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Based on the scattering theory, simultaneously enhanced energy transport and suppressed momentum exchange
are demonstrated by patterning doped-silicon surfaces in the near field. The radiative heat flux between doped-
silicon gratings exceeds that between planar surfaces and can be one or even two orders of magnitude higher than
what is predicted by the geometry-based Derjaguin proximity approximation (PA). The underlying mechanism
is interpreted as due to the excitation of broadband hyperbolic modes that facilitate photon tunneling, especially
when the period is small. This is confirmed by a comparison of the results from the scattering theory with those
from the effective-medium theory. The Casimir force, which may cause stiction and even failure of mesoscopic
devices, is reduced with the grating structures as predicted by both the scattering theory and PA. However,
depending on the separation distance, the PA may over- or underpredict the Casimir force.
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I. INTRODUCTION

Near-field thermal radiation and Casimir interaction in-
duced by quantum mechanical electromagnetic fluctuations
have received much attention in recent decades. Tunneling
of evanescent waves enables near-field radiative heat flux
between two close bodies to exceed the well-known Stefan-
Boltzmann law, the upper limit for the far-field thermal
radiation, especially when hyperbolic modes or surface modes
such as surface plasmon polaritons (SPPs) and surface phonon
polaritons are excited [1–7]. The promising applications
of near-field heat transfer in thermophotovoltaics [8–14],
thermal imaging [15,16], thermal modulators [17–23], and
local thermal management [24,25] have motivated researchers
to explore nanostructures capable of supporting higher effi-
ciencies or larger heat fluxes than those between planar sur-
faces. Deep subwavelength metamaterials, such as nanowires
[26–28], nanoholes [29–31], and carbon nanotubes [32–34],
have recently been demonstrated to have better near-field
heat transfer performance than bulk materials with planar
surfaces. Most of these works are based on the effective-
medium theory (EMT), which is valid only when the gap
distance is much greater than the period of nanostructures [35].
Additionally, controlling the surface roughness of nanowires
or nanotubes within submicron gap distances to avoid contact
is very difficult. Binary gratings are another type of promising
candidates for near-field radiation control and the grating
structures with desired dimensions can be realized using
micro- and nanofabrication technologies.

Although the EMT is questionable at gap distances
comparable to or smaller than the period, small gap spacing
is often desired for applications such as energy harvesting
and effective heat removal. However, the near-field energy
transport for small gap separations may approach the localized
situation when the interactions are important only between
nearby surfaces, as is the case described by the geometry-based
Derjaguin proximity approximation (PA) [36,37]. The implica-
tion of such a localization phenomenon is that, in the near field,
nanostructures may not achieve higher radiative heat flux than
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the bulk counterparts with the same gap distance, measured by
the minimum separation between the two materials. Lussange
et al. [38] investigated two corrugated silica plates considering
various geometry parameters and found that the PA works
well for aligned silica gratings. This is not surprising since the
lateral propagation length of evanescent surface modes is short
especially for high-k modes; subsequently, the heat transport
tends to be localized. On the other hand, Guérout et al. [39]
predicted that corrugating gold film can prominently improve
the near-field heat transfer over bulk counterparts. The
mechanism lies in the shifting of guided modes to the lower-
frequency region with increasing corrugation depth, where the
energy of Planck’s oscillators is higher. Nevertheless, for noble
metals, surface modes generally exist in the violet or ultraviolet
region and can barely be thermally excited to enhance radiative
energy transfer unless at extremely high temperatures. As
a result, they are usually poor near-field emitters compared
with those for which surface modes lie in the infrared region
that can be easily thermally excited, such as silica and doped
silicon. It has been noted that covering graphene will break the
PA limit and help to achieve delocalized radiative heat transfer
between corrugated silica surfaces due to the large propagation
length of graphene plasmons [40]. One of the objectives of the
present work is to investigate doped-silicon gratings using the
scattering theory and to analyze various geometric parameters
to see whether the PA limit will be valid and whether the EMT
will be applicable under certain circumstances. It is hoped
that large enhancement of near-field radiative transfer can be
achieved with corrugated doped-silicon surfaces.

