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Experiments performed in recent years on positron scattering from molecular hydrogen indicated a rise
of the total cross section in the limit of zero energy, but essentially disagree on the amplitude of this rise.
Mitroy and collaborators [J.-Y. Zhang et al., Phys. Rev. Lett. 103, 223202 (2009)] predicted a scattering length
somewhat different from values deduced experimentally. Using a Markov chain Monte Carlo modified effective
range theory (MCMC-MERT) we show that the prediction of Mitroy and collaborators allows one to validate
the recent experimental results and determine possible uncertainties. By comparing the MERT analysis with
the fixed-nuclei density functional calculations we also deduce that probably the effect of virtual positronium
formation (or coupling to the virtual positronium state) determines an almost constant value of the total cross
section from 3 eV up to the positronium-formation threshold.
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I. INTRODUCTION

The first generation of experiments on positron (e+) scatter-
ing from molecular hydrogen (H2) dates back to the 1980s [1–
3]. Those experiments suffered from low counting rates; there-
fore they used strong magnetic fields to guide positrons inside
the scattering region. Consequently, total cross sections (TCSs)
measured in the low energy range were underestimated. In the
last decade three new experimental results were published for
e+ + H2 collisions in the low energy range: Karwasz et al.
[4], Zecca et al. [5], and Machacek et al. [6,7]. The latter work
also gives differential cross sections (DCSs) measured with
the same system. All of the recent experiments report almost
twice-higher TCSs in the 3–10 eV range of impact energy when
compared to older results. However the agreement between
those sets is rather poor, particularly below 1 eV, in spite of the
fact that Karwasz et al. [4] and Zecca et al. [5] used essentially
the same apparatus [8]. From the theoretical point of view,
hydrogen as the simplest representative of molecular targets
is a candidate to become a benchmark. Unfortunately, most
theoretical results in the low energy range [9–19] are lower
than the recent experimental TCSs [4–6].

Mitroy and collaborators using the stochastic variational
method, which is one of the most powerful methods for
studying few-body systems in the near-zero-energy range
[20,21], predicted the mean scattering length of −2.63a0

(here we give a slightly improved value reported recently
by Zhang et al. [22]). As they pointed out [20], this result
was incompatible with the measurements of Zecca et al.
[5] reported down to 0.1 eV. This conclusion was published
before the outcome of the experiment from the Australian
National University (ANU) [6] carried out down to 0.5 eV. A
good reason to treat Mitroy’s value of the scattering length
as correct is the fact that their calculations resolved the
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old discrepancy between theoretical and experimental cross
sections for positron annihilation with the H2 molecule (see
[23] for more details).

The present work has threefold aims. First, we discuss the
advantages and weaknesses of recent experimental systems
used to measure TCSs for e+ + H2 collisions. Secondly, we
report a comprehensive study of the compatibility between
available experimental TCS and Mitroy and collaborators’
scattering length. For this purpose we carry out a Bayesian
predictive analysis of the scattering length using a modified ef-
fective range theory (MERT) [24–27] combined with a Markov
chain Monte Carlo (MCMC) fitting procedure [28]. Bayesian
statistics allows for assessment of the theoretical uncertainties
in “classical” MERT analysis, as recently suggested by Editors
[29]. In addition we check the compatibility, within the frame
of simple phase-shift analysis, between TCSs and DCSs
reported by the ANU group [6]. Finally, we report rotationally
elastic integral (IECS) and DCSs employing density functional
theory (DFT) modeling with the single-center expansion
technique (see, e.g., Gianturco and Jain [30]). The calculations
are done for energies down to 0.1 eV. Comparing the latter
results with MERT analysis we discuss possible discrepancies
between theories and experiments occurring in the energy
range below the positronium formation threshold.

The paper is organized as follows: In Sec. II the comparison
between the most recent experimental methods used to study
e++ H2 collisions is presented. In particular, a critical review
of two Trento datasets [4,5] is included. Sections III and IV
describe the principles of the DFT and MCMC-MERT models,
respectively. Section V is devoted to the Bayesian predictive
analysis of the scattering length. Finally, the paper is concluded
in Sec. VI.

II. EXPERIMENTS

In all three recent experiments [4–6] TCSs were evaluated
by an absolute method, i.e., measuring the attenuation of the
positron beam inside a scattering cell vs the gas pressure.
Karwasz et al. [4] used an apparatus [8] with an electrostatic
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FIG. 1. (Color online) Total cross sections for positron scattering
from the ground state of H2. Present DFT results are compared with
the calculations of Mukherjee et al. [17], Zhang et al. [18], Zammit
et al. [19], and experiments of Karwasz et al. published in 2006 [4]
and the same set presently reanalyzed (Karwasz et al.*), Zecca et al.
[5] and Machacek et al. [6] (directly measured and corrected).

optics and a weak (9–11 G) guiding magnetic field in the region
of the scattering cell. The positron source was 22Na salt with
17 mCi activity; the positron moderator was a W-monocrystal
1-μm-thick film, annealed in situ at 3000 K. A compact source-
moderator assembly assured a small initial beam divergence
(±15◦) and spot (2 mm diameter). A rather long (10 cm)
scattering cell with small entrance and exit apertures (1.0 mm
diameter) assured a good angular resolution (3.1 × 10−4 sr), by
more than a factor of 10 better than earlier experiments [1–3].
As discussed in detail for N2 [4] using theoretical differential
cross sections, a possible underestimation of TCSs at 1 eV
in the measurements of Karwasz et al. was as small as 0.4%.
However, the focusing properties of the magnetic field which
are highly energy dependent [31] limited the collision energy
to the 0–20 eV range.

