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The Lamb shift in the light hydrogenlike atoms is evaluated for the state-dependent part of the S states
(n3�En − �E1)/n3 and P1/2 states by means of a recently proposed relativistic generalization of multipole
expansion. We obtain the results for Z = 1–5 and n = 2–10, where Z is the charge of the nucleus and n is the
principal quantum number of the state under consideration. The results are in an excellent agreement with the
results obtained by means of Zα expansion truncated after the α(Zα)6 term. The state-dependent part of the S

states for n = 2–4 is evaluated also for the case of moderately strong Coulomb fields, Z = 10–50. It is argued that
the present results for the state-dependent part of the S states for low Z are the most accurate results given so far
in the literature. In the case of hydrogen the uncertainty is significantly less than 1 Hz. Finally, the extrapolation
of the results to infinite n is performed.
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I. INTRODUCTION

Quantum electrodynamics (QED), the quantum field theory
describing interactions of charged fermions and photons, is
one of the most accurately tested physical theories. There
are parameters that have to be taken from experiment, like
the Rydberg constant, the fine structure constant, the ratios
of electron to proton and electron to muon masses, and the
nuclear parameters such as nuclear radii, magnetic moments
of nuclei, etc. Testing QED then means to keep consistency
in the determination of these parameters in various cases
where both the experiment and the theory can be pushed
to very high accuracy. These are most notably the g factors
of bound electrons [1], the anomalous magnetic moments
of electrons [2] and muons [3], and the Lamb shift in
hydrogenlike atoms [4]. Summaries of various experiments
and the information they provide can be found, for example,
in Refs. [5,6]. Most importantly, these tests provide restrictions
on the magnitude of the non-renormalizable electromagnetic
interactions and give us information about nuclear structure.

It is customary [6–8] to write the Lamb shift of the general
S state in the form

�En = n3�En − �E1

n3
+ �E1

n3
, (1)

where n is the principal quantum number of the state
under consideration. The first and the second terms on the
right-hand side are referred to as the state-dependent and the
state-independent parts, respectively. The numerator of the
state-dependent part is called the normalized difference.
Various radiative corrections and nuclear structure effects
affect mainly the state-independent part of the S states [5].
The Lamb shift of the state-dependent part of the S states
and non-S states is given nearly completely by the self-energy
effect in the one-loop approximation [9]. It is customary to
express it in the form

�En = α

π

(Zα)4

n3s3
F (n,lj ,Zα), (2)
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where l and j are the orbital and total angular quantum
numbers of the state under consideration, Z is the charge of
the nucleus in units of elementary charge e, α = e2/(4π ) is the
fine structure constant, and s is equal to 1 when the nucleus is
considered to be infinitely heavy and to 1 + me/mn when it is
not. Apparently, me/mn is the ratio of the electron and nucleus
masses.

It is customary to write the dimensionless function
F (n,lj ,Zα) for non-S states and F (n,0,Zα) − F (1,0,Zα) for
the S states in the form of series in Zα (see, e.g., Ref. [5]):

F (n,lj ,Zα) = A40(n,lj ,s) + (Zα)2[A61(n,lj ) ln s(Zα)−2

+G(Zα,n,lj )]. (3)

For the S states

A40(n,0) − A40(1,0) = − 4
3 [ln k0(n,0) − ln k0(1,0)],

and for the P1/2 states

A40(n,11/2,s) = −4

3
ln k0(n,1) − s

6
,

where ln k0 is the so-called Bethe logarithm. The extensive
tabulation of the Bethe logarithms can be found in Ref. [10].
A general form of the coefficient A61 is given for example
in Ref. [5]. The remainder G(Zα) has been determined either
nonperturbatively [11,12] or perturbatively, (see, e.g., Eq. (5.5)
of Ref. [11]):

G(Zα) = A60 + A70(Zα) + (Zα)2[A82 ln2 s(Zα)−2

+A81 ln s(Zα)−2 + A80) + · · · . (4)

The coefficient A60 was calculated in Refs. [8,13]. Nonpertur-
bative evaluation has been accomplished either by means of
extrapolation of the partial wave expansion (PWE) [11] or by
means of the relativistic generalization of multipole expansion
(RME) [12],

In Ref. [12] a slight numerical disagreement between the
results of the RME and both Zα expansion truncated after
the α(Zα)6 term and the PWE was noted for the normalized
difference of the S states but not for the non-S states. The
purpose of this paper is to clarify the situation with regard
to the current state-of-the-art theoretical determination of the
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one-loop self-energy of the state-dependent part of the S states
and the P1/2 states.

