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S-matrix calculations of energy levels of sodiumlike ions
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A recent S-matrix-based QED calculation of energy levels of the lithium isoelectronic sequence is extended
to the general case of a valence electron outside an arbitrary filled core. Emphasis is placed on modifications
of the lithiumlike formulas required because more than one core state is present, and an unusual feature of the
two-photon exchange contribution involving autoionizing states is discussed. The method is illustrated with a
calculation of the energy levels of sodiumlike ions, with results for 3s1/2, 3p1/2, and 3p3/2 energies tabulated for
the range Z = 30–100. Comparison with experiment and other calculations is given, and prospects for extension
of the method to ions with more complex electronic structure discussed.
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I. INTRODUCTION

Quantum electrodynamics (QED), the relativistic field
theory of the electromagnetic interaction of charged particles,
describes the simplest atom, hydrogen, with high accuracy.
This accuracy of both experiment and theory is continuously
improving, with the level of parts per billion (ppb) not
unusual for both [1]. To achieve agreement between theory
and experiment, QED effects, most prominently the one-loop
radiative correction known as the Lamb shift, must of course
be included.

The definition of a QED effect is particularly straight-
forward for hydrogen, simply being any correction to the
analytically known energy levels predicted by the Dirac
equation. If the nucleus is treated as an infinitely heavy
point charge, a modification of the interaction picture of QED
introduced by Furry [2] gives a framework for calculating QED
effects. In particular, the Lamb shift is a precisely defined
quantity involving the propagator of an electron in the field
of the point charge. For example, before regularization and
renormalization, the self-energy part of the one-loop Lamb
shift of an electron in state v when the nuclear charge is Z|e|
is

Ev(SE) = −ie2
∫

d3x d3y

∫
d4k

(2π )4

ei�k·(�x−�y)

k2 + iδ

× ψ̄v(�x)γμSF (�x,�y; εv − k0)γ μψv(�y), (1)

with the electron propagator obeying the equation[(
E + Zα

r

)
γ0 + i �γ · �∇x − m

]
SF (�x,�y; E) = δ3(�x − �y).

(2)

Advances in numerical methods have led to its evaluation
accurate to under 1 Hz [3].

However, as soon as more than one electron is present, the
definition of a QED effect is less obvious, as one no longer
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has either an analytically or a numerically known analog to
the Dirac energy levels. If one allows the definition of QED
effects to include relativistic corrections, one approach is to
define the energy relative to which a QED effect is defined as
ES , the solution of the Schrödinger equation H� = ES� for
N electrons, with Hamiltonian

H =
N∑

i=1

[ �p2
i

2m
− Zα

ri

]
+

∑
i<j

α

|�ri − �rj | . (3)

Effective field theory methods, introduced as nonrelativistic
QED (NRQED by Caswell and Lepage [4], provide a sys-
tematic method of including corrections to ES from QED
effects. When considering few-electron atoms and molecules,
variational methods allow ES to be determined very precisely.
The ground-state energy of helium is a striking example [5],

ES = −2.903 724 377 034 119 598 311 . . . (4)

in atomic units, with many more digits not shown. The QED
corrections, while challenging to calculate, are basically under
control at the same level as for hydrogen. Examples of state-
of-the-art calculations are the fine structure of helium [6] and
the hydrogen molecule [7].

When variational methods become impractical, a mean
central field U (r) is introduced, and the Hamiltonian is
reorganized to H = H0 + V , with

H0 =
N∑

i=1

[ �p2
i

2m
− Zα

ri

+ U (ri)

]
(5)

and

V =
∑
i<j

α

|�ri − �rj | −
∑

i

U (ri). (6)

The Rayleigh-Schrödinger perturbation expansion in V is
known as many-body perturbation theory (MBPT) and will
have a close relation to the QED approach we use.

In this paper we treat highly charged ions with many
electrons. In these ions, relativistic effects are too large to
be included perturbatively, and there are too many electrons to
allow the use of variational methods, so an approach along the
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lines of MBPT is called for. A relativistic form of MBPT
can be introduced by replacing the nonrelativistic kinetic
energy �p2

i /2m with �αi · �pi + βim in Eq. (5). While there are
well-known problems present when carrying out the sums over
intermediate states of MBPT when negative energy states are
involved [8,9], they can be avoided by simply excluding those
states from those summations. ED , a relativistic generalization
of ES , can then be defined.