Data for H2 (see normal triangles in Fig. 1) published in
2006 [4] were obtained with a rather poor statistics, differently
from measurements in Ar and N2, which were repeated with
several different settings of optics [4]. Each run consisted of
five values of the attenuation ratio I/I0 vs a constant pressure,
where both I and I0 were mean of 20 values accumulated
over 10 s each. The counting rate for I0 was between 6 and
9 e+/s in the whole studied energy range (apart from 6 eV
where we report the run with I0 ≈ 4+/s). A limited energy
range and few energy points measured in the region 8–10 eV
did not allow one to determine precisely the energy bias (i.e.,
the contact potential + positron work function) between the
tungsten moderator and the scattering cell (made of Cu-Ni
alloy, ARCAP). For the H2 measurements the same bias value
(+2.4 eV) was assumed as for Ar and N2 [4], even if we
know from the retarding field comparison [32] that this bias
could have been by −0.2 eV smaller (but not more than
−0.2 eV). The energy determination is the main source of
possible errors in H2 measurements since it strongly depends
on contact potentials of positron optics (see also Karwasz
et al. [33]). A lower pumping speed for hydrogen than for
nitrogen while using turbomolecular pumps, makes H2 data
particularly vulnerable to the energy bias error and to the

error due to the residual pressure in the scattering cell. To
judge on possible systematic errors, H2 requires experiments
with various settings of the scattering geometry, vacuum
arrangements, and beam properties.

Data for H2 from the paper of Karwasz et al. [4] were
preliminary results, which did not include whole statistics
of measurements performed over the 2004–2005 period in
Trento laboratory. In Fig. 1 (inverted triangles) and in Table I
we report TCSs of Karwasz et al. [4] reanalyzed with whole
available statistics. Table I includes also the statistical errors
and the number of runs that were performed. The preliminary
data published in Ref. [4] are also given for comparison.
Note that data reported in Fig. 7 of the paper by Karwasz
et al. [4], includes only few runs at 3–8 eV, giving therefore
a somewhat wrong picture of cross sections in this energy
range. Additionally the reanalyzed data are reported here
assuming +2.2 eV energy bias to show that a small energy
shift (within experimental error bars for energy determination)
brings Trento experiments to better agreement with the most
recent ANU results [6] in the limit of low energy.

Zecca et al. [5] used the same apparatus as Karwasz et al.
[4,8], but by the time of their measurements the radioactive
source decayed by almost a factor of 4; the use of a shorter
scattering cell (2.1 cm) probably solved some problems of
lower beam intensity. However, shortening the scattering cell
changes focusing conditions of the magnetic field; in short cells
the gas outflow effects need to be tested carefully vs pressure
[34]. Differently from Karwasz et al. [4], Zecca et al. applied
a +2% theoretical thermal transpiration correction [35] to
the measured TCSs; as shown by Blaauw et al. [34], such
a correction depends on details of the pumping system and has
to be determined experimentally.

The most recent experiment by Buckman and collaborators
(ANU Canberra) uses a gas trap [36] to thermalize positrons.
Positrons are emitted from a 50 mCi 22Na source and premod-
erated in a solid Ne layer in a backward configuration—a high
magnetic field is needed to guide them through the optics and
the scattering cell. The Canberra apparatus has two advantages
as compared to the Trento setup: a low starting energy of
positrons selected for scattering (some 60 meV compared
to 1–2 eV from a tungsten moderator) and an intrinsic
determination of the collision energy (by the time-of-flight
method). However, the use a strong magnetic field (500 G)
lowers the angular resolution: at small scattering energies the
detector collects all electrons forward scattered. Therefore, a
careful correction has to be performed using a retarding-field
analyzer (see [37]). Approximate missing angles are up to 33◦
at 0.5 eV and 23◦ at 1 eV [38]. The forward-angle correction,

say in H2O at 0.5 eV, is estimated as big as 130 Å
2

compared to

a TCS of 64 Å
2

directly measured [38]. With similar missing
angles the corrections to the H2 TCSs are smaller (16% at 1 eV
and 6% at 7 eV [6]).

III. THEORETICAL AND COMPUTATIONAL METHODS

A. Hamiltonian

In the body-fixed reference frame of the H2 molecule, the
Schrödinger equation is given by

H� = Etotal�, (1)
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TABLE I. Total cross sections (10−20 m2) for positron scattering from molecular hydrogen by Karwasz et al. [4]: preliminary data published
in 2006 and the same dataset presently reanalyzed with better statistics and energy shift of −0.2 eV.