II. THE METHOD

The RME can be applied to the calculation of the Lamb
shift for the state-dependent part of the S states and for non-S
states either exactly [14] or approximately [12].

The exact form of the RME has been used in Ref. [14] for
the calculation of the state-independent part of the S states.
Only minor modifications are needed to extend the method to
the calculation of the state-dependent part of the S states. In
particular, for the wave function of the reference state we use
Eq. (A38) of Ref. [12]. The self-energy function in Eq. (2) is
then expressed in the form of the series

F =
∞∑

v=1

Fv, (5)

where the “relativistic multipoles” Fv read (see Eq. (73) of
Ref. [14])

−2(Zα)4Fv

=
v∑

t=0

〈
γ0G

2(v−t),t
4 + γμG

2(v−t−1),t
4

(� − ε)μ
m

+ γ0G
2(v−t),t
0

+ γ0G
2(v−t)−1,t
i γiγ0 +

(
−1

2

)
γμ

[
G

2(v−t−3),t
0 ,γ0γμ

]〉
.

(6)

Here, 〈O〉 = 〈ψ |γ0O|ψ〉 and the wave function ψ of the
reference state is a solution of the stationary Dirac equation
(γμ�μ − m)ψ = 0 with the energy E. Furthermore, � =
(E + Zα

R
, �P ) is the four-momentum of the electron in the

external Coulomb field, γ ’s are Dirac matrices, and the
relativistic dot product is defined as AμBμ = A0B0 − �A · �B.
The operators G

2v,t
4,ν are the expansion of G4,ν in the 2v space

and t time components of � − ε, where

G4,ν = (−4)
∫ 
2

0
dλ

∫
d4kF

(k2 − λ)2

(1,kν/m)

k2 − 2kμ�μ + H
, (7)

H = (γμ�μ + m)(γμ�μ − m) stands for the second-order
Hamilton operator, and ε = (m,0,0,0). The integration in
Eq. (7) is over the four-momentum k of the virtual photon.
The integral diverges logarithmically with the cutoff 
. The
finite result is obtained when the part contributing to the
electromagnetic mass of the electron is subtracted.

The individual terms in Eq. (6) are arranged in such a
way to contribute at the same order of naive counting in Zα.
The naive counting in Zα comes from the transition from
natural to atomiclike units, �R = �r/(EZα) and �P = EZα �p.
Then obviously each additional time and space component of
� − ε = (E − m + E(Zα)2/r,EZα �p) contributes additional
powers of (Zα)2 and Zα, respectively. This naive counting
is spoiled by a contribution from the high-energy virtual
electron region where the typical electron momentum is of
the order p ∼ (Zα)−1 or higher. Special care then has to be
taken to deal separately with this contribution to get accurate
results [14]. However, in the case of the state-dependent part
of the S states and for the non-S states this contribution is
strongly supressed [12]. The convergence of the series (5) is
then very rapid. The first three terms contain the complete
coefficient A60. In the actual calculation the integration over
the four-momentum of the virtual photon is done analytically
and for the evaluation of the remaining expressions the spectral
decomposition of the Hamilton operator H is used. The
one-dimensional integrations over the continuous spectrum
of hydrogen are the only ones to be performed numerically.