Another aspect of this study is the calculation of forces
between doped-silicon gratings in close proximity. In practical
applications of microelectromechanical systems (MEMS) and
nanoelectromechanical systems for thermal management, the
Casimir stiction between working parts has to be consid-
ered even in vacuum. The Casimir interaction, arising from
momentum exchange between fluctuating electromagnetic
waves, always accompanies near-field heat transfer and is
mainly induced by quantum fluctuations along with thermal
fluctuations [41–43]. The Casimir force can be as large as
130 kPa at a gap spacing of 10 nm and thus could cause a
failure of mesoscopic systems and devices [44]. It is necessary
to examine how nanostructures affect the Casimir force.
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This work investigates both the radiative energy transport
and the Casimir interaction between doped-silicon gratings.
Three formulations based on the scattering theory [38–40,45],
EMT [18,31,46,47], and PA are employed for the calculation
and analysis. The results are compared for various geometries
to explore the potential for near-field heat-transfer enhance-
ment using gratings. Because of the unique characteristics of
doped silicon and doped-silicon nanostructures, the underlying
mechanism for the near-field heat transfer is very different
from guide modes in gold gratings or surface modes in
graphene-covered nanostructures. The reason why PA fails to
predict near-field radiative heat transfer between doped-silicon
gratings is explored. In particular, broadband hyperbolic
modes are identified by comparison of the energy transmission
coefficients predicted by both the scattering theory and EMT.
The effect of the lateral displacement between the gratings for
the emitter and receiver is also discussed.

II. THEORETICAL FORMULATION

The schematic of near-field heat transfer and Casimir
interaction between gratings separated by a vacuum gap of
distance d is shown in Fig. 1, where P is the period, W is
the grating width, and H is the grating thickness. Note that
δ is the lateral displacement between the two gratings with
identical geometry. In all the calculations, temperatures of the
emitter and receiver are set to T1 = 310 K and T2 = 290 K,
respectively. Doped silicon is used as the base material for
both the grating region (or film) and the substrate (bulk
solid adjacent to the grating film) since it can support SPPs
in the infrared region with good tunability [48–51]. The
n-type doping concentration is chosen as 1020 cm−3, at which
the dielectric function can be described by a simple Drude
model [48,52]: εD−Si(ω) = 11.7 − ω2

p/(ω2 + iγ ω), where the
plasma frequency ωp = 1.08 × 1015 rad/s and scattering

FIG. 1. (Color online) Schematic of near-field radiative heat
transfer between two one-dimensional doped-silicon gratings with
a lateral displacement of δ. For both gratings, the height, period, and
width are H , P , and W , respectively. The temperatures of the two
gratings are set as T1 = 310 K and T2 = 290 K, respectively, for all
calculations.

rate γ = 9.34 × 1013 rad/s are evaluated at the average
temperature of the two gratings, i.e., 300 K.

A. Exact solutions based on scattering theory

The near-field radiative heat transfer between two gratings
based on the scattering theory is presented by [38,39]

Q = 1

8π3

∫ ∞

0
[�(ω,T1) − �(ω,T2)]dω

×
∫ π/P

−π/P

∫ ∞

−∞
ξ (ω,kx,ky)dkxdky, (1)

where �(ω,T ) = �ω/e�ω/kBT − 1 is the average energy of
Planck’s oscillator and ξ (ω,kx,ky) is the energy transmission
coefficient that depends on the frequency and wave vector
components kx and ky considering all the polarization states.
Based on the scattering theory, the energy transmission
coefficient is given as [38,39]

ξ (ω,kx,ky) = Tr(DW1D†W2), (2)

D = (I − S1S2)−1, (3)

W1 =
pw∑
−1

−S1

pw∑
−1

S†
1+S1

ew∑
−1

−
ew∑
−1

S†
1, (4)

W2 =
pw∑
1

−S†
2

pw∑
1

S2+S†
2

ew∑
1

−
ew∑
1

S2, (5)

where S1 = R1, S2 = eikz0dR2e
ikz0d , and the dagger denotes

the Hermitian adjoint. Note that R1 or R2 is a (4N + 2)×
(4N + 2) reflection matrix obtained by using rigorous
coupled-wave analysis (RCWA) [53,54]. Here N is the highest
diffraction order used in the computation and should be large
enough to ensure convergence. Note that kx is folded into
the first Brillouin zone since the structure is periodic in the
x direction. Operators

