-exchange approximation, is given in Ref. [7], to
which the reader is referred for details. Obviously, the case
of electron collision with a “stuffed” C60, i.e., A@C60, is
even more complicated than the case of e + C60 scattering;
the development of a corresponding comprehensive theory is
for future years. Therefore, in order to understand, interpret,
and appreciate the impacts of omitted effects on e + A@C60

elastic scattering and bremsstrahlung, one does need to know
how the processes develop without accounting for such
effects. The present study is an attempt to provide researchers
with such knowledge. Moreover, the model static-exchange
approximation allows one to uncover characteristic properties
of the investigated phenomena which do not depend on
the actual molecular structure of C60 cage. The present
work discusses some of the most basic intrinsic properties
of low-energy electron elastic scattering and electron low-
frequency bremsstrahlung off A@C60 fullerenes. It identifies
the most interesting and/or useful future measurements or more
rigorous calculations to be performed in order to advance this
field of study.

Finally, the present study also has a significance which is
independent of its direct applicability to endohedral fullerenes.
This is because it falls into a mainstream of intensive modern
studies where numerous aspects of the structure and spectra of
atoms under various kinds of confinements are being attacked
from many different angles by research teams worldwide. This
has resulted in a huge array of unraveled effects and data being
accumulated in a large number of publications; see reviews
[2,12–16] (and references therein). There, one finds a wealth
of information on properties of single-electron, two-electron,
and many-electron atoms confined by impenetrable spherical,
spheroidal, as well as open boundary potentials (e.g., see
review papers in [14] by Aquino, p. 123; Laughlin, p. 203;
Cruz, p. 255; Garza and Vargas, p. 241), oscillator potentials
(e.g., Patil and Varshni [14], p. 1), potentials limited by
conoidal boundaries (Ley-Koo [14], p. 79), Debye potentials

(Sil, Canuto, and Mukherjee [15], p. 115), fullerene-cage
potentials (Dolmatov [15], p. 13; Charkin et al. [15], p. 69;
Amusia et al. [17]), potential with dihedral angles (Ley-Koo
and Sun [16], p. 1), etc. The results of the present study add
basic knowledge to the collection of atomic properties under
confinement as well.

II. THEORY

In the present work, the C60 cage is modeled by a spherical
annular-potential well, Uc(r):

Uc(r) =
{−U0, if r0 � r � r0 + �,

0, otherwise. (1)

Here, r0, �, and U0 are the inner radius, thickness, and depth of
the potential well, respectively; their magnitudes are borrowed
from Ref. [7]. Namely, � = 2.9102 a0 (a0 being the first Bohr
radius of the hydrogen atom), r0 = Rc − (1/2)� = 5.262 a0

(Rc = 6.7173 a0 being the radius of the C60 skeleton), and
U0 = 7.0725 eV (found by matching the electron affinity
EA = −2.65 eV of C60 with the assumption that the orbital
momentum of the 2.65-eV state is � = 1). These values
of the adjustable parameters are most consistent with the
corresponding observations.

Next, the wave functions ψn�m�ms
(r,σ ) =

r−1Pnl(r)Ylm�
(θ,φ)χms

(σ ) and binding energies εnl of
atomic electrons (n, �, m�, and ms is the standard set of
quantum numbers of an electron in a central field; σ is the
electron spin coordinate) are the solutions of a system of the
“endohedral” HF equations [in atomic units (a.u.)]:

[
−�

2
− Z

r
+ Uc(r)

]
ψi(x) +

Z∑
j=1

∫
ψ∗

j (x′)

|x − x′|
× [ψj (x′)ψi(x) − ψi(x′)ψj (x)]dx′ = εiψi(x). (2)

Here, Z is the nuclear charge of the atom, x ≡ (r,σ ), and
the integration over x implies both the integration over r and
summation over σ . Equation (2) differs from the ordinary
HF equation for a free atom by the presence of the Uc(r)
potential in the equation. This equation is first solved in order
to calculate the electronic ground-state wave functions of the
encapsulated atom. Once the electronic ground-state wave
functions are determined, they are plugged back into Eq. (2)
in place of the ψj (x′) and ψj (x) functions in order to calculate
the electronic wave functions of scattering states ψi(x) and
their radial parts Pεi�i

(r). The corresponding electron elastic-
scattering phase shifts δ�(k) are then determined by referring
to Pk�(r) at large r [18]:

Pk�(r) →
√

2

π
sin

(
kr − π�

2
+ δ�(k)

)
. (3)

Here, k is the electron’s wave number [k ≡ |k| = (2mε/�
2)1/2,

k and m being the electron’s wave vector and mass, respec-
tively]; Pk�(r) is normalized to δ(k − k′), where k and k′ are
the wave numbers of the incident and scattered electrons,
respectively. The total electron elastic-scattering cross section
σel(ε) is then found in accordance with the well-known formula
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for electron scattering by a central-potential field [18]:

σel(k) = 4π

k2

∞∑
�=0

(2� + 1) sin2 δ�(k). (4)

A differential cross section dσ (ω) of bremsstrahlung into
the frequency interval dω, the direction of the photon momen-
tum pph = �q into the solid angle d�q , and the direction of
the momentum p′ = �k′ of a scattered electron into d�k′ are
defined as follows [19]:

dσ (ω) = m2e2q3k′

(2π )4�3k

×
∣∣∣∣êq

∫
(ψ+

k )∗rψ−
k′ d r

∣∣∣∣
2

dωd�qd�k′ . (5)

Here, �qc = �ω = �
2k2

2m
− �

2k′2
2m

, where c is the speed of light,
e is the electronic charge, k′ is the wave vector of the scattered
electron, êq is the unit vector of the photon polarization,
and ψ±

k are the wave functions of the incident and scattered
electrons, respectively:

ψ±
k (r) = (2π )3/2

k

∑
�,μ

i� exp[±iδ�(k)]

×Y ∗
�m�

(θk,φk)Y�m�
(θr ,φr )

Pk�(r)

r
. (6)

In the above equation, θk and φk are the spherical angles of the
electron wave vector k, whereas θr and φr are the spherical
angles of the electron position vector r .