Energy (eV) Karwasz et al. [4] Statistical error (no. of runs) Energy (eV) Present reanalysis Statistical error (no. of runs)

1 4.08 0.15 (5) 0.8 4.08 0.15 (5)
1.5 2.705 0.070 (5) 1.3 2.705 0.070 (5)
2 2.144 0.087 (5) 1.8 2.144 0.087 (5)
2.3 1.848 0.068 (5) 2.1 1.848 0.068 (5)
2.5 1.643 0.036 (5) 2.3 1.553 0.074 (11)
3 1.322 0.054 (3) 2.8 1.313 0.050 (5)
3.5 — — 3.3 1.216 0.050 (4)
4 1.219 0.030 (5) 3.8 1.307 0.105 (10)
4.5 1.201 0.032 (5) 4.3 1.216 0.050 (10)
5 1.207 0.015 (3) 4.8 1.255 0.149 (10)
6 1.205 0.019 (2) 5.8 1.097 0.058 (4)
7 1.208 0.018 (2) 6.8 1.063 0.049 (4)
8 1.206 0.022 (2) 7.8 1.118 0.032 (5)
8.5 1.206 0.023 (5) 8.3 1.206 0.023 (5)
9 — — 8.8 1.220 0.050 (5)
10 1.340 0.074 (5) 9.8 1.340 0.0.074 (5)

where Etotal is the total energy and � is the total wave function.
Within the Born-Oppenheimer approximation and neglecting
couplings of the various nuclear and electronic spins, the total
Hamiltonian can be written for a fixed nuclear geometry as

H = Te + Vee + Ven + Vnn + Tp + Vep + Vpn, (2)

where the various terms are defined below. In all definitions
we use atomic units. The kinetic energy of electrons is given
by

Te = −1

2

2∑
i=1

�i, (3)

where the sum runs over the two electrons. The electron-
electron interaction is given by

Vee = + 1

r12
, (4)

where r12 is the distance between the two electrons. The
electron-nuclei interaction is given by

Ven = −
2∑

i=1

2∑
A=1

1

riA

, (5)

where riA is the distance between electron i and nucleus A and
the sums run over all electrons and nuclei. The nuclear-nuclear
interaction is given by

Vnn = + 1

R
, (6)

where R is the distance between the two nuclei. The kinetic
energy of the positron is given by

Tp = − 1
2�p. (7)

The interaction between the positron and the molecular
electrons is given by

Vep = −
2∑

i=1

1

rpi

, (8)

where rpi is the distance between the positron and the electron
i and the sum runs over all molecular electrons. The interaction
between the positron and the nuclei is given by

Vpn = +
2∑

A=1

1

rpA

, (9)

where rpA is the distance between the positron and the nucleus
A and the sum runs over both nuclei.

B. Density functional theory for the
positron-molecule interactions

The interaction between the positron and the electrons are
described by electron-positron density functional theory. We
assume that we can rewrite the Hamiltonian as

H = Hmol + Hp, (10)

where the molecular Hamiltonian is defined as

Hmol = Te + Vee + Ven + Vnn (11)

and Hp describes all terms involving the positron

Hp = Tp + Veff . (12)

The effective potential Veff depends only on the electron
density, the nuclear coordinates, and the positron position.
It can be written as

Veff = Vep + Vpn + Vpcp. (13)

The extra term Vpcp is the electron-positron correlation-
polarization potential. The potential Vpcp describes the many
particle effects between the positron and the electrons and
plays a similar role as the exchange-correlation potential in
Kohn-Sham theory [39]. Within the DFT description, the total
wave function can be written as a product of the electronic
wave function �mol(r1,r2) and the positronic wave function
ϕ(rp).

�(r1,r2,rp) = �mol(r1,r2) × ϕ(rp). (14)
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The electronic wave function is limited to the lowest-energy
eigenfunction of the molecular Hamiltonian

Hmol�mol(r1,r2) = EGS�mol(r1,r2) (15)

with the eigenvalue EGS. The positronic wave function is
the eigenfunction of the effective one-particle Schrödinger
equation

Hpϕ(rp) = Epϕ(rp), (16)

where Ep = Etotal − EGS is the collision energy of the imping-
ing positron.

To solve the effective single-particle equation, the single
center expansion (SCE) is used for the positron wave function

ϕ(rp) =
∑
lv

r−1
p ulv(rp)Xlv(r̂p), (17)

where Xlv are symmetry-adapted angular basis functions. The
indices lv represent the collection of indices (πμlh), where π

is the irreducible representation with the component μ and the
quantum number l for the angular momentum with component
h (for more details see, e.g., Gianturco and Jain [30]). The
functions ulv are the corresponding radial parts of the wave
function. With this ansatz for the positron wave function, one
obtains a set of coupled differential equations for the radial
functions (

d2

dr2
p

− l(l + 1)

r2
p

+ k2

)
ulv(rp)