∑pw (ew)
−1 (1) identifying propagating and

evanescent modes are presented in Ref. [38]. The accuracy of
the numerical method is solely limited by the diffraction orders
used in the RCWA. The calculation results are validated by
comparison with previous works [38,39] and the convergence
is tested using a sufficiently large number of diffraction orders.
The numerical solutions obtained by the scattering theory
are treated as exact results in this work for the purpose of
comparison.

B. Effective-medium theory

Alternatively, when the gap distance is much larger than the
period of nanostructures, the EMT combined with fluctuational
electrodynamics can be adopted to predict the near-field heat
flux. In this circumstance, the grating film can be homogenized
as a uniaxial material with the optical axis lying in the x-y
plane. The effective dielectric functions of the equivalent
homogenized thin film for the grating region are given by [31]

εO = (1 − f ) + εD-Sif, (6)

εE = εD-Si

(1 − f )εD-Si + f
, (7)
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where εO and εE are the dielectric functions for the electric
field perpendicular and parallel to the optical axis, respectively,
and f = W/P is the filling ratio. For the configuration shown
in Fig. 1, the optical axis is parallel to the x axis.

The radiative heat flux between thin grating films on doped-
Si substrates based on the EMT can be expressed as [18,31]

Q = 1

8π3

∫ ∞

0
[�(ω,T1) − �(ω,T2)]dω

×
∫ 2π

0

∫ ∞

0
ξ (ω,β,φ)βdβdφ, (8)

where β =
√

k2
x + k2

y is the transverse wave vector, φ is the
azimuthal angle, and ξ (ω,β,φ) is the energy transmission
coefficient considering polarization coupling and can be
expressed as [31]

ξ (ω,β,φ)

=
{

Tr[(I − R†
2R2)D(I − R1R†

1)D†], β < k0

Tr[(R†
2 − R2)D(R1 − R†

1)D†]e−2|kz0|d , β > k0,
(9)

where D = (I − R1R2e
2ikz0d )−1 is a Fabry-Pérot-type denom-

inator representing the multiple reflections inside the vacuum
cavity and R1 and R2 are the 2 × 2 reflection coefficient
matrices including both the copolarization (rss and rpp) and
cross-polarization (rsp and rps) components. Since the two

gratings are parallel to each other, the optical axes are also
parallel, making the calculations much easier. Note that φ

defines the plane of incidence and the rotation of the plane of
incidence is equivalent to the rotation of the optical axis of the
anisotropic film. The dielectric function tensor of the film with
respect to the plane of incidence is given as

¯̄ε =
⎛
⎝ εOcos2χ + εEsin2χ (εO − εE) sin χ cos χ 0

(εO − εE) sin χ cos χ εOsin2χ + εEcos2χ 0
0 0 εO

⎞
⎠,

(10)

where χ is the angle between the optical axis and the normal
of the plane of incidence. In Ref. [31], expressions for the
reflection coefficient matrix were given when the anisotropic
medium is semi-infinite. These expressions are extended in the
present study to treat the anisotropic film with thickness of H,
i.e., the same as the grating height, on top of a bulk substrate.

C. Proximity approximation

The PA, which is based on pairwise addition, assumes near-
field heat transfer between complex structures to be localized
without considering interactions between neighboring unit
cells. The resulting radiative heat flux can be calculated as
a weighted average of plane-plane configurations at different
gap distances. For one-dimensional gratings with f � 0.5, the
radiative heat flux predicted by the PA can be written as

QPA =
{

f P−δ

P
Qd + 2δ

P
Qd+H + P−f P−δ

P
Qd+2H , δ � f P

2f Qd+H + (1 − 2f )Qd+2H , f P < δ � 0.5P.
(11)

Similarly, when f > 0.5, the PA gives

QPA =
{

f P−δ

P
Qd + 2δ

P
Qd+H + P−f P−δ

P
Qd+2H , δ � (1 − f )P

(2f − 1)Qd + 2(1 − f )Qd+H , (1 − f )P < δ � 0.5P.
(12)

Here Qd , Qd+H , and Qd+2H are the radiative heat flux for
plane-plane configurations at gap distances of d, d + H , and
d + 2H , respectively. Due to symmetry, the range of lateral
displacement that needs to be considered is from 0 to P/2 only.
Note that Eqs. (11) and (12) can be used directly to calculate
the Casimir interaction by replacing the radiative heat flux with
the Casimir force.