Let us position the origin of a rectangular XYZ system
of coordinates on the encapsulated atom A. Let us assume
that the momentum p = �k of an incident electron lies along
the Z axis, pointing in its positive direction. Furthermore, in
the final state of the system, let us measure the directions
of both the momentum pph = �q of an emitted photon and
its polarization vector êq . The vector êq will be determined
relative to a ( p, pph) plane, being either parallel (eq‖) or
perpendicular (eq⊥) to the plane. Then, with the help of Eq. (5),
one can determine the corresponding differential cross sections
dσ⊥/dωd�q and dσ ‖/dωd�q into the unit intervals of ω and
�q :

dσ⊥

dωd�q
= 1

8π

dσ

dω

[
1 − 1

2
β(ω)

]
, (7)

dσ ‖

dωd�q
= 1

8π

dσ

dω

{
1 + 1

2
β(ω)[1 − 2P2(cos θ )]

}
. (8)

Here, P2(cos θ ) is the Legendre polynomial of the second
order, θ is the angle between the Z axis and the photon mo-
mentum pph, dσ/dω is the bremsstrahlung angle-integrated
cross section (or, interchangeably, the spectral density of
bremsstrahlung) [19], and β(ω) is the angular-asymmetry
parameter of bremsstrahlung:

dσ

dω
= 8π2

3

m2
�

4α3

e4

ω3

p′p3

×
∞∑

�=0

[
�D2

�−1(p) + (� + 1)D2
�+1(p)

]
, (9)

β(ω) =
[ ∞∑

�=0

(
�D2

�−1 + (� + 1)D2
�+1

)]−1

×
∞∑

�=0

(2� + 1)−1
[
(� + 1)(� + 2)D2

�+1

+ �(� − 1)D2
�−1 − 6�(� + 1)D�+1D�−1

× cos(δ�+1 − δ�−1)
]
. (10)

Here, α is the fine-structure constant and D�±1 is the
bremsstrahlung dipole amplitude:

D�±1 =
∫ ∞

0
Pk′,�±1rPk,�(r)dr. (11)

To determine the differential cross section dσ/dωd�q of
unpolarized bremsstrahlung, one adds Eqs. (7) and (8) together
and arrives at the known formula (see, e.g., [20]):

dσ

dωd�q
= 1

4π

dσ

dω

[
1 − 1

2
β(ω)P2(cos θ )

]
, (12)

where the parameter β(ω) is given by the same Eq. (10).
Next, the parameter of the degree of the bremsstrahlung’s

polarization, ζ3 (known as the Stokes third parameter), defined
as the ratio of the difference between dσ⊥(ω)/dωd� and
dσ ‖(ω)/dωd� to their sum, takes the following form:

ζ3(θ ) = β[1 − P2(cos θ )]

2 − βP2(cos θ )
. (13)

In the framework of the low-frequency bremsstrahlung
approximation (ω → 0), utilized in the present paper, εi ≈ εf

(εi and εf are the initial and final electron energy, respectively).
In this case, the functions Pk,�(r) and Pk′�±1 in Eq. (11)
can [8] be replaced by their asymptotic forms, Eq. (3).
Correspondingly, one readily obtains (see, e.g., [8,20])

D�±1(ω)|ω→0 = ± 1

π

(
p

mω

)2

sin[δ�(p) − δ�±1(p)]. (14)

As was noted in the previous section, some of the
encapsulated atoms of interest are Cr, Mn, and Eu. Theses
are high-spin atoms, owing to one or two semifilled subshells
in their ground-state configurations: Cr(...3d54s1, 7S) (with
the two semifilled subshells 3d5 and 4s1), Mn(...3d54s2, 6S)
(with the single semifilled subshell 3d5), and Eu(...4f 76s2, 8S)
(with the single semifilled subshell 4f 7). Atoms with open as
well as semifilled subshells require a special approach to the
calculation of their structure and spectra. A convenient, effec-
tive theory to calculate the structure of a semifilled shell atom
is the “spin-polarized” Hartree-Fock (SPHF) approximation
developed by Slater [21]. The quintessence of SPHF is as
follows. It accounts for the fact that spins of all electrons in
the semifilled subshell(s) of the atom (e.g., in the 3d5↑ and
4s1↑ subshells in the Cr atom) are co-directed, in accordance
with Hund’s rule, say, all pointing upward. This results in
splitting of each of other closed n�2(2�+1) subshells in the atom
into two semifilled subshells of opposite spin orientations,
n�2�+1↑ and n�2�+1↓. This is in view of the presence of
exchange interaction between nl↑ electrons with only spin-up
electrons in the original spin-unpaired semifilled subshell(s)
of the atom (such as the 3d5↑ and 4s1↑ subshells in the Cr
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atom) but absence of such for nl↓ electrons. Thus, the SPHF
configurations of the picked-out semifilled-subshell atoms are
as follows:

Cr(...3p3↑3p3↓3d5↑4s1↑, 7S),
Mn(...3p3↑3p3↓3d5↑4s1↑4s1↓, 6S),
Eu(...4d5↑4d5↓4f 7↑6s1↑6s1↓, 8S).
SPHF equations for the ground state, bound excited states,

and scattering states of a semifilled shell atom differ from
ordinary HF equations for closed-shell atoms by accounting
for exchange interaction only between electrons with the same
spin orientation (↑, ↑ or ↓, ↓). To date, SPHF has successfully
been extended to studies of electron elastic scattering off
isolated semifilled shell atoms in a number of works [22–24]
(and references therein). In the present paper, SPHF is utilized
for calculation both of the atomic and scattering states of
A@C60 endohedral fullerenes, where A is a semifilled shell
atom.

III. RESULTS AND DISCUSSION

A. Valence orbitals of the encapsulated atoms A in A@C60

The impact of the C60 cage on the valence orbitals of the
encapsulated atoms of interest is illustrated in Fig. 1. Note that
the free-Ar 3p valence orbital practically coincides with the
Ar@C60 3p orbital. Even the 5p valence orbital of a bigger
Xe atom is only insignificantly altered upon its encapsulation
inside the C60 cage. Therefore, these atoms are referred to
as the “compact” atoms in the present paper. In contrast, the
valence orbitals of the Ba as well as Cr, Mn, and Eu atoms are
significantly drawn into the potential well, i.e., into the region
of the wall of C60. These atoms are to be referred to as the
“soft” atoms.

FIG. 1. (Color online) Calculated Pns↑(r) and Pns↓(r) radial func-
tions (in atomic units) of the valence subshells of closed-shell
Ar@C60, Xe@C60, and Ba@C60 atoms, as well as semifilled-shell
Cr@C60, Mn@C60, and Eu@C60 along with those of their free
counterparts, as marked, versus radius (in units of a0, a0 being the
first Bohr radius); the spatial region 5.262 < r < 8.17 belongs to the
wall of the C60 cage. Note, in Eu@C60, the 6s↑ and 6s↓ orbitals
are drawn into the C60 cage equally strongly (see text) and are, thus,
totally blended with each other in the plotted figure.