= 2
∑
l′v′

〈lv|Veff|l′v′〉ul′v′(rp), (18)

where k = √
2Ep and the matrix elements of the effective

potential are given by

〈lv|Veff|l′v′〉 =
∫

d r̂pX
∗
lv(r̂p)Veff(rp)Xl′v′(r̂p). (19)

C. Correlation-polarization potential

The correlation-polarization potential is divided in two
parts, depending on the radial distance rp. For large radial
distances, the correlation-polarization potential is dominated
by the polarization potential

for rp → ∞ : Vpcp(rp) → Vpol(rp). (20)

For short radial distances, the correlation-polarization poten-
tial is dominated by the correlation potential

for rp → 0 : Vpcp(rp) → Vcorr(rp). (21)

The two parts are connected at the radial distance rc, which is
the outermost point, at which Vpol becomes larger than Vcorr.

The polarization potential is given by

Vpol(rp) = −
(

α0

2r4
p

+ α2

2r4
p

P2(cos θp)

)
, (22)

where α0 and α2 are the values of the isotropic and anisotropic
polarizabilities, respectively, and P2(cos θ ) is a Legendre
polynomial.

The correlation potential Vcorr is modeled by the density
functional of Boronski and Nieminen [39]. Boronski and

Nieminen [39] give equations for the energy functional.
Gianturco and Jain [40] give the following explicit equations
for the correlation potential in terms of the density parameter:

4
3 r3

s ρ− = 1, (23)

where ρ− is the molecular electron density.
For rs � 0.302,

Vcorr = 1

2

(−1.82√
rs

+ (0.051 ln rs − 0.115) ln rs + 1.167

)
.

(24)

For 0.302 � rs � 0.56,

Vcorr = 1

2

(
−0.92305 − 0.09098

r2
s

)
. (25)

For 0.56 � rs � 8.0,

Vcorr = 1

2

(
− 8.7674rs

(rs + 2.5)3
− −13.151 + 0.9552rs

(rs + 2.5)2

− 1.8655

(rs + 2.5)
− 0.6298

)
. (26)

The case rs > 8.0 is not considered here, because in this
density regime the polarization potential Vpol dominates.

D. Scattering equations

The coupled differential equations in Eq. (18) can be
rewritten as coupled Volterra integral equations (see, e.g.,
Chap. 5 in Gianturco [41] and Franz [42]),

U(R) =
∫ R

R0

{J(R) · N(x) + N(R) · J(x)} · V(x) · U(x)dx.

(27)

Here J and N are diagonal matrices containing the spherical
Ricatti-Bessel and Ricatti-Neumann functions, respectively,
V is the potential matrix, and U(R) is a matrix containing
radial functions. In the asymptotic region the K matrix can be
extracted from the boundary conditions for the wave function.
From the K matrix we can compute the T matrix

T = 1 − (1 − iK) · (1 + iK)−1. (28)

Finally the elastic integral cross section can be computed as

σ elastic = π

k2

∑
lv

∑
l′v′

∣∣T lv
l′v′

∣∣2
. (29)

The scattering equations are solved in the body-fixed refer-
ence frame. The corresponding K matrices can be transformed
into space-fixed matrices by a frame transformation (see,
e.g., Chang and Fano [43]). From the space-fixed K matrices
we compute rotational elastic and inelastic differential cross
sections. In this study, we assume that all molecules are
initially in the rotational ground state (J = 0, τ = 0). The
final differential cross section is obtained by summation over
the initial and final rotational levels.

dσ

d�
=

∑
J ′τ ′

dσ

d�
(00 → J ′τ ′). (30)
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E. Computational details

The molecular geometry (R = 1.403a0) and electronic
structure are computed with the program package TURBOMOLE

[44]. For all electronic structure calculations the B3LYP
(Becke [45], three-parameter, Lee-Yang-Parr [46]) exchange-
correlation functional and the aug-cc-pVQZ basis set [47]
are used. The components of the molecular polarizability
tensor (α0 = 5.545a3

0 and α2 = 1.904a3
0) are computed with

time-dependent density functional theory [48]. These values
are in good agreement with high-level ab initio values
(5.4139a3

0 and 2.0239a3
0) of Kolos and Wolniewicz [49] for

the lowest rotational-vibrational level. Karplus [50] extracts
an experimental value of 5.4367a3

0 for the isotropic polariz-
ability from refractive index measurements. Molecular-beam
magnetic-resonance measurements by MacAdam and Ramsey
[51] of H2 in the J = 1 rotational level gives a value of
2.061 ± 0.003a3

0 for the anisotropy of the static polarizability.
The SCEs of the molecular electron density and of the

potential are computed with the computer program package
VOLPOS [52], which is also used to solve the coupled scattering
equations by Volterra integration. The grid for the radial
integration ranges up to a distance of 146a0. The angular basis
set includes terms up to Lmax = 24 for the expansion of the
potential and up to lmax = 12 for the expansion of the wave
function. At the outermost radial distance the K matrices in
the body-fixed frame are generated and elastic integral cross
sections σ elastic are computed. The transformation of the K
matrices from the body-fixed into the space-fixed frame is
done with the program POLYDCS [53], which is also used for the
computation of the rotational elastic and inelastic differential
cross sections.