D. Calculation of the Casimir force

The Casimir attraction between gratings at finite temper-
ature T at equilibrium conditions can be obtained using the
previously discussed scattering theory as [53,54]

F = 2πkBT

∞∑
n=0

′ ∫ π/P

−π/P

∫ ∞

−∞
Tr

[
(I − Mn)−1 ∂Mn

∂d

]
dkxdky,

(13)

where the prime on the summation operator means that the
n = 0 term should be taken with a factor of 0.5. Equation (13)
is similar to Eq. (1) to some extent, but the summation here is
exerted over the Matsubara imaginary frequencies ζn = iωn =

i2πnkBT /�. Note that T is set to be 300 K, the average of T1

and T2, and the nonequilibrium effects are neglected given that
the temperature difference between T1 and T2 is small (20 K)
and the zero-point energy has the dominant contribution at
submicron gap spacings around room temperature. The matrix
Mn can be described by the reflection coefficients R1 and R2 at
the Matsubara frequencies, obtained by using the RCWA [53].

III. RESULTS AND DISCUSSION

A. Enhancement of near-field heat flux

In this study, the following geometric parameters are chosen
as the default values unless otherwise specified: P = 200 nm,
d = 400 nm, f = 0.2, H = 1 μm, and δ = 0 (aligned case).
The radiative heat flux between two gratings as a function of
the filling ratio is plotted in Fig. 2(a), while other geometric
parameters are set as the default values. When f = 1, both
results reduce to the case for two planar substrates (bulk doped
silicon) for which the near-field heat flux is 294 W/m2. The
radiative heat flux predicted by the PA decreases linearly as
f is reduced, which is opposite to the trend calculated by
the scattering theory (exact). When f = 0.05, the heat flux
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FIG. 2. (Color online) Radiative heat flux as a function of (a)
filling ratio f = W/P and (b) grating height H, calculated from both
the scattering theory (indicated as exact) and the PA method for
aligned gratings. Only one parameter is changed while the rest are
fixed as the default values P = 200 nm, d = 400 nm, f = 0.2, and
H = 1 μm.

achieves a maximum value of 1154 W/m2, which is 20.7 times
larger than what is predicted by the PA, breaking down the
assumption of localized radiative transport. Further decreasing
f will result in a reduction of the heat flux. Of course f = 0
implies the situation between two planar media with a gap
distance d + 2H and both the exact solution and PA method
give the same result. However, even though the filling ratio is as
small as 0.01, the heat flux is enhanced to over 1000 W/m2 as
predicted by the scattering theory. The radiative heat transfer
for doped-silicon gratings is very efficient with higher heat flux
at any practical filling ratio than that for bulk doped silicon.
This is in contrast to aligned gratings made of polar materials,
such as silica, which have been demonstrated to support
localized heat transport due to the short lateral propagation
length of surface phonon modes [38]. For this reason, the

PA works well for aligned silica gratings and as such silica
nanostructures can barely outperform bulk materials in terms
of near-field radiative heat transfer [38,40]. For doped-silicon
gratings, reducing the filling ratio can result in an enhancement
of more than two orders of magnitude over that predicted by
the geometry-based PA.

As shown in Fig. 2(b), the near-field heat flux increases
with the grating depth according to the exact solution, while
the PA predicts the opposite trend. When H is close to zero,
the calculated radiative heat flux based on the exact solution
recovers the value of 294 W/m2, i.e., between two planar
substrates. The heat flux between gratings increases slowly and
tends to saturate when the grating thickness exceeds 10 μm,
suggesting that the radiation penetration depth of the grating
film is on the order of several micrometers. When H is further
increased, the substrates beyond the grating region contribute
little to near-field radiative transfer.