When U (r) is chosen to be the Hartree-Fock potential,
sets of calculations of ED have been carried out up to
third order in MBPT for the lithiumlike [10], sodiumlike
[11], and copperlike [12] isoelectronic sequences. Significant
discrepancies with experiment are found in all cases, as
expected because QED effects are not included in ED . A
useful approximate inclusion of the leading QED effect, the
Lamb shift, for the three sequences was given in Ref. [13].
However, a QED approach equal in rigor to NRQED can be
applied, based on a modification of the Furry representation
[2] used in hydrogen calculations. An early application of this
approach was given by Blundell [14], and more recently two
calculations of the lithiumlike sequence have been carried out
[15,16]. We note also another approach to incorporating QED
into the many-body problem by Lindgren [17].

Furry representation changes the interaction picture, where
electrons propagate freely, in such a way that the electrons
propagate in an external Coulomb field, as described in Eq. (2).
The unitary transformation that does this is easily modified
to incorporate the mean central potential U (r), although we
have to use local approximations to the original Hartree-Fock
potential because of its nonlocality. Just as with hydrogen,
a set of Feynman diagrams can be generated, which can be
associated with energy shifts with the use of either S-matrix
techniques, used in Ref. [15], or two-time Green’s function
techniques [18], used in Ref. [16]. The diagrams are similar
to those used in hydrogen calculations, although, as we shall
show later, new diagrams involving photon exchange between
different electrons and a new interaction associated with the
model potential U (r) are present.

As individual contributions to the energy level change with
U (r), only if ED can be shown to be independent of the
potential to a high degree of accuracy will this approach be
of practical utility. This is definitely not the case for most
neutral atoms, although Hamiltonian methods that sum high
orders of MBPT diagrams such as coupled-cluster methods
[19] are constantly improving. However, it is the case for the
isoelectronic sequences mentioned above once the ions are
highly charged. In this case one need consider only a limited
set of Feynman diagrams, and a well-defined way of carrying
out completely QED-based calculations of the ions exists. As
will be described below, QED effects get intertwined to some
extent with the definition of ED , so in the following we give
results solely in terms of Feynman diagrams.

The extension from lithiumlike to the general case is
complicated by a number of issues. The first has to do with
the starting point of the calculations, which can be chosen to
be hydrogenic orbitals for lithiumlike ions. However, with 11
or more electrons, ignoring the electron-electron interaction
in lowest order is a poor approximation. This necessitates
building in screening in the basic formalism, an optional step
for the lithium isoelectronic sequence. Second, the fact that

only the 1s core state was populated in lithiumlike ions led
to certain simplifications, so some of the formulas given in
Ref. [15] have to be generalized to the case when there are
multiple core states. Third, an interesting apparent instability
appears in two parts of the two-photon exchange calculation.
The combination of those parts will be shown to be stable, and
the reason for the instability, which is related to autoionizing
states, is discussed. Finally, even though the large nuclear mass
makes recoil corrections small, the QED treatment is highly
nontrivial, and will be discussed in some detail.

The plan of the paper is as follows. In the next section,
we introduce the formalism used in the calculations. In the
following three sections we treat energy shifts associated
with Feynman diagrams with one, two, and three photons,
respectively. The finite mass of the nucleus is accounted for,
along with a discussion of issues to do with its structure in
Sec. VI. Application to the sodium isoelectronic sequence
is given in Sec. VII, along with a comparison with other
calculations and experiment. In the conclusion we discuss
issues involved in carrying out a more complete QED treatment
of alkali-metal-like ions, and the possibility of treating ions
with more complicated electronic structure.

II. S-MATRIX FORMALISM

The fact that even the lightest nucleus is three orders of
magnitude heavier than the electron leads to its role being
predominantly the source of a classical Coulomb field. Once
this approximation is made, one is dealing with a standard
bound-state QED problem that can be treated in the Furry
representation [2]. While the original application was to
hydrogen, QED is intrinsically a many-body theory, and one
can treat atoms with more than one electron with the same
formalism. In terms of creation and annihilation operators, all
that needs to be done for alkali-metal-like ions is to change the
initial state of an electron in state v, for hydrogen described as

|v〉 = b†v |0〉, (7)

to

|v〉 = b†v |0C〉. (8)

Here |0〉 is a state with no electrons present, and |0C〉 a state
with all core states populated, ten for the case of sodiumlike
ions.

While QED is intrinsically a many-body theory, the electron
propagator does not automatically “know” how many electrons
are present when one is doing calculations on a many-electron
atom or ion. This leads to certain complications when carrying
out practical calculations. Many of these are avoided in MBPT
through a redefinition of the ground state. While similar
redefinitions can be done in QED, here we choose the ground
state to have no core electrons present. This means that for
sodiumlike ions |0C〉 is understood to have ten core electron
creation operators operating on |0〉. We will show in several
cases throughout the paper how different Feynman diagrams
act together to effectively “fill the core,” building in the effect
of the Pauli exclusion principle by canceling terms involving
core electrons.