Next, note that the 4s↓ orbital of Mn is drawn into the C60

wall noticeably stronger than the 4s↑ orbital. This induces
the transfer of a noticeable part of primarily the spin-down
electron density from the encapsulated atom to the C60 cage.
Correspondingly, the C60 cage becomes, as it were, “charged”
by a spin-down electron density. This effect was originally
spotted in Mn@C60 [1], where it was named the “C60-spin-
charging effect.” Later, it was detailed on a more extensive
scale with an eye on the register of a quantum computer in
Ref. [25]. In contrast to Mn@C60, the cage becomes spin-up
charged in Cr@C60. This is because of a significant spin-up
electron density drain from a 4s↑ spin-unpaired semifilled
subshell of Cr to the C60 cage. In contrast, the spin-dependent
drain of the valence electron density does not take place in
Eu@C60. This is because the 6s↑ and 6s↓ orbitals are drawn
into the C60 cage equally. The latter, in turn, is because the
4f 7↑ semifilled subshell of Eu lies much deeper relative to
its 6s1↑ and 6s1↓ subshells than the spin-unpaired semifilled
3d5↑ subshell of Mn relative to its spin-up and spin-down 4s

subshells. Correspondingly, the exchange interaction between
the 4f ↑ and 6s↑ electrons in Eu is negligible, and there is
no exchange interaction between the 4f ↑ and 6s↓ electrons.
Hence, there is practically no difference between the 6s↑ and
6s↓ orbitals of free or encapsulated Eu. As a result, the C60

cage in Eu@C60 is “spin neutral.” Note that, as was argued in
Ref. [25], the C60 spin charging can affect the manipulation
of spins in the corresponding A@C60 systems and that it must
inhibit, or at least render more complex, the operation of the
register of a fullerene-based quantum computer [26].

The above findings stir up one’s mind by way of won-
dering (a) how sensitive is electron elastic scattering and
bremsstrahlung to the size of a compact encapsulated atom?
(b) alternatively, how sensitive are these phenomena to the size
of a soft encapsulated atom? and (c) how sensitive are these
phenomena to the spin of an encapsulated atom? The rest of
the present work is motivated by the search for answers to
these questions.

B. Electron collision with a closed shell A@C60: A = Ar,Xe,Ba

1. Electron elastic-scattering and bremsstrahlung cross sections

Calculated total electron elastic-scattering cross sec-
tions σ

A@C60
el , bremsstrahlung cross section ωdσ/dω,

bremsstrahlung angular-asymmetry parameter β(ε), and
Stokes polarization parameter ζ3(ε)|θ=90◦ of low-frequency
bremsstrahlung due to electron collision with Ar@C60,
Xe@C60, Ba@C60, and empty C60 are depicted in Fig. 2.
This figure clearly demonstrates that all of the above electron
elastic-scattering and bremsstrahlung quantities develop a
resonance behavior. The interpretation of the oscillatory
behavior of the electron elastic scattering off empty C60 was
provided in Refs. [7,17]. There, it was shown that it is due to
quasidiscrete states formed by a centrifugal potential barrier
for the states with � � 3. Namely, the first narrow resonance
in σ

C60
el at ε ≈ 0.27 eV is the f -virtual resonance, the second

resonance (at ε ≈ 2.3 eV) is the g-virtual resonance, and so
on. As for the s-, p-, and d-scattering states, they cannot
and do not have a resonance behavior, because the model
spherical-annular potential, as well as the model δ potential
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FIG. 2. (Color online) Calculated HF (a) total electron elastic-
scattering cross sections σ

A@C60
el and σ

C60
el (in units of a2

0 ), (b)
bremsstrahlung cross section ω dσ

dω
[in units of kilobarns (kb); 1

barn = 10−24 cm2 ≈ 3.57 × 10−8 a2
0 ], (c) bremsstrahlung angular

asymmetry parameter β, and (c) bremsstrahlung Stokes polarization
parameter ζ3 (at θ = 90◦) upon electron collision with A@C60

(A = Ar,Xe, and Ba) and empty C60, as marked. Note, the calculated
in the present work σ

C60
el coincides naturally with that calculated in

Ref. [7] (not plotted in the figure) in the framework of the same model
static-exchange approximation.

of work [17], was found to form an s-, p-, and d-bond state;
thus the corresponding quasiresonances cannot be formed [18].
The resonance structures in bremsstrahlung quantities upon
electron collision with empty C60 calculated in this work admit,
naturally, the same interpretation as well.

However, the case of electron collision with endohedral
fullerenes A@C60 appears to not always be developing in the
same way as electron collision with empty C60. For example,
on the one hand, the electron elastic-scattering cross sections
σ

Ar@C60
el and σ

Xe@C60
el practically do not differ either from each

other or from σ
C60
el . Their resonance structure, thus, admits the

same interpretation as the resonance structure of σ
C60
el . This is

because the Ar and Xe atoms are compact; i.e., their electron
density is concentrated practically entirely inside the C60 cage,
so that they are largely “shielded” by the C60 cage from the
“attention” of the incoming electrons. On the other hand, the
cross section σ

Ba@C60
el behaves clearly much differently than

σ
C60
el , or σ

Ar@C60
el , or σ

Xe@C60
el . Indeed, in σ

Ba@C60
el , (a) the low-

energy f -virtual resonance is absent, (b) there is a sign of
a new resonance near ε ≈ 1.4 eV (the latter is particularly
clearly resolved in the calculated bremsstrahlung parameters),
and (c) there is a noticeable dip in this cross section near 8
eV. The Ba atom was found to be a soft atom whose valence
electron density is noticeably drawn into the C60 cage, so that
the above noted peculiarities in electron-Ba@C60 collision
definitely correlate with the softness of the atom.

The finding that electron scattering off Ar@C60, Xe@C60,
and especially off Ba@C60 can be significantly weaker than
electron scattering off empty C60, at ceratin electron energies
[see Fig. 2(a)], deserves particular attention. In other words,
the gas medium of empty C60 can be much less transparent to
the incoming beam of electrons than the medium of “stuffed”
C60 (A@C60), at ceratin electron energies. This feels somewhat
counterintuitive. This finding should be combined with another
counterintuitive finding of work [1], where it was shown
that electron scattering off A@C60 can even be weaker than
scattering off the atom A itself.