B. Comparison of the exact solutions with the EMT and PA

The near-field radiative heat flux between gratings based
on the scattering theory is compared with the predictions from
the EMT and PA as shown in Fig. 3. In order to identify
the region where doped-silicon gratings perform better than
bulk counterparts, the radiative heat flux for bulk doped
silicon is also shown in Fig. 3. The effect of period on the
calculated heat flux is shown in Fig. 3(a), in which d, f , and
H are kept at the default values of 400 nm, 0.2, and 1 μm,
respectively. The predicted heat fluxes by the EMT and PA are
independent of the period for aligned identical gratings and
thus are flat lines. Interestingly, as the period decreases, the
heat flux predicted by the scattering theory (exact) approaches
and finally coincides with that by the EMT. For example,
when P = 20 nm the heat flux from the exact solution is
941.54 W/m2, which is essentially the same as the EMT
prediction of 941.58 W/m2. With decreasing period and the
width of the gratings, it becomes difficult for waves to sense
the small features and therefore homogenizing the grating
as an effective medium becomes more reasonable. Similar
observations were shown for metallodielectric metamaterials
in Ref. [35], where quantitative criteria for the validity of
EMT in predicting radiative heat transfer between multilayers
are given.

On the other hand, if the period becomes large enough,
the radiative heat transfer is expected to achieve the value
predicted by the PA due to the negligible interactions between
different unit cells nearby. At P = 20 μm, the heat flux of
96.0 W/m2 as predicted by the scattering theory is only slightly
higher than the PA limit of 93.3 W/m2. The exact solutions
lie between the upper asymptotic line governed by the EMT
limit and the lower asymptotic line governed by the PA limit.
Corrugating bulk doped silicon helps to enhance the radiative
heat flux for small periods, where the many-body interactions
between neighboring unit cells become nontrivial.

The near-field radiative heat flux for gap distance varying
from 10 nm to 10 μm is shown in Fig. 3(b) when other geomet-
ric parameters are fixed at the default values. The agreement
between the scattering theory and EMT is excellent when
d > 0.6 μm. The reason is that the number of contributing
modes decreases with increasing gap spacing [35,55]. Then,
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FIG. 3. (Color online) Comparison of heat flux calculated from
the scattering theory with EMT, PA limit, and bulks. (a) Effects of
period for d = 0.4 μm and (b) effects of gap distance at P = 0.2 μm.

at large d, the major contribution comes from low-k modes
with longer effective wavelengths. The EMT is valid when
the effective wavelength is greater than the period. However,
when the gap spacing exceeds 10 μm, beyond the characteristic
wavelength of thermal radiation, photon tunneling effects
become weak and the radiative heat flux will converge to
the far-field values when the energy transfer is dominated by
propagating modes and independent of the gap spacing.

With decreasing d, the exact solution deviates from the
EMT result but approaches the PA prediction. Hence, the
near-field radiative heat transfer tends to be localized at
small gap spacing since the field will be highly confined due
to the dominant contribution of high-k modes. Figure 3(b)
also demonstrates that for the chosen values of f , H, and
P, doped-silicon gratings outperform the bulk counterparts
in terms of the heat-transfer enhancement for d > 15 nm.
Another interesting phenomenon is that the near-field heat
flux of doped-silicon grating exhibits a power law close

FIG. 4. (Color online) (a) Spectral radiative heat flux predicted
by the scattering theory, EMT, and PA with the default parameters.
(b) Effective dielectric functions for orthogonal directions for doped-
silicon gratings with f = 0.2.

to d−1 for submicron gap spacing rather than the well-
known d−2 (obtained by assuming p-polarized waves have
dominant contributions [56]) as is the case for both bulk and
homogenized media supporting surface resonances.