The approximate form of the RME, given in Ref. [12],
has been designed to obtain the complete contribution to
the coefficient A60 in Eq. (4), but otherwise to simplify
the calculation as much as possible. Part of the calculation,
Eq. (53) of Ref. [12], can then be evaluated analytically. The

TABLE I. Results for the normalized difference of S states for low nuclear charges Z obtained by various methods. The results are
displayed with more digits than the actual precision. This is due to the fact that these results are used for the fit of the coefficient A60 presented
in Tables III and IV. See the text for additional discussion. The values in the first and the second rows for n = 2–4 are obtained by means of
the approximate [12] and the exact [14] versions of the RME taken to the fourth order. The values in the third row for n = 2–4 are those from
Ref. [11]. The values for n = 5–10 are obtained by means of the approximate version of the RME.

F (nS,Zα) − F (1S,Zα) Z = 1 Z = 2 Z = 3 Z = 4 Z = 5

n = 2 0.230029465820 0.230529879452 0.231225201100 0.232069031283 0.233029461830
0.230031540204 0.230545207000 0.231273798798 0.232178312529 0.233233307638
0.230031535(5) 0.230545198(10) 0.231273778(10) 0.232178329(10) 0.233233342(10)

n = 3 0.288818281298 0.289274182161 0.289907432678 0.290675208328 0.291547912919
0.288820431261 0.289290056735 0.289957726374 0.290788217416 0.291758555864
0.28882057(5) 0.28929009(5) 0.28995775(5) 0.29078834(5) 0.29175890(5)

n = 4 0.312592620143 0.312983954338 0.313526743305 0.314183551481 0.314928375433
0.312594693655 0.312999260227 0.313575219113 0.314292437376 0.315131260560
0.31259475(20) 0.31299905(20) 0.31357508(20) 0.31429252(20) 0.31513172(20)

n = 5 0.324554043015 0.324892894751 0.325362071652 0.325928532024 0.326569214448
n = 6 0.331415782285 0.331713903742 0.332125927289 0.332622226171 0.333182029956
n = 7 0.335715422925 0.335981642484 0.336348892487 0.336790224022 0.337286665250
n = 8 0.338586906920 0.338827668208 0.339159185558 0.339556649207 0.340002525239
n = 9 0.340599414943 0.340819470576 0.341121925461 0.341483711243 0.341888465247
n = 10 0.342064311623 0.342267234662 0.342545642543 0.342877908997 0.343248641713
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TABLE II. The self-energy of P1/2 states for low nuclear charges Z obtained by means of the approximate version of the RME. The values
in the second row for n = 2 are those from Ref. [11].

F (nP1/2,Zα) Z = 1 Z = 2 Z = 3 Z = 4 Z = 5

n = 2 −0.126396590783 −0.125817796170 −0.124997389529 −0.123980316789 −0.122796373009
−0.12639637(1) −0.12581616(1) −0.12499224(1) −0.12396879(1) −0.12277494(1)

n = 3 −0.115459399418 −0.114788732977 −0.113837544810 −0.112657636109 −0.111283293768
n = 4 −0.110425885748 −0.109722308269 −0.108724094056 −0.107485453354 −0.106042257800
n = 5 −0.107646279274 −0.106927238818 −0.105906878620 −0.104640528550 −0.103164799693
n = 6 −0.105939357201 −0.105211815014 −0.104179256564 −0.102897622308 −0.101403928096
n = 7 −0.104813203259 −0.104080478027 −0.103040470861 −0.101749491769 −0.100244802453
n = 8 −0.104030209251 −0.103294083916 −0.102249182738 −0.100952056447 −0.0994401274440
n = 9 −0.103463424906 −0.102724943512 −0.101676645868 −0.100375248328 −0.0988582842162
n = 10 −0.103039788457 −0.102299603440 −0.101248846276 −0.0999443520697 −0.0984237340198

remaining part, Eq. (49) of Ref. [12], can be evaluated by using
the spectral decomposition of the Hamilton operator H , much
in the same way as in the case of the exact calculation.