In conclusion, the authors emphasize that results depicted in
Fig. 2 demonstrate that the bremsstrahlung parameters appear
to be more sensitive to the presence of a particular atom
inside C60 than the corresponding electron elastic-scattering
cross section. Indeed, e.g., a weakly developed 1.4-eV res-
onance in σ

Ba@C60
el is seen to be resolved much better in the

bremsstrahlung parameters. In addition, whereas there are little
differences between σ

Ar@C60
el , σ

Xe@C60
el , and σ

C60
el in the whole

energy region, the corresponding bremsstrahlung parameters
for one system differ significantly from bremsstrahlung pa-
rameters for another system, particularly above approximately
4 eV. The authors attribute the reason for the “enhanced”
sensitivity of low-frequency bremsstrahlung to the structure
of an encapsulated atom to that fact that bremsstrahlung
cross section, β, and ζ3 depend on the difference between
elastic-scattering phase shifts, thereby tying up features of
both phases in, as it were, “one place.” In contrast, the electron
elastic-scattering cross section depends on absolute values
of individual phase shifts. The above also suggests that the
angle-differential scattering cross sections should also be more
sensitive to the presence of the encapsulated atom A inside the
C60 cage than the integral cross sections, for the same reason
as for the bremsstrahlung parameters.

In order to understand the above established peculiarities in
electron elastic scattering and bremsstrahlung off Ar@C60,
Xe@C60, and Ba@C60, the study of the corresponding
phase shifts is in order. Results of such study are detailed
below.

2. Electron elastic-scattering phase shifts

Calculated HF electron elastic-scattering phase shifts δ�(ε)
due to scattering off Ar@C60, Xe@C60, and Ba@C60 and, for
comparison, off empty C60 are depicted in Fig. 3. First, let
us discuss the phase shifts at ε = 0; see Table I. In order to
understand the behavior of phase shifts at ε → 0, let us refer
to the Levinson theorem [18], which we write as follows:

δ�(ε)|ε→0 → (
Nn�

+ q�

)
π. (15)

Here, Nn�
is the number of occupied states with given � in the

ground-state configuration of a target scatterer, whereas q� is
the number of additional (if any) empty bound states with the
same � which can accommodate (bind) an external electron.
For the empty C60 cage approximated by the annular potential,
Eq. (1), Nn�

= 0 for all �’s. Therefore, from the calculated
values of δ

C60
� (0), Table I, one concludes that q� = 1 for � =

s,p, and d, but q� = 0 for � = f . The implication is that the
confining potential Uc(r) (or the C60 cage itself) has the ability
to bind an electron into an s, or p, or d state; this was already
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FIG. 3. (Color online) Calculated HF electron elastic-scattering
phase shifts δ�(ε) (in units of radians) (� � 5) upon electron collision
with Ar@C60, Xe@C60, Ba@C60, and empty C60, as marked.
Horizontal dotted lines designate the values of δ� which are modulo
π/2. For scattering off empty C60, the calculated phase shifts coincide
with results of Ref. [7] obtained in the framework of the identical
model (not plotted in the present figure).

noted in Ref. [7]. In addition to the results of Refs. [7,17]
for empty C60, the present study predicts the existence of
the s, p, and d anions Ar@C−

60 and Xe@C−
60, in the given

approximation. Indeed, if one counts the number of occupied
s, p, and d subshells in Ar (Nn�

= 3,2, and 0, respectively)
and Xe (Nn�

= 5,4, and 2, respectively), then, with the help of
Eq. (15) and Table I, one easily finds that qs = qp = qd = 1
whereas qf = 0 for both atoms. For Ba@C60, however, the
situation is somewhat different. Indeed, as shown in Table I,
δBa@C60
s (0) = 6π , and there are exactly six s subshells in the

Ba atom; i.e., Nns
= 6. This makes qs = 0, for Ba@C60. The

latter indicates the absence of a s-bound state in the field
of Ba@C60. This is in contrast to the situation for Ar@C60,
Xe@C60, and C60. Next, δ

Ba@C60
f (0) = π , although there are

TABLE I. Calculated HF electron elastic-scattering phase shifts
δ�(ε) (at ε = 0) upon electron collision with empty C60 and A@C60

(A = Ar,Xe, and Ba).

δ�(0)

� C60 Ar Xe Ba

s π 4π 6π 6π

p π 3π 5π 5π

d π π 3π 3π

f 0 0 0 π

no occupied f subshells in the Ba atom. Hence, qf = 1. This
predicts the emergence of a f -bound state in the field of
Ba@C60, in contrast to the case of the Ar@C60, Xe@C60, and
C60 fullerenes. Obviously, things work differently for Ba@C60

because of a noticeable drain of the valence electron density
of Ba to the C60 cage; see Fig. 1.

We now discuss the energy dependence of the plotted phase
shifts along with corresponding consequences in conjunction
with the general scattering theory, particularly with an eye on
resonance scattering. The characteristic phase-shift criterion
for a low-energy quasiresonance scattering is that a phase shift
δ�(ε) first increases towards modulo π with decreasing energy,
then, before that value is reached, it sharply decreases to a zero
(or another modulo π ) passing through the value of, this time,
modulo π/2 [18,27,28].

One can see that the f phase shifts upon electron scattering
off each of the considered fullerene systems but Ba@C60

clearly satisfy the quasiresonance-scattering criterion. For
each of the considered fullerene systems (but Ba@C60), the
f -phase shifts pass through the value of π/2 at about the same
energy ε ≈ 0.23 eV, exactly where there is a sharp narrow
resonance in the calculated corresponding electron elastic-
scattering cross sections, or about where there is a narrow
sharp resonance in the calculated bremsstrahlung quantities.
Furthermore, the g-phase (� = 4) and h-phase (� = 5) shifts
for all considered fullerene systems (the Ba@C60 including)
clearly satisfy the quasiresonance-scattering criterion as well.
One thus concludes that a low-energy resonance at ε ≈ 1.76
eV in the Ba@C60 collision spectra as well as the low-energy
resonances at ε ≈ 2.3 eV in the spectra of other fullerenes
are the quasibound resonances. The just discussed f , g,
and h resonances were revealed previously in the case of
electron elastic scattering off empty C60 in Refs. [7,17]. It is a
finding of the present work that these resonances are retained
in the electron collision spectra of Ar@C60, Xe@C60, and
Ba@C60 (but the f resonance in Ba@C60) as well. This is
not entirely surprising in the framework of our model which
largely neglects the interaction between the encapsulated atom
and the C60 cage. The resonances in question occur either
at very low energies or in high-� electronic waves. When
the energy is low, the de Broglie wavelength of the incident
electron exceeds the width of the potential well and, thus,
scattering is generally insensitive to details of the potential
in the interior of C60 where an atom is encapsulated. When
� is big, the centrifugal barrier is too high for a low-energy
high-� electronic wave to penetrate deep into the interior of
C60, thereby making scattering of high-� electronic waves
generally insensitive to details of the potential as well. For
Ba@C60, where there is a noticeable drain of the valence
electron density of Ba into the C60 cage, things naturally
work somewhat differently. Because of the electron drain, the
field of the encapsulated Ba atom becomes more attractive
in the interior of C60. As known [27], a stronger attractive
potential increases the value of a phase shift and also moves
resonances toward lower electron energy. This is why the g-
and h-phase shift resonances in the case of Ba@C60 are greater
than the corresponding resonances in the case of Ar@C60,
Xe@C60, and C60, and the resonance maxima are positioned
at somewhat lower energies. Furthermore, by exploring the
d-phase shift upon electron collision with Ba@C60, one reveals
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another finding of the present work. Namely, one can see
that the low-energy behavior of the phase shift satisfies the
resonance-scattering criterion as well. We thus predict the
existence of (approximately) a 1.5-eV d quasiresonance in
the electron collision spectrum of Ba@C60. This resonance
is clearly seen in the calculated bremsstrahlung spectra and,
less clearly, in the calculated electron elastic-scattering cross
section σ