C. Excitation of broadband hyperbolic modes

The underlying mechanism for the efficient radiative
heat transfer is further explored by considering the spectral
distribution, effective dielectric functions, and contour plot of
the energy transmission coefficient. Using the default values,
the exact solution gives a heat flux of 736 W/m2, which is
about eight times higher than the PA limit and 78% of the EMT
limit. The heat-flux spectra predicted by the three methods are
plotted in Fig. 4(a). It can be seen that the spectral heat flux
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FIG. 5. (Color online) Contour plots of the energy transmission
coefficient at ky = 0 for the default parameters: (a) exact solution
based on the scattering theory using the RCWA and (b) EMT by
setting φ = 0. The dash-dotted line denotes the light line.

predicted by the scattering theory is much higher than that
by the PA from 3 × 1013 rad/s to 3 × 1014 rad/s. The surface
resonance mode of doped Si lies at 2.88 × 1014 rad/s [31],
where there is a small rise in the PA prediction. However, this
feature does not show up according to the exact solution and
EMT, both of which give a very similar trend in the spectral
heat flux. The reason is further explored by considering the
dielectric functions predicted by the EMT.

The real parts of the dielectric function in orthogonal
directions ε′

O and ε′
E , calculated from Eqs. (6) and (7), are

shown in Fig. 4(b). When ε′
O and ε′

E have different signs,
the dispersion becomes hyperbolic with unbounded density of
states [57,58]. As a result, high-k modes become propagating
in the homogenized grating region. The local density of states
becomes high, leading to broadband efficient photon tunneling
[26]. The hyperbolic band ranges from very low frequencies to
2.58 × 1014 rad/s, as denoted by the shaded region in Fig. 4(b).

The energy transmission coefficient contour for ky = 0
and 0 � kx � π/P based on the scattering theory and EMT
is given in Figs. 5(a) and 5(b), respectively. Because the
cutoff wave vector for hyperbolic modes, defined as 1.94/d

[35], is less than 2π/P , only modes in the first Brillouin
zone have nontrivial contributions to the radiative heat flux
and the folding of other diffraction orders has negligible
contributions. For the EMT, the calculation is set to φ = 0◦
and 0 � β � π/P , in which case the cross-polarization terms
become zero. The energy transmission coefficient considers
both s and p polarizations and hence the upper limit is 2
instead of 1 [31]. The agreement of the energy transmission
coefficient predicted by both the scattering theory and the
EMT is quite good. For s-polarized waves at frequencies
below 2.58 × 1014 rad/s where ε′

O < 0, the gratings behave
like a metal and give a very small ξ . At high frequencies,
the energy transmission coefficient for s-polarized waves is
large for propagating waves since ε′

O is greater than zero
and ε′′

O is small. However, photon tunneling for s-polarized
waves contributes little to near-field radiation because of the
negligibly small energy transmission coefficient (or tunneling
probability). Attention is now paid to p-polarized waves as
discussed next.

When ky = 0, the reflection coefficient at the interface
between vacuum and homogenized gratings for p-polarized
waves is given as [31,59]

rpp =
√

k2
0 − k2

x

√
k2

0εE − k2
xεE/εO − (

k2
0 − k2

x

/
εO

)
√

k2
0 − k2

x

√
k2

0εE − k2
xεE/εO + (

k2
0 − k2

x/εO

) . (14)

Only rpp is considered since neither s-polarized waves nor po-
larization coupling effects are important for high-k evanescent
waves [31]. Considering that ε′′

E (the imaginary part) is close
to zero though not shown here, εE can be replaced by its real
part ε′

E and Eq. (14) can be recast as follows:

rpp =
√

ε′
E

√
k2

0 − k2
x −

√
k2

0 − k2
x

/
εO

√
ε′

E

√
k2

0 − k2
x +

√
k2

0 − k2
x

/
εO

. (15)

Note that for evanescent waves the imaginary part of rpp

must not be zero in order for the ξ to become nontrivial
[31]. For the high-frequency region beyond the hyperbolic
band, ε′

O > 0 and ε′′
O is negligible; as a result,

√
k2

0 − k2
x/εO

becomes purely imaginary when kx/k0 is greater than
√

ε′
O ,

which is about 1 as shown in Fig. 4(b). The result is a very
low tunneling probability at high frequencies. For propagating
waves at high frequencies, ξ can still be large for p-polarized
waves due to the dielectric behavior for both ordinary and
extraordinary waves. Even though the combination of s- and
p-polarized waves gives large ξ values (1.0 − 1.8) in this
region, the contribution from the high-frequency region to the
total radiative heat flux is less than 10%.