IV. MCMC-MERT

A semianalytical approach to MERT, originally introduced
by O’Malley et al. [54,55], has been discussed in detail in
our previous papers [24,25], so only a brief description will
be given here. In particular, we will show how to formulate
MERT within the frame of Bayesian statistics.

MERT analytical expression for the partial wave scattering
phase shift induced by the spherical part of the long-range
polarization potential is given by the following expression (in
atomic units) [54]:

tan ηl = m2
l − tan δ2

l + B̃l tan δl

(
m2

l − 1
)

tan δl

(
1 − m2

l

) + B̃l

(
1 − m2

l tan2 δl

) , (31)

where l is the angular momentum quantum number and δl =
π
2 (ν − l − 1

2 ). Here ml and νl denote the energy-dependent
parameters which have to be determined numerically using the
procedures described in Refs. [24,25]. Parameter B̃l is related
to the additional phase shift that is induced by the unknown
short-range potential. This parameter is approximated by the
quadratic effective range expansion [24,25]:

B̃l = Bl(0) + 1
2R∗Rlk

2 + · · · , (32)

where Rl can be interpreted as the effective range for a
given partial wave and R∗ = α1/2 with α being the dipole
polarizability. In the particular case of l = 0, B0 can be

expressed in terms of A, the s-wave scattering length, as
B0 = −R∗/A.

Using this semianalytical model we verified that in the
regime of energies for elastic e+ + H2 scattering (<10 eV),
the leading contributions come from s and p partial waves
(l = 0,1) while the contribution of higher partial waves is
small and can be described by taking only the leading order
contribution to the phase shift [54]:

tan ηl = παk2

8
(
l − 1

2

)(
l + 1

2

)(
l + 3

2

) for l � 2. (33)

Integral elastic (σIE) and differential elastic ( dσ
dω

) cross
sections are calculated using the single-center partial wave
expansions:

σIE = 4π

k2

∞∑
l=0

(2l + 1) sin2 ηl(k), (34)

dσ

dω
= 1

k2

∣∣∣∣∣
∞∑
l=0

(2l + 1) exp ηl sin ηl(k)Pl(cos θ )

∣∣∣∣∣
2

, (35)

where θ is the scattering angle. Substituting Eqs. (31) and (32)
for two first partial waves and Eq. (33) for higher angular
momentum (up to l = 100 waves in the present analysis)
into Eqs. (34) and (35) one gets relations which can be
fitted to experimental (or theoretical) cross sections in order
to determine the unknown four parameters of the effective
range expansions, that is, A(= −R∗/B0), the s-wave scattering
length; B1, the zero energy contribution of the p wave; and
R0,R1, the effective ranges of two considered waves. All
these parameters approximate the contribution of the unknown
short-range potential to the scattering phase shift (31).

Unlike in our previous works [24–27] where nonlinear
least-square regression procedures were used to determine
MERT parameters, here we use a Bayesian inference for
parameter estimation [56]. In contrast to the classical fitting,
the Bayesian inference does not provide single point estimation
in parameter space but rather the probability density functions
(PDFs) of model parameters that are shaped by observational
(experimental or theoretical) data. Assuming that MERT
is correct, we can write the following relation between
experimental data and the MERT model:

σexpt. = MERT(μ) + ε, (36)

where σexpt. = [σ1,σ2, . . . ,σN ] are the experimental data
of scattering cross sections (e.g., IECS) and μ =
[b0,R0,b1,R1, . . .] is a set (vector) of model parameters
appearing in effective range expansion, Eq. (32). Here ε =
[ε1,ε2, . . . ,εN ] denotes a set of random measurement errors
plus any real signal in the data that cannot be explained by
the model [56]. The starting point for analysis is the Bayes’
rule, which for a multivariate model such as MERT has the
following form:

p(μ|σexpt.) = p(σexpt.|μ)p(μ)

p(σexpt.)
, (37)

where p(μ|σexpt.) is a joint posterior probability density
function of μ after obtaining the experimental data σexpt.,
while p(μ) is the prior probability density function (which
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characterizes knowledge or beliefs about μ before seeing the
experimental data σexpt.). Here p(σexpt.|μ) is the likelihood
function (the statistical model describing the uncertainties
of experimental data) and p(σexpt.) = ∫

p(σexpt.|μ)p(μ)dμ

is a normalization factor, which represents the probability
distribution for the experimental data, summed over all
possible outcomes μ.