Ba@C60
el , Fig. 2. This 1.5-eV d quasiresonance emerges

near the much stronger 1.76-eV g quasiresonance. These two
resonances appear to be resolved better in the bremsstrahlung
spectra than in σ

Ba@C60
el . Next, by exploring a near-zero energy

dependence of the s- and p-phase shifts depicted in Fig. 3,
one can see that they pass through the value of modulo π/2
while rising towards modulo π at ε = 0. Where δ� equals
modulo π/2, the corresponding electron-scattering spectra
maximize as well. This situation, however, should not be
confused with resonance scattering, since it does not fit the
resonance-scattering criterion. In accordance with the later
[27], δ�(ε) must be decreasing with decreasing ε while passing
through the value of π/2 (or modulo π/2) to a zero (or modulo
π ) at ε = 0.

In conclusion, one could wonder why the s-, p-, d-, and
f -phase shifts upon electron scattering off different A@C60

are so quantitatively different from each other even when the
electron wavelength is bigger than the size of the potential
well, or � high, so that in both cases scattering should have
been insensitive to details of the potential in the interior of
C60, as for the above discussed case of the g and h waves.
The answer to this is simple. As known [28], exchange
interaction plays an important role in electron scattering off
atoms. Therefore, while the “direct” interaction between the
incident electron and encapsulated atom can be shielded by the
C60, the exchange interaction cannot. Of particular importance
is exchange interaction between an incoming electron and
atomic electrons of the encapsulated atom with the same �.
Therefore, the more n� subshells in the encapsulated atom
with the same � as the � of the incoming electron, the stronger
the exchange-interaction impact on the �-phase shift. Thus,
it is in principle impossible to make the encapsulated atom
invisible to an incident electron (with the exception, perhaps,
of where there are no atomic subshells with the same � as the
� of an incident electron, as in the case of g and h scattering
considered above).

3. Independent-scattering approximation

We now attempt to understand the differences between
the d-phase shifts upon electron scattering off C60, Ar@C60,
Xe@C60, and Ba@C60 as well as between the f -phase shifts,
Fig. 3. The noted differences are not only quantitative, but
qualitative as well.

It is found in the present study that, as odious as it may
seem, the above observations can be understood in terms of
a simple sum of a phase shift δ

C60
� due to electron scattering

off empty C60 and a phase shift δA
� upon electron scattering by

the isolated atom A (recently Amusia [29] came to the same
conclusion as well):

δ
A@C60
� (ε) ≈ δ̃

A@C60
� (ε) = δA

� (ε) + δ
C60
� (ε). (16)

FIG. 4. (Color online) Calculated HF d- and f -phase shifts (in
units of radian): dotted line, empty-C60 δ

C60
� ; dashed line, free-

atom δA
� ; dash-dotted line, δ̃

A@C60
� = δA

� + δ
C60
� ; solid line, δ

A@C60
�

due to electron collision with A@C60 as the whole (true result).
A = Ar,Xe,Ba.

The above stated approximation is referred to as the
independent-scattering approximation in the present paper.
Figure 4 provides the supporting evidence in favor of this
approximation.

One can see from Fig. 4 that indeed δ̃
A@C60
� ≈ δ

A@C60
� , to a

good approximation. The agreement is reasonable even for the
case of electron collision with Ba@C60, although the latter is
a less suitable system to apply this approximation to, because
of the noticeable electron density drain from Ba to C60. One,
of course, would be too naive to expect that the independent-
scattering approximation is perfect. One can readily conclude,
upon exploring Fig. 4, that the characteristic differences in
the d-phase shifts between δ

Ar@C60
d , δ

Xe@C60
d , and δ

Ba@C60
d , as

well as the differences in the f -phase shifts between these
three systems, are due to the characteristic differences between
the corresponding free-atom phase shifts δA

� . For example,
the sudden decrease (with decreasing energy) of δ

Ba@C60
d at

ε ≈ 1.8 eV definitely correlates with the same for free-Ba
δBa
d . On the other hand, the free-Xe phase shift δXe

d behaves
very much differently than δBa

d . As a result, the phase shifts
δ

Ba@C60
d and δ

Xe@C60
d behave nearly oppositely to each other, at

low electron energies. Equally, the well-developed minimum
in δ

Ba@C60
f definitely correlates with a sharp decrease (with

decreasing energy) of free-Ba δBa
f from about π to a zero in
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this energy region (indicative of an f -shape resonance in the f -
scattering state). In contrast, the free-Ar and free-Xe f -phase
shifts are a slowly changing monotonic function of energy
which cannot “beat” the sharply changing empty-C60 f -phase
shift. As a result, the δ

Ba@C60
f phase shift does, but δ

Xe@C60
f

does not, develop the strong broad minimum in the discussed
energy region.

The independent-scattering approximation will be fre-
quently employed further in the paper on various occasions
as an easy qualitative tool for understanding the behavior of
phase shifts for other case-study systems.

C. Electron collision with high-spin
A@C60: A = Cr, Mn, and Eu

1. Eu@C60

One of the interesting findings discussed in the previous
discussion was that electron scattering off soft Ba@C60 has
characteristic features which are absent in electron scattering
off compact Ar@C60 and Xe@C60. It is, therefore, interesting
to see whether similar features will emerge in another soft
A@C60 system, where the atom A is about as big as Ba and
donates about as much of its valence electron density to C60 as
Ba. Furthermore, it is also interesting to explore how electron
scattering off such system might change if a big, soft atom
A is, additionally, a high-spin atom. The ideal candidate for
the stated study is the Eu@C60 system. Indeed, the Eu atom
matches the Ba atom in the electron-density drain rate from
the atom to the C60 cage (see Fig. 1) and, besides, Eu has the
most capacious semifilled subshell, the 4f 7↑ subshell, thereby
representing an atom with the highest spin. Furthermore,
Eu has a spherical symmetry which simplifies greatly the
corresponding calculations.