In the hyperbolic region, ε′
O > 0 and ε′′

O is large, so√
k2

0 − k2
x/εO has a dominant real part at low frequencies,

leading to nontrivial energy transmission coefficients of
evanescent waves. Doped-silicon gratings exhibit the unique
property of hyperbolic modes with a large photon tunneling
probability in a broad frequency band. This is the main reason
for the enhancement of near-field radiation by gratings over
bulk doped silicon. As shown in Fig. 5, even in the hyperbolic
region, ξ is very small for low-kx modes. When the hyperbolic
film representing the grating region is thin, smaller than
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the penetration depth of the slowly decaying low-kx modes,
the film becomes transparent. Due to the metallic feature of the
doped-silicon substrate, the resulting ξ is very small in the
hyperbolic band for low kx values. This has been confirmed by
calculations with increasing H, which results in higher energy
transmission coefficient for low-kx modes (although not shown
here).

It is worth noting that thin-film effects also play a role
such that the doped-silicon substrates act together with the
hyperbolic film to enhance near-field heat flux for high-kx

modes. The demonstrated hyperbolic nature may come from
the coupling with short-range SPPs [60]. The slight difference
between Figs. 5(a) and 5(b) is that the hyperbolic band featured
with a large energy transmission coefficient is slightly broader
for an effective medium described by the EMT, suggesting
that the hyperbolic dispersion at large wave vectors fails to
hold for an actual doped-silicon grating. This explains why the
EMT tends to predict a higher radiative heat flux than the exact
solution. Similar phenomena have been noticed in multilayered
metamaterials [35,58,61]. Overall, it can be clearly seen that
the photon tunneling is effective in the hyperbolic region with a
large number of kx modes, except those very close to the light
line. That is the reason why doped-silicon gratings support
a much higher heat flux than bulk materials. Furthermore,
since high-kx modes become propagating in the gratings
and the propagation length can exceed one period, near-field
radiative transport with doped-silicon gratings tends to be
delocalized; this explains why the PA fails as the period
becomes sufficiently small.

D. Suppressed Casimir attraction

The formula for predicting the Casimir stiction between
doped-Si gratings based on the scattering theory has been
given in Eq. (13). The dielectric function of doped silicon
at the imaginary frequency ζ = iω is given as [62]

ε(ζ ) = 1.035 + 10.835ω2
0

ω2 + ω2
0

+ ω2
p

ω(ω + γ )
. (16)

Note that the first two terms on the right-hand side of
Eq. (16) are the high-frequency dielectric response of silicon
and are independent of the doping level. Here ω0 = 6.6 ×
1015 rad/s is a fitted resonance frequency used to describe
the interband transition for intrinsic silicon [62]. The last
term of Eq. (16) represents the intraband contribution, where
the values of ωp and γ are given in Sec. II for a doping
concentration of 1020 cm−3. Note that the high-frequency
dielectric response of silicon can be treated as a constant in
the calculation of radiative heat transfer since the contribution
from frequencies higher than 4.0 × 1014 rad/s is negligible.
However, for the Casimir interaction, these high-frequency
modes are significant and even dominant for gap distances
below hundreds of nanometers. The Casimir force of doped-
silicon gratings Fg normalized by that of bulk doped silicon Fb

is plotted in Fig. 6 for varying submicron gap distances with
two periods P = 0.2 and 1.0 μm for f = 0.2 and H = 1 μm.
The dashed lines with marks represent the results from the
scattering theory using the RCWA. As shown as the dash-
dotted line, the PA prediction is independent of the period and
gap distance. Since the Casimir force is a strong function of

FIG. 6. (Color online) Casimir force between aligned doped-
silicon gratings normalized to that for bulk counterparts as a function
of the gap distances.