III. RESULTS AND DISCUSSION

We applied the approximate form of the RME to the
calculation of the one-loop self-energy for the normalized
difference of the S states and for the P1/2 states for n = 2–10
and for Z = 1–5 in the infinite nucleus mass limit, s = 1. The
results obtained are for each n = 2–10 in the first rows of
Tables I and II. As mentioned in the Introduction we noted in
Ref. [12] a slight numerical disagreement for the normalized
difference of the S states between the approximate RME
calculation and the Zα expansion truncated after the α(Zα)6

term. This we found puzzling since the approximate form of
the RME calculation should contain all the terms of the Zα

expansion up to the α(Zα)6 term. To clarify this observation
we subtracted from the results displayed in the Tables I and II
the first two terms on the right-hand side of Eq. (3) and fitted
the remainder function G(Zα) to the series (4). The results are
displayed in Tables III, IV, and V. It is seen from Table III
that the agreement between the value of the coefficient A60

obtained directly by Zα expansion [8,13] and from the fit of
the RME calculation to the series (4) is excellent. This confirms
that the approximate version of the RME really contains the
complete A60 coefficient.

To clarify the situation further, we applied the exact form of
the RME to the calculation of the state-dependent part of the S

states; see the results displayed for each n = 2–4 in the second
row of Table I. As mentioned above, the convergence of the
RME is very rapid (see the Table VI). For low Z the error of
the RME is of the order α(Zα)7, but the multiplicative factor is
very small. Comparison between the first and second rows of
Table IV then shows where the slight numerical disagreement
between the approximate RME and both the Zα expansion
truncated after the α(Zα)6 term and the PWE comes from.
The approximate version of the RME yields a value of the
A70 coefficient that is too wrong for the normalized difference
of the S states, but remarkably not for the P states (compare
Tables IV and V).

We extrapolated the results for the A60 coefficients to
infinite n. We did so by assuming that for large n the
coefficients A60(n) behave as

A60(n) = C0 + C1

n
+ C2

n2
+ · · · . (8)

The results are displayed in Table VII. To get more accurate
values of the coefficients C one would need the values of
the coefficients A60(n) for higher n. The extrapolation of the
results for the A40 coefficients can be found in the second
reference in Ref. [10].

We also applied the exact version of the RME to
the calculation of the state-dependent part of the S states for
the ions with higher nuclear charges Z (see Table VIII). On the
basis of rapidity of convergence of the RME we believe that
the results for Z = 10 are by 2 orders of magnitude more
accurate than those obtained by means of the PWE [15,17]. The

TABLE III. Comparison between the values of the A60(nP1/2) and �A60(nS) = A60(nS) − A60(1S) coefficients for n = 2–10 obtained
either by fitting the results in the first rows in Tables I and II to the series (3) and (4) or by direct calculation.

State �A60(nS) Results from Ref. [8] A60(nP1/2) Results from Ref. [13]

n = 2 −0.916321 −0.91631563 −0.998909 −0.998904402
n = 3 −0.778356 −0.778351 −1.148197 −1.148189956
n = 4 −0.637779 −0.637772 −1.195698 −1.195688142
n = 5 −0.531255 −0.531243 −1.216240 −1.216224512
n = 6 −0.450999 −0.450980 −1.226761 −1.226702391
n = 7 −0.389106 −0.389074 −1.232753 −1.232715957
n = 8 −0.340155 −0.340107 −1.236423
n = 9 −0.300565 −1.238792
n = 10 −0.267929 −1.240403
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TABLE IV. Comparison between the coefficients �A60(nS) − �A80(nS) for n = 2–4 obtained either from the RME or the PWE. The
values in the first, second, and third rows for each n were obtained by fitting the results from the first, second, and third rows of Table I to the
series (3) and (4), respectively.

State �A60(nS) �A70(nS) �A82(nS) �A81(nS) �A80(nS)

n = 2 −0.916321 −3.1774 1.1211 −0.709 6.21
−0.916307 2.9677 0.0129 −0.305 −1.30
−0.917815 3.6392 −2.2 21 −63

n = 3 −0.778356 −3.8952 1.2297 −0.725 7.04
−0.778348 2.4788 0.0914 −0.506 −0.35
−0.759911 −3.4242 14.4 −124 336

n = 4 −0.637779 −4.1889 1.2306 −0.698 7.20
−0.637773 1.9591 0.1434 −0.624 0.35
−0.613998 −7.3251 25.2 −224 617

TABLE V. The same as in Table IV but for the coefficients A60(nP1/2) − A80(nP1/2) for n = 2–5. The inputs for fit are now the first and
second rows of Table II.