Calculated SPHF electron elastic-scattering phase shifts
δ

Eu@C60
�↑ and δ

Eu@C60
�↓ of spin-up and spin-down electrons,

respectively, are depicted in Fig. 5 for � � 3. Plotting phase
shifts with � > 3 is not necessary since they are nearly identical
to those for scattering off Ba@C60. This is because a high
value of the centrifugal potential barrier for these electrons
makes their scattering relatively insensitive to the details of
the potential inside C60.

First, looking at the values of the depicted phase shifts at
ε = 0, one concludes, with the help of the Levinson theorem,
that, similarly to Ba@C60, the Eu@C60 fullerene is capable
of binding an extra electron into a p, or d, or f state,
but not into an s state. Furthermore, note the dependence
of the phase shifts on the electron spin polarization which
appears to be noticeable for the d-phase shifts but the strongest
for the f -phase shifts. This spin dependence is due to the
presence (absence) of exchange interaction of the spin-up f ↑
electrons of the 4f 7↑ semifilled subshell of the atom with the
incident spin-up (spin-down) electrons. One can see that the
f -phase shifts of oppositely spin-polarized incident electrons
take even drastically different routes with decreasing electron
energy.

Next, let us uncover the reason behind the most striking
result—the drastic difference between the spin-up and spin-
down f -phase shifts both for the free-Eu and Eu@C60 cases.
In the framework of HF or SPHF, atoms do not make

FIG. 5. (Color online) Calculated SPHF electron elastic-
scattering phase shifts (in units of radians) of incident spin-down
(↓) and spin-up (↑) electrons with � � 3 scattered off Eu@C60

(δEu@C60
�↑(↓) ) and free-Eu δEu

�↑(↓), as marked. Horizontal dotted lines mark
the values of δ� which are modulo π/2. The phase shifts are plotted
on the expanded energy scale for a better clarity of features in the
interval of 0 to 15 eV.

negative ions. Since there are no spin-down f ↓ electrons
in free Eu, the free-Eu f ↓-phase shift must decrease to a
zero with decreasing energy, in accordance with the Levinson
theorem. This explains the calculated behavior of the free-Eu
f ↓-phase shift depicted in Fig. 5. On its way to a zero, this
phase shift passes through the value of π/2 at ε ≈ 14 eV,
thereby causing the shape resonance in the f ↓-partial electron
elastic-scattering cross section. Qualitatively, the f ↓-phase
shift behaves similarly to the f -phase shift upon electron
scattering off Ba; this is because Ba has no f subshells in
its ground-state configuration as well. Furthermore, using the
independent-scattering approximation, Eq. (16), i.e., adding
the free-Eu f ↓-phase shift with the empty-C60 f -phase
shift, one easily (no commentary is needed) arrives at the
understanding of the behavior of δ

Eu@C60
f ↓ as well, particularly

at the understanding of the emergence of the broad minimum
in δ

Eu@C60
f ↓ at low electron energies. Again, all this is in a close

analogy to the case of f -wave scattering off Ba@C60. Let us
now discuss the spin-up f ↑-phase shift. Obviously, the free-Eu
f ↑-phase shift must approach the value of π , since there is the
spin-up 4f 7↑ subshell in the atomic configuration of Eu. This
explains the drastic difference between the free-Eu f ↓- and
f ↑-phase shifts. Then, adding the free-Eu f ↑-phase shift with
the empty-C60 f -phase shift, one arrives at the understanding
of the behavior of δ

Eu@C60
f ↑ depicted in the figure. In particular,
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it also becomes clear why δ
Eu@C60
f ↑ = 2π but δ

Eu@C60
f ↓ = π

at ε = 0. As was emphasized above, the field of Eu@C60

binds an electron into an f state regardless of the electron
spin polarization. However, since there are only f ↑-bound
electrons in the free-Eu configuration, the additional binding
of an f electron by the whole system Eu@C60 results in
δ

Eu@C60
f ↑ = 2π but δ

Eu@C60
f ↓ = π at ε = 0, due to the Levinson

theorem.
Now, let us discuss the formation of the low-energy maxima

in the d-phase shifts δ
Eu@C60
d↑ and δ

Eu@C60
d↓ . Let us start from the

free-atom case. In accordance with the Levinson theorem, both
the free-Eu d↑- and d↓-phase shifts must take the value of 2π

at ε = 0, owing to the presence of two nd5↑ and two nd5↓
(n = 3,4) subshells in the atom. This explains why the free-Eu
d-phase shifts, depicted in Fig. 5, both decrease to 2π at ε = 0
regardless of the spin polarization of the incident d electrons.
It appears that the energy dependence and low-energy position
of the rapid decrease of the free-Eu spin-up and spin-down
d-phase shifts, during which they pass through the value
of modulo π/2, obey the quasiresonance criterion. Thus, in
the case of free Eu, both the d↑- and d↓-partial electron
elastic scattering cross sections are subject to a quasiresonance
enhancement near 2 eV of the electron energy. This is in
close analogy to the case of Ba. Furthermore, adding the
empty-C60 d-phase shift to the free-Eu d-phase shifts results
in δ̃

Eu@C60
d↑ and δ̃

Eu@C60
d↓ (not plotted in Fig. 5), which have a

low-energy maxima that should, and they do, approximately
match the low-energy maxima in actual δ

Eu@C60
d↑ and δ

Eu@C60
d↓ .

In other words, the above finds that the low-energy behavior
of the Eu@C60 d-phase shifts is directly associated with the
behavior of the free-Eu d-phase shifts, similar to the Ba@C60

case.
Moreover, the above results show clearly that only the spin-

up δ
Eu@C60
d↑ phase shift satisfies the quasiresonance criterion

(similar to the d scattering off Ba@C60). Hence, scattering
of the d↑-electronic wave off Eu@C60 will be resonantly
enhanced at ε ≈ 1 eV, whereas the d↓ scattering will not.
We, thus, have unraveled an interesting phenomenon the
quintessence of which is that the quasiresonance trapping of an
incident electronic wave can depend on its spin polarization.
We term the discovered effect the selective spin-dependent
trapping effect.