the distance between two parallel planar surfaces, the ratio
Fg/Fb in the PA limit approaches the filling ratio of 0.2 for
aligned gratings. In contrast to near-field energy transfer, the
Casimir force is always reduced by surface corrugation as
predicted by both the scattering theory and the PA method.
Similar results were demonstrated for intrinsic silicon and
metal gratings [54,63–65]. Nevertheless, the PA method may
under- or overpredict the Casimir force as compared with the
exact method. It is interesting to note that, according to the
exact solution, the Casimir force of doped-silicon gratings is
reduced to below the PA limit at gap distances below several
hundred nanometers, which fall in the desired separation range
for near-field energy harvesting and thermal management due
to the prominently high radiative heat flux. The reason for
the reduction of Casimir force below the PA limit may be
attributed to the strong interactions of the fields between the
ridges and those inside the grooves. Virtual photons confined
between the ridges of the emitter and the receiver tend to leak
when close to the edges. The Casimir force predicted by the
scattering theory for P = 1 μm tends to be closer to the PA
limit than for P = 0.2 μm. This is expected since both the
edge effects and interactions between neighboring unit cells
will become weak for increasing grating period. Therefore,
besides improving the near-field radiative heat flux, patterning
doped-silicon surfaces helps to relieve the Casimir stiction.

E. Effects of lateral displacement

The heat flux and Casimir force generally decrease when
some lateral displacement δ is introduced between the top
and bottom gratings since mode coupling is deteriorated due
to symmetry breaking. Such an effect has been considered
for potential devices such as thermal modulators [38]. Before
possible applications of doped-silicon gratings in modulating
the heat flux and attraction force, it is necessary to study the
effects of lateral displacement. To simplify the analysis, the
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FIG. 7. (Color online) Ratio of (a) the radiative heat flux or (b)
Casimir force for the misaligned grating when δ/P = 0.5 to that
corresponding to the aligned gratings as a function of the period.

relative lateral displacement δ/P is chosen to be 0.5, i.e.,
the maximum misalignment, so the heat flux and Casimir
attraction force should be the smallest. The ratio of the radiative
heat flux and Casimir force between the misaligned case and

the aligned case, Qδ=0.5P /Qδ=0 and Fδ=0.5P /F δ=0, are shown
in Figs. 7(a) and 7(b), respectively, for varying grating period.
When the period is small, below 200 nm, both the radiative
heat flux and Casimir force remain the same, despite the
misalignment. This is not surprising since when the period is
shorter than the wavelength of the dominating modes, gratings
behave as a homogeneous film according to the EMT. Even
when d = 0.5 μm, the heat flux and Casimir force for the
misaligned case are still very close to that for the aligned
case. Therefore, when the period is small, the heat flux and
Casimir force for the doped-silicon gratings are insensitive
to the displacement. As the period increases, there exists a
strong dependence of both the radiative energy transfer and
momentum transfer on the lateral displacement. As expected, if
P exceeds 10 μm, both of the ratios approach those as governed
by the PA limit. The PA limit of Qδ=0.5P /Qδ=0 is 56%, as seen
from Fig. 7(a), while that of Fδ=0.5P /F δ=0 is only 2%, as seen
from Fig. 7(b). This is because the Casimir interaction is more
sensitive to the gap spacing (d−4) compared with the near-field
radiative heat flux (d−2).

IV. CONCLUSION

Highly efficient radiative heat flux between doped-silicon
gratings is demonstrated and the amount can be as high as
three times that between planar substrates. Furthermore, the
exact solution based on the scattering theory predicts the
heat flux to be 1–2 orders of magnitude higher than that
given by the geometry-based approximation. The excitation of
hyperbolic modes, which support broadband and large energy
transmission coefficient for high-k modes, is attributed to be
the main reason for the enhanced near-field energy transport.
Meanwhile, the issue of Casimir stiction is demonstrated
to be greatly relieved with gratings as compared to the
bulk counterparts. This work offers possibilities of enhancing
radiative energy transfer while simultaneously suppressing
momentum exchange by patterning doped-silicon surfaces.
The findings hold promise for applications in contactless ther-
mal management, near-field energy harvesting, and relieving
adhesion problems of MEMS devices.
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