State A60(nP1/2) A70(nP1/2) A82(nP1/2) A81(nP1/2) A80(nP1/2)

n = 2 −0.998909 3.00826 −0.0481 −0.676 −0.50
−0.999492 3.90196 −0.7897 4.8 −16

n = 3 −1.148197 3.56568 −0.0572 −0.793 −0.62
n = 4 −1.195698 3.76163 −0.0627 −0.821 −0.73
n = 5 −1.216240 3.85355 −0.0683 −0.810 −0.87

TABLE VI. Contribution of individual multipoles to the normalized difference of S states for n = 2–4. “Lead” stands for first two multipoles,
F1 + F2.

Term State Z = 1 Z = 2 Z = 3 Z = 4 Z = 5

2s − 1s

Lead 0.229991606931 0.230390709933 0.230936267290 0.231594004269 0.232342252851
F3 0.000039870858 0.000154033610 0.000336061748 0.000581009986 0.000884923162
F4 6.241492×10−8 4.634566×10−7 1.469760×10−6 3.298274×10−6 6.131626×10−6

Total 0.2300315402(3) 0.230545207(2) 0.231273799(6) 0.23217831(1) 0.23323331(3)
3s − 1s

Lead 0.288771400893 0.289100037681 0.289541947085 0.290067435815 0.290657954914
F3 0.000048953133 0.000189443771 0.000413949977 0.000716666402 0.001092933279
F4 7.723537×10−8 5.752828×10−7 1.829313×10−6 4.115199×10−6 7.667670×10−6

Total 0.2888204313(3) 0.289290057(2) 0.289957726(8) 0.29078822(2) 0.29175856(3)
4s − 1s

Lead 0.312542251722 0.312795865525 0.313129873756 0.313519935279 0.313951042166
F3 0.000052358450 0.000202772029 0.000443363221 0.000768038994 0.001171895758
F4 8.348329×10−8 6.226729×10−7 1.982136×10−6 4.463102×10−6 8.322636×10−6

Total 0.3125946937(3) 0.312999260(3) 0.313575219(8) 0.31429244(2) 0.31513126(3)

TABLE VII. The fit of the coefficients �A60(n) for the S states and A60(n) for the P1/2 states to the functions A60(n) = ∑k

i=0 Ci/ni for
different values of k. For each k the first row stands for the S states and the second for the P1/2 states. The numbers in brackets for each
coefficient Ci and k stand for the difference between the results for k and k − 1. This serves as an estimate of the uncertainty of the result.

k C0 C1 C2 C3 C4

3 0.0644(386) −3.670(733) 3.5
−1.2425(121) −0.088(231) 1.1

4 0.0654(11) −3.699(29) 3.72(26) −0.76
−1.2428(2) −0.081(6) 1.04(6) 0.17

5 0.0656(1) −3.703(4) 3.78(6) −1.07(31) 0.65
−1.2429(1) −0.076(5) 0.97(7) 0.57(39) −0.83
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TABLE VIII. The results for the normalized difference ns − 1s, n = 2–4, for strong Coulomb fields, Z = 10–50 obtained by means of the
RME and other methods. “Lead” stands for the first two multipoles, F1 + F2. “Other” stands for the results taken from Ref. [15] for Z = 10
and n = 2, from Ref. [16] for Z > 10 and n = 2, and from Ref. [17] for n = 3 and 4.