It is interesting to explore the electron elastic-scattering
cross sections σ

Eu@C60
el↑(↓) , low-frequency bremsstrahlung cross

section ωdσ↑(↓)/dω, angular-asymmetry parameter β↑(↓), and
Stokes polarization parameter ζ3↑(↓), in general, and how
the selective spin-dependent phenomenon will affect these
quantities, in particular. The corresponding calculated data are
depicted in Fig. 6. The peaks in σ

Eu@C60
el↑ and ωdσ

Eu@C60
↑ /dω,

positioned at approximately 1.9, 4.6, and 8 eV, have the
same origin; i.e., they are due to the quasiresonances
in the phase shifts with � = 4, 5, and 6, respectively, as in
the case of empty C60. The resonance peaks at about the
same energies can be seen in bremsstrahlung β’s and ζ3’s
as well. They have the same origin as the resonances in the
cross sections.

Furthermore, note that the spin-up elastic-scattering and
bremsstrahlung cross sections maximize, additionally, at

FIG. 6. (Color online) Calculated SPHF (a) total electron elastic-
scattering cross sections σel↑(↓) (in units of a2

0 ), (b) bremsstrahlung
cross sections ω

dσ↑(↓)

dω
(in units of kb), (c) bremsstrahlung angular-

asymmetry parameter β↑(↓), and (c) Stokes polarization parameter
ζ3↑(↓)|θ=90◦ upon collision of spin-up and spin-down incident
electrons with Eu@C60 and empty C60, as marked.

ε ≈ 1.1 eV as well. This is due to the quasiresonance in
the d↑-phase shift induced by the selective spin-dependent
trapping effect discussed above. The corresponding difference
between spin-up and spin-down β’s and ζ3’s is even more
drastic than in the case of the cross sections, near 1 eV.

In addition, explore the energy region between 10 and
12 eV. There is an additional strong difference between the
calculated spin-up and spin-down quantities; the difference
looks especially impressive for the case of bremsstrahlung
cross sections. This difference is due to the peculiarity in
the f ↓-phase shift, namely due to the above discussed shape
resonance in there.

Finally, note that, similarly to the case of Ba@C60, one
encounters, once again, a counterintuitive result where electron
elastic scattering off Eu@C60 is much weaker than off empty
C60, at certain electron energies.

2. Cr@C60 and Mn@C60

Although in the above case of Eu@C60 we dealt with
the atom which is both a big-sized and high-spin atom, an
important nuance associated with atomic spin was missing.
Namely, in Eu@C60, the C60 is not spin charged, because both
the 6s↑- and 6s↓-electron densities are drawn into the C60

cage equally strongly. Good candidates to account both for the
impact of a high atomic spin and C60 spin charging on electron
collision with A@C60 are the two closest atom neighbors
in the periodic table—the Cr(...3d5↑4s1↑, 7S) (Z = 24) and
Mn(...3d5↑4s1↑4s1↓, 6S) (Z = 25) atoms. Moreover, this pair
of atoms is interesting in that the Cr atom makes the C60
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FIG. 7. (Color online) Calculated SPHF spin-down (solid lines)
and spin-up (dashed lines) s-, p-, d-, and f -phase shifts (in units of
radians) upon electron collision with Cr@C60, free-Cr (dash-dot-dot)
(left column), as well as Mn@C60 and free-Mn (dash-dot-dot) (right
column), as marked. For the f -phase shifts, only the f ↑-phase shift is
plotted in view of a near identity between these spin-up and spin-down
phase shifts. The phase shifts with � > 3 are practically identical to
those for electron-C60 collision and not plotted on the figure.

primarily spin-up charged, whereas the Mn atom makes it
primarily spin-down charged, as was discussed earlier in the
paper. It is, therefore, interesting to study electron elastic
scattering and bremsstrahlung off Cr@C60 and Mn@C60 and
intercompare results obtained.

SPHF-calculated electron elastic-scattering phase shifts of
spin-up and spin-down electrons with � � 3 due to collision
with Cr@C60 or Mn@C60 are depicted in Fig. 7. First, note the
values of s-, p-, and d-phase shifts at ε = 0. These values, in
conjunction with the SPHF ground-state configurations of Cr
and Mn as well as the Levinson theorem, speak to that fact that
the model static-exchange potentials of Cr@C60 and Mn@C60

support a spin-up and spin-down s-bound state, p-bound state,
and d-bound state beyond the atomic configurations of the
Cr and Mn atoms themselves. Both potentials, however, do
not support bound states with � � 3. The binding properties
of Cr@C60 and Mn@C60 are, thus, the same as the binding
properties of compact Ar@C60 and Xe@C60.

Second, note how differently the s-phase shift δ
Cr@C60
s↓

behaves compared to δ
Cr@C60
s↑ , δ

Mn@C60
s↑ , and δ

Mn@C60
s↓ at low

energies. While the behavior of the three latter phase shifts is
typical for the case of low-energy scattering on an s-discrete

level of small binding energy, the behavior of the spin-down
phase shift δ

Cr@C60
s↓ is not; it breaks the rule at ε ≈ 1.7 eV. This

is another bright example of the role of exchange interaction
in electron scattering off a multielectron atom encapsulated
inside a confining potential (the C60 potential). Indeed, the ma-
jor difference between the s↑ and s↓ scattering off Cr@C60 is
the presence of exchange interaction between the s↑-incident
electron and the only spin-unpaired valence 4s↑ electron
in encapsulated Cr, but the absence of exchange interaction
between this valence electron and an s↓-incident electron.
Because of this [and in conjunction with the Levinson theorem,
Eq. (15)], the free-Cr s↓-phase shift δCr

s↓ [23] starts, at ε ≈ 0.3
eV, sharply decreasing to the value of δCr

s↓(0) = 3π . It is clear
then, on the basis of the independent-scattering approximation,
that the δ

Cr@C60
s↓ phase shift must start first decreasing but

then increasing with decreasing energy, reaching the value
of δ

Cr@C60
s↓ (0) = 4π (because Cr@C60 supports an s↓-bound

state), exactly as depicted in Fig. 7. There is some interesting
difference, though, between the sharp decrease of the free-Cr
δCr
s↓ and δ

Cr@C60
s↓ , with decreasing energy. Indeed, the decrease

in δCr
s↓ occurs at ε ≈ 0.3 eV [23], whereas the corresponding

decrease in δ
Cr@C60
s↓ is seen to occur at ε ≈ 1.7 eV. We associate

this difference with the C60-spin-charging effect due to which
the C60 cage in Cr@C60 becomes primarily spin-up charged.
As for the free-Cr phase shift δCr

s↑, it, in contrast to δCr
s↓, “enjoys”

its monotonic rise towards δCr
s↑(0) = 4π [23]. This is due to

the presence of the 4s↑ subshell in Cr. Then, adding δCr
s↓ and

δC60
s together, we obtain a monotonic increase of δ

Cr@C60
s↑ to

(4 + 1)π at ε = 0, as was found in the direct calculation
of δ

Cr@C60
s↑ depicted in Fig. 7. In the same manner should

behave the phase shifts δ
Mn@C60
s↑ and δ

Mn@C60
s↓ . Indeed, in free

Mn, there are both the 4s↑ and 4s↓ subshell. Therefore,
spin-up and spin-down incident s electrons experience about
equal exchange interaction with the 4s electrons of Mn which
is also about the same as exchange interaction between an
incident s↑ electron and the 4s↑ electron in the electron-Cr
collision. Therefore, δCr

s↑, δMn
s↑ , and δMn

s↓ behave identically, all

rising monotonically towards 4π at ε = 0, and so are δ
Cr@C60
s↑ ,

δ
Mn@C60
s↑ , and δ

Mn@C60
s↓ as well.