Once a full joint posterior probability distribution is known
one can calculate a marginal distribution that is a PDF for any
subset of model parameters, i.e., μi ⊂ μ:

p(μi |σexpt.) =
∫

p(μi,μ−i |σexpt.)dμ−i , (38)

where μ−i represents the set μ after μi was removed. Having
marginal distributions for each particular parameter it is useful
to provide a point estimation representing “best-fit” values
together with an estimate of its errors. For example, it can be
done using either the mode or the mean value of marginal PDF
with the variance of distribution representing its uncertainty
[56]. Alternatively, one can give a joint credible region R

representing a predictive probability limit of the model due
to parameter uncertainties. This can be done calculating the
following integral [56]:∫

R

p(μ|σexpt.)dμ = C, (39)

where C is the required credibility (e.g., C = 95%).
Bayesian parameter estimation requires the computation

of multidimensional integrals [such as (38) and (39)], and
a good solution for this computational problem consists
of implementing MCMC methods [56]. Generally speaking
MCMC algorithms using prior PDF and likelihood functions
generate a sequence {μ(0),μ(1),μ(2), . . .} of model parameters
from a Markov chain whose final stationary distribution is a
desired p(μ|σexpt.), i.e., the posterior distribution. More details
on the background of this sampling numerical method can be
found elsewhere [56]. Here we use this computational tool

to estimate MERT parameters in order to describe elastic
scattering cross sections for positron collisions with molecular
hydrogen. In practice we adapt MCMC MATLAB toolbox
by Laine [57] containing the delayed rejection and adaptive
Metropolis (DRAM) sampling algorithm with multivariate
Gaussian proposal distributions introduced by Haario and co-
workers [28]. We assume a Gaussian likelihood p(σexpt.|μ) =
N (μ,ν) with the same error variance ν2 for all data points.
The latter is sampled during the MCMC iteration from
noninformative conjugate prior inverse � distribution (see [57]
for more details). For MERT parameters, we will consider two
priors:

(i) Uninformative Gaussian distributions with infinitive
variance centered at initial points determined by MERT
nonlinear regression fit to experimental data (using the
Levenberg-Marquardt nonlinear least-squares algorithm [58]).
Such choice of priors assigns equal probabilities to all possible
values of μ components.

(ii) Informative Gaussian distributions for the scattering
length with a mean value centered at −2.63a0 and a finite
standard deviation of 0.15a0 (to include all possible values of
A depending on the geometric position of the molecule with
respect to the incoming positron, as reported in [22]).

In all our calculations we use a value of α = 5.314a3
0 [59]

for dipole polarizability. We checked that the final results
are practically independent of α in the range of values
5.20a3

0–5.45a3
0 as reported by different sources (see [59], and

references therein).

V. RESULTS AND DISCUSSION

In Fig. 1 we compare presently calculated IECSs using
a DFT method with selectively chosen theoretical and ex-
perimental data of TCSs and IECSs for e+ + H2 collisions
below the positronium formation threshold (E < 10 eV).
In the energy range below 2 eV, DFT results are slightly
higher than convergent-close-coupling (CCC) calculations of

(a) (b)

FIG. 2. (Color online) MCMC-MERT fits (solid and dashed lines) to directly measured (dots) and corrected (squares) experimental total
cross sections by Machacek et al. [6] assuming (a) uninformative priors for all MERT parameters and (b) informative prior for the scattering
length with the most probable value of −2.63a0 as calculated by Zhang, Mitroy, and co-workers [20–22]. The gray areas in the plot correspond
to 50%, 90%, 95%, and 99% posterior regions due to uncertainties of MERT parameters (shown only for the fit to directly measured data). The
results of fits are compared with the CCC calculations of Zammit et al. [19] and presently reported DFT.
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TABLE II. Posterior mean values of MERT expansion parameters for positron scattering on molecular hydrogen derived on the basis of
different experimental data. Here A(= −R∗/B0) is the scattering length, B1 is the zero energy contribution for the p wave, and R0 and R1

are the s-wave and p-wave effective ranges, respectively. The standard deviations of the final posterior distributions are used as the parameter
uncertainties.

A(a0) B1 R0(a0) R1(a0)

Uninformative prior for scattering length
Machacek et al. [6] −2.43 ± 0.03 −2.72 ± 0.30 −1.28 ± 0.10 1.34 ± 0.90
Machacek et al. ang. corrected [6] −2.73 ± 0.03 −2.13 ± 0.07 −0.99 ± 0.03 −1.07 ± 0.28
Karwasz et al. [4] reanalyzed −2.78 ± 0.08 −1.57 ± 0.70 −0.58 ± 0.30 −1.40 ± 1.10
Zecca et al. [5] −2.09 ± 0.02 −4.48 ± 0.90 −1.44 ± 0.10 3.63 ± 1.26

Informative prior for scattering length
Machacek et al. [6] −2.62 ± 0.02 −3.93 ± 1.34 −0.41 ± 0.10 0.15 ± 2.45
Machacek et al. ang. corrected [6] −2.67 ± 0.02 −2.33 ± 0.1 −1.12 ± 0.05 0.18 ± 0.41
Karwasz et al. [4] reanalyzed −2.71 ± 0.02 −0.88 ± 0.10 −0.19 ± 0.20 −1.58 ± 0.44
Zecca et al. [5] No chain convergence achieved

Zammit et al. [19] and rovibrational laboratory frame close-
coupling (LFCC) TCS results of Mukherjee et al. [17]. The
R matrix with pseudostates method by Zhang et al. [18] gives
systematically the lowest cross sections in this energy range. At
higher energies more discrepancies occur. In particular, DFT
becomes lower than CCC data. Moreover, all theories are lower
in this energy range (3–10 eV) than the latest experimental
TCSs (though the CCC is almost consistent with the reanalyzed
data of Karwasz et al. [4] within their experimental error bars).
Forward-angle correction of experimental data cannot explain
these differences. The lack of the inclusion of a vibrational
inelastic channel in some models also should not be a full
explanation since hydrogen is a nonpolar molecule; so direct
vibrational and rotational excitation is small, less than 10%
of TCSs according to experimental vibrational cross sections
[60] and less than 2% of TCSs according to the LFCC theory
[17].