Term State Z = 10 Z = 20 Z = 30 Z = 40 Z = 50

2s − 1s

Lead 0.23701763 0.2488452 0.2619688 0.2750076 0.286348
F3 0.00319454 0.0112895 0.0241665 0.0433987 0.072537
F4 0.00004031 0.0002495 0.0007118 0.0014503 0.002181
Total 0.2402525(2) 0.260384(1) 0.28685(1) 0.3199(7) 0.361(1)
Other 0.2402825(6) 0.260392(2) 0.2868234(7) 0.3196008(7) 0.3600634(7)

3s − 1s

Lead 0.29422885 0.3026260 0.3109028 0.3174785 0.320080
F3 0.00396535 0.0140854 0.0301636 0.0540166 0.089915
F4 0.00005088 0.0003186 0.0009121 0.0018445 0.002654
Total 0.2982451(2) 0.317030(1) 0.34198(1) 0.3733(9) 0.413(1)
Other 0.2982(2) 0.3170(2) 0.3420(2) 0.3731(2) 0.4114(2)

4s − 1s

Lead 0.31643820 0.3216252 0.3255893 0.3267328 0.322514
F3 0.00426010 0.0151522 0.0324072 0.0578502 0.095876
F4 0.00005539 0.0003475 0.0009926 0.0019940 0.002808
Total 0.3207537(2) 0.337125(1) 0.35899(1) 0.3866(9) 0.421(1)
Other 0.3207(2) 0.3371(2) 0.3590(2) 0.3863(2) 0.4199(2)

results for Z = 20 obtained by the RME are of similar (for n =
2) or greater (for n = 3 and 4) accuracy than those obtained
by the PWE [16,17]. It can be seen from Table VIII that
for Z > 20 we are out of the perturbative region. Obviously,
the convergence of the method slows down. Nonetheless, for
the higher excited states the accuracy of both the RME and the
PWE is similar up to Z = 40.

Finally, we compared the PWE results obtained in Ref. [11]
for Z < 6 and nS states, n = 2–4, to both the Zα expansion
and the RME. We tried to fit the results obtained in Ref. [11],
presented here for each n in the third rows of Table I, to the
series (4), see for each n the third rows in Table IV. This
fit clearly shows that the accuracy of the results obtained
in Ref. [11] is not sufficient for reliable extraction of the
coefficients of the expansion (4). First, the agreement between
the value of the coefficient A60 obtained directly and the
value obtained by the fit is not impressive at all and it
goes down with increasing the excitation. Second, with near
certainty we can exclude the possibility that the coefficient
A70 behaves as that displayed for given n in the third rows of
Table IV. The known coefficients in Eqs. (3) and (4) always
change only mildly with increasing the excitation even for low
excitations [18].

On the other hand, comparison between the second and
the third rows for each n in Table I shows that the agree-
ment between the exact form of the RME and the PWE
is good and estimates of the error made in Ref. [11] are
correct.

To clarify this observation we tried to fit the exact RME
results to the series (4) with less and less digits. We found
that the results displayed for each n in the second rows of
Table IV are relatively stable up to nine digit accuracy of the
RME result. If less accuracy is allowed then the results of the
fit blow up, much in the same way as in the third rows of
Table IV. For this reason, the results displayed for each n in

the first two rows of Table I are presented to more digits than
is the actual accuracy of our results. Compare for each n the
second rows in Table I with the results displayed in Table VI
under the heading “Total.”

This analysis shows that for reliable extraction of the
coefficients of the series (4) from the numerical results a rather
high accuracy of the latter is required.

IV. CONCLUSIONS

The approximate version of the RME given in Ref. [12]
can be used for the extraction of the A60 coefficient. The
nonperturbative information contained in it for the state-
dependent part of the S states is, in contrast to the non-S
states, not useful. It yields a value of the A70 coefficient that is
too wrong.

The accuracy of the exact version of the RME for
determination of the one-loop self-energy for the normalized
difference of the S states for Z < 20 exceeds the accuracy of
any other method. In the case of hydrogen the uncertainty of
this calculation is significantly less than 1 Hz. This is more
than enough to match the accuracy of the experiment [4]. We
find it remarkable to achieve such an accuracy with four one-
dimensional numerical integrations [14]. Further extension
of the RME to the calculation of two-loop corrections (e.g.,
Ref. [8]) and few-electron atoms (e.g., Ref. [20]) thus seems
to be highly desirable.
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