Third, note how differently the d↓-phase shift δ
Cr@C60
d↓

behaves compared to the d↑-phase shift δ
Cr@C60
d↑ . The same

differences are characteristic between the δ
Mn@C60
d↓ and δ

Mn@C60
d↑

phase shifts as well. The noted differences can be explained
exactly in the same manner as the just discussed differences
between the spin-up and spin-down s-phase shifts in the
electron-Cr@C60 collision, or the differences between the
spin-up and spin-down f -phase shifts in the electron-Eu@C60

collision discussed earlier in the paper.
Fourth, note how the phase shift δ

Cr@C60
d↓ upon electron-

Cr@C60 collision differs from that δ
Mn@C60
d↓ upon electron-

Mn@C60 collision. Namely, the low-energy minimum in
δ

Mn@C60
d↓ is narrower and emerges at lower energies than the

minimum in δ
Cr@C60
d↓ . This, however, can easily be tracked

back to the differences between the corresponding free-Cr
and free-Mn phase shifts depicted in Fig. 7 as well: the
free-Mn phase shift δMn

d↓ starts rapidly decreasing at a lower
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FIG. 8. (Color online) Calculated SPHF spin-down (solid lines)
and spin-up (dashed lines) total electron elastic-scattering cross sec-
tion σel↑(↓) (in units of a2

0 ), low-frequency bremsstrahlung cross sec-
tions ωdσ↑(↓)/dω (in units of kb), bremsstrahlung angular-asymmetry
parameter β↑(↓), and Stokes polarization parameter ζ3↑(↓)|θ=90◦

of low-frequency bremsstrahlung off Cr@C60 (left column) and
Mn@C60 (right column), as marked.

energy and at a greater rate than δCr
d↓. Then, employing the

independent-scattering approximation, it becomes clear why
the low-energy minimum in δ

Mn@C60
d↓ is narrower and emerges

at lower energies than the minimum in δ
Cr@C60
d↓ .

Finally, the total electron elastic-scattering cross sec-
tions σel↑(↓) for incident spin-up and spin-down elec-
trons, bremsstrahlung cross sections ωdσ↑(↓)/dω, angular-
asymmetry parameter β↑(↓), and Stokes polarization parameter
ζ3↑(↓)|θ=90◦ of low-frequency bremsstrahlung off Cr@C60

and Mn@C60 are depicted in Fig. 8 along with those for
electron collision with empty C60, for comparison.

Similarly to electron collision with empty C60, the
resonance maxima in the calculated elastic-scattering and
bremsstrahlung quantities are due to the resonances in in-
cident electronic waves with � = 4,5, and 6, respectively.
Calculations showed that the extremely narrow f ↑ and f ↓
quasiresonances emerge at the electron energy ε ≈ 0.05 eV.
The latter, however, is outside of the energy range scale
of the figure for which reason they are not seen in the
figure.

Next, one can see that differences between the spin-up and
spin-down calculated quantities are generally stronger in the
case of Cr@C60 than in the case of Mn@C60. This is attributed

to the following. First, Cr is a higher-spin atom than Mn, so
that spin-dependence of scattering reactions brought about by
exchange interaction is stronger in the electron-Cr@C60 than
in the electron-Mn@C60 collision. Second, the C60 cage is
spin-up charged in Cr@C60 but primarily spin-down charged
in Mn@C60; this induces, implicitly, additional features in
exchange interaction of incident electrons with Cr@C60

compared to Mn@C60.
Furthermore, one encounters once a again the situation

where electron elastic scattering off “stuffed” C60 is noticeably
weaker than off empty C60. In addition, one sees the repetition
of the situation met in the Eu@C60 case. Namely, the difference
between collision of spin-up and spin-down electrons with the
considered systems is stronger in calculated bremsstrahlung
parameters than in electron elastic-scattering cross sections.
The difference is particularly strong in the electron-Cr@C60

bremsstrahlung cross section ωdσ↑(↓)/dω above about 6 eV.
In the corresponding angular asymmetry β↑(↓) and Stokes
polarization parameter ζ3↑(↓)|θ=90◦ , the above discussed
difference happens at around approximately 0.8 eV. There,
for example, the spin-down Stokes polarization parameter
ζ

Cr@C60
3 ↓ changes its sign twice in the narrow energy region

around 0.8 eV, whereas the spin-up parameter remains always
positive.

IV. CONCLUSION

The present work has provided detailed insight into pos-
sible features of low-energy electron elastic scattering and
low-frequency bremsstrahlung upon electron collisions with
A@C60 fullerenes gained in the framework of the simple and
yet reasonable model static-exchange approximation. This was
achieved by studying the dependence of these processes on the
individuality of encapsulated atoms A and spin polarization
of incident electrons. Results of the work identify, at the
given level of approximation, the most interesting and/or
useful future measurements or more rigorous calculations to
perform. The present study also provides researchers with
background information which is useful for future studies
aimed at elucidating of the significance of dynamical polar-
ization, correlation effects, molecular-structure effects, etc.,
in these processes. These processes, particularly polarization
of A@C60 by incident electrons, will make the A@C60

potential more attractive, so that predicated resonances and
other features may appear at different energies, or disappear
at all, and some actual bound states may be converted to
resonances. A thorough discussion of possible consequences
of all this is provided in Ref. [7] for the case of electron
elastic scattering off empty C60. Obviously, the presence of
the atom encapsulated inside C60, which will be dynamically
polarized dependently or independently of the polarization of
the cage itself, and also interacting with the cage in certain
ways, will induce additional modifications in the electron-
A@C60 collision. Such effects, however, are subject to an
independent study, some aspects of which we are currently
pursuing.
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