For positron scattering another process is plausible to
explain such a difference between theory and experiment,
namely, the formation of a virtual positronium, as recently
discussed for noble gases by Green et al. [61]. For Ar at 7 eV,

the difference between virtual-positronium [61] and polarized

orbital [62] calculations is some 0.7 Å
2
, i.e., of similar value as

the difference between the ANU experiment and present DFT
for H2 at the same energy. Fursa and Bray [63] obtained similar
results by modeling coupling to the positronium-formation
channel for noble gases. A first step to include this effect within
the frame of CCC calculations for e+ + H2 collisions has been
recently done by Zammit et al. [19]. As a result, the latter
calculations are higher than other theories (including presently
reported DFT) in the energy range of 3–10 eV, as shown
in Fig. 1. From a very basic point of view, the short-range
interaction such as the virtual-positronium formation can be
treated as part of the elastic scattering channel, thus it can be
reproduced by MERT parametrization.

Figure 2 shows MCMC-MERT fits to directly measured
and corrected TCSs of Machacek et al. [6] using both
uninformative and informative Gaussian priors as described
in Sec. IV. The correction of the directly measured dataset is
related to experimental inability to resolve forward scattering
from the incident beam leading to underestimation of TCSs
(see Machacek et al. [6] for more details about this correction).

FIG. 3. (Color online) MERT-derived s- and p-wave scattering phase shifts obtained from fits with informative prior to total elastic cross
sections by Machacek et al. [6]: (a) directly measured data and (b) corrected data taking into account angular resolution error. For p-wave
phase shift only posterior mean values are given. The gray areas in the plot correspond to 50%, 90%, 95%, and 99% posterior regions due to
uncertainties of MERT parameters.
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[37]

[19]
[6]

FIG. 4. (Color online) MERT-derived DCSs obtained from MCMC informative fit to TCSs reported by Machacek et al. [6] (directly
measured and corrected datasets). The results are compared with experimental DCS data of Machacek et al. [6] and Sullivan et al. [37] along
with theoretical calculations including present DFT and CCC of Zammit et al. [19]. The gray areas in the plot correspond to 50%, 90%, 95%,
and 99% posterior regions limits due to uncertainties of MERT parameters (shown only for DCSs derived from directly measured TCSs).

In Fig. 2 MERT-derived IECSs are also compared with
present DFT and CCC calculations of Zammit et al. [19].
The uninformative prior provides an excellent agreement
between both experimental datasets and the corresponding
fits. However, for directly measured TCSs, the fit is lower
than both theoretical models (CCC and DFT) below 1 eV,
while for corrected TCSs the fit stays in good agreement
with presently reported DFT in the low energy limit. On the
one hand, the informative prior (assuming Mitory’s scattering
length is correct) brings both MERT curves to much better
agreement with CCC and DFT at energies below 1 eV.
Moreover for higher energies both curves stay relatively close

to experimental data, nevertheless a fit of much better quality is
obtained for the corrected TCS. It indicates that the correction
of directly measured TCSs by Machacek et al. [6] is necessary
in order to stay in better compatibility with Mitroy’s scattering
length.

In Table II we give the mean values and the standard
deviations of final posterior distributions obtained from fits to
all three recent experimental TCSs [4–6]. Standard deviations
are used as uncertainties of theoretical parameters. Except the
fit with informative prior to the data of Zecca et al. [5], in
general there was no problem with chain convergence (after
16 000 iterations) as indicated by the Geweke test [64] giving
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very low |z| values (<1.5) for all MERT parameters. The
derived scattering lengths (A) from fits with uninformative
prior to presently reanalyzed data of Karwasz et al. [4] and
to data of Machacek et al. [6] are slightly higher and lower,
respectively, when compared to the mean value of −2.63a0

reported by Zhang and Mitroy [20–22], whereas the value for
TCSs of Zecca et al. [5] is noticeably lower. On the other hand,
the fits with informative prior to reanalyzed data of Karwasz
et al. and Machacek et al. brings the derived scattering lengths
to a better agreement with −2.63a0 (still keeping very good
agreement between MERT fit and experimental data).

In Fig. 3 we present the MERT-derived s-wave and p-wave
phase shifts from fits to directly measured and corrected TCSs
by Machacek et al. [6] using informative priors. For the p-wave
only the mean posterior values are presented. The s-wave phase
shift derived from directly measured TCSs [Fig. 3(a)] predicts
the presence of the Ramsauer-Townsend (RT) minimum (a
zero value) in the region of 3–6 eV. This is qualitatively
similar to the situation in noble gases for Ar, Kr, and Xe
[61] where an RT minimum is present at energies preceding
the positronium formation threshold (where the cross sections
are almost constant). We checked that a similar shape has the
s-wave phase shift obtained from presently reanalyzed TCSs of
Karwasz et al. [4]; however, predicting the RT minimum with
credibility of only 50%. This is due to rather poor statistics of
the experimental data [4]. On the other hand the s-wave phase
shift derived from corrected ANU TCSs [6] [Fig. 3(b)] does not
predict the presence of the RT minimum. We note, however,
that the correction of directly measured TCSs proposed by
Machacek et al. [6] is based on the theoretical differential
cross sections by Reid et al. [14] which are three times
lower in magnitude than directly measured data. So maybe
a more accurate error estimation can slightly change TCSs
providing different phase-shift variations than those shown in
Fig. 3(b). For completeness of analysis we have to add that the
energy dependence of s- and p-wave phase shifts derived with
uninformative prior (not shown here) have similar shapes as
curves in Fig. 3(b) with no prediction of RT minimum for all
datasets: directly measured and corrected ANU TCSs [6] and
reanalyzed data of Karwasz et al. [4].

Finally in Fig. 4 we check the compatibility between TCS
and DCS experimental data reported by the ANU group [6]
(and the San Diego group [37] using a similar technique).
DCSs were calculated using Eq. (35) and the scattering
phase shifts shown in Fig. 3 (we also checked that uninfor-
mative prior gives very similar DCSs). Note that in Fig. 4 we
present folded DCSs, i.e., DCS(θ ) + DCS(180◦ − θ ), since
experiments are not able to distinguish between forward (θ )
and backward (180◦ − θ ) scattered positrons. For comparison
a presently reported DFT calculation and CCC data by Zammit
et al. [19] are also shown. Note that both models agree
with each other in low energy range, at 0.5 and 1 eV, while
for higher energies the discrepancy between them increases.
MERT-derived DCSs from directly measured ANU TCSs are
also in very good agreement with the two theories at 0.5
and 1 eV, while DCSs obtained from corrected TCSs are
slightly higher. The reason for worse agreement between
theories and experiments at these two particular energy points
is unknown. Independent measurements are needed in order
to confirm experimental DCSs, particularly in such low

energy regime where a noise background is usually high. For
higher energies, 3–10 eV, MERT-derived DCSs are in better
agreement with experiments than both theories. Moreover,
there is a much smaller difference between DCSs derived from
directly measured and corrected ANU TCSs despite apparently
different phase-shift variations. This in turn validates an almost
constant TCS value in-between 3 and 10 eV, as already noticed
for several other atomic and molecular targets [65,66]. A
hypothesis of the virtual-positronium effects in this energy
range is to be exploited theoretically (and experimentally as
indicated by the work of Szluinska and Laricchia [67] on noble
gases).

VI. CONCLUSIONS

We report calculations of IECSs and DCSs for positron
scattering on molecular hydrogen below the positronium
formation threshold using a DFT with the single-center
expansion technique. The obtained results for IECSs and
DCSs are in good agreement in the low energy range (below
1 eV) with recent CCC calculations reported by Zammit
et al. [19]. At higher impact energies (3–10 eV), just below
the positronium formation threshold, both models diverge.
Moreover, in the same energy range both theories give IECSs
lower than experimental TCSs reported recently by Karwasz
et al. [4] (presently reanalyzed), Zecca et al. [5], and Machacek
et al. [6].

Using MCMC-MERT we carried out a Bayesian pre-
dictive analysis of the scattering length using the three
experimental TCSs mentioned above. We showed that two
datasets, presently reanalyzed Karwasz et al. [4] and Machacek
et al. [6], are compatible with the mean value of −2.63a0

obtained with stochastic variational technique by Mitroy and
co-workers [20–22]. On the other hand, the TCS by Zecca
et al. [5] is incompatible with this scattering length. The same
predictive phase-shift analysis shows that DCSs reported by
the ANU group [6] are compatible with their experimental
TCSs in the energy range between 3 and 10 eV but disagree at
lower energies.

The combination of present DFT calculations and MCMC-
MERT studies of experimental data indicates that in the low
energy range (E < 3 eV) where the experimental TCSs show a
rapid rise with decreasing energy, the reanalysis of experiments
and/or theories is necessary in order to converge to a final
benchmark cross section. The scattering length by Mitroy and
co-workers [20] could be a good reference point. In the range
of 3–10 eV, where experimental TCSs have almost constant
values, a good compatibility between DCSs and TCSs reported
by the ANU group [6], as proved by MERT, indicates that the
inclusion of virtual-positronium formation inside the elastic
scattering channel is probably needed in order to describe
total and differential cross sections using ab initio procedures.
Experiments on positron-H2 scattering combined with the
tracing of positronium-annihilation processes [67] are needed
as well to prove this hypothesis.
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