We begin by showing in the row labeled E0 in Tables I
and II the 3s, 3p1/2, and 3p3/2 eigenenergies of sodiumlike
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TABLE I. Breakdown of structure and QED contributions to the
ionization potentials (a.u.) of the n = 3 states for sodiumlike tungsten
using the Coulomb potential.

Terms 3s1/2 3p1/2 3p3/2

E0 −330.1011 −330.1498 −311.9187
E1 71.2399 78.3267 73.4074
E2 −3.4203 −4.4226 −4.0129
E3 0.0091 0.0104 0.0028
Recoil 1 0.0011 0.0010 0.0009
Recoil 2 −0.0001 −0.0005 −0.0005
SE 0.2856 0.0267 0.0394
Uehling −0.0515 −0.0061 −0.0005
WK 0.0019 0.0003 0.0001
SE screen −0.0659 −0.0186 −0.0291
VP screen 0.0118 0.0038 0.0015
Sum −262.0895 −256.2335 −242.5096

tungsten in two different potentials. Sodiumlike tungsten is
the ion we use for purposes of illustration. It is also of current
interest, as recent experiments [20,21] have found

E3p1/2 − E3s1/2 = 5.8635(12)a.u.,

E3p3/2 − E3s1/2 = 19.595(5)a.u.

We note that natural units with � = c = 1 are used throughout
this paper, and unless otherwise specified, energies are given
in atomic units, where 1 a.u. = 27.211 384 eV.

Were we to start by ignoring the interaction between
electrons, we would be using the original Furry representation,
which has the external field being the Coulomb field of the
nucleus,

UC(r) = −αZnuc(r)

r
. (9)

Solving the Dirac equation for a nucleus of finite size with
root-mean-square charge radius of 5.359 fm gives the Coulomb
eigenenergies E0 shown in Table I, which leads to transition
energies of −0.048 and 18.182 a.u., a clearly undesirable
starting point. However, the Furry representation can easily

TABLE II. Breakdown of structure and QED contributions to the
ionization potentials (a.u.) of the n = 3 states for sodiumlike tungsten
using the Kohn-Sham potential.

Terms 3s1/2 3p1/2 3p3/2

E0 −260.1538 −254.6228 −240.5712
E1 −2.0688 −1.5423 −1.8936
E2 −0.0460 −0.0638 −0.0517
E3 0.0004 0.0006 0.0005
Recoil 1 0.0009 0.0008 0.0008
Recoil 2 −0.0001 −0.0004 −0.0004
SE 0.2326 0.0186 0.0291
Uehling −0.0421 −0.0044 −0.0003
WK 0.0015 0.0002 0.0000
SE screen −0.0109 −0.0096 −0.0078
VP screen 0.0018 0.0017 0.0012
Sum −262.0845 −256.2214 −242.4934

be modified by taking the QED Hamiltonian H = H0 + HI

and rearranging it to H = H̃0 + H̃I , where

H̃0 =
∫

d3x ψ†(x)[−i �α · �∇ + βm + UC(r) + U (r)]ψ(x),

(10)
with U (r) chosen to approximately account for the effect
of screening. This requires a modification of the interaction
Hamiltonian, which acquires a new counterterm,

HCT = −
∫

d3x ψ†(x)U (r)ψ(x), (11)

so that the interaction Hamiltonian becomes

H̃I =
∫

d3x[qeA
μ(x)ψ̄(x)γμψ(x) − ψ†(x)U (r)ψ(x)]. (12)

We use Feynman gauge for this part of the calculation, but note
that we will later use Coulomb gauge when recoil corrections
are treated. In the above equations ψ(x) is a field operator,
with associated wave functions obeying the Dirac equation

[−i �α · �∇ + βm + UC(r) + U (r)]ψn(�x) = εnψn(�x). (13)

We can choose any function U (r), so long as it is a
local function of r , which prohibits use of the Hartree-Fock
potential. However, a local potential that gives results close
to those of the Hartree-Fock potential is the Kohn-Sham (KS)
potential [22], which we define as VKS(r) = UC(r) + UKS(r),
with

UKS(r) = α

∫
dr ′ 1

r>

ρt (r
′) − 2

3

[
81

32π2
rρt (r)

]1/3
α

r
. (14)

Here

ρt (r) = g2
v(r) + f 2

v (r) +
∑

a

(2ja + 1)
[
g2

a(r) + f 2
a (r)

]
, (15)

where the large- and small-component radial Dirac wave
functions g and f are normalized so that, for large r ,
UKS(r) → αN/r , with N the number of electrons. For the
sodium isoelectronic sequence, the valence state v is chosen
to be the 3s state, and the sum over the core states a ranges over
the 1s, 2s, 2p1/2, and 2p3/2 states. Solving the Dirac equation
with this potential gives the results E0 on the first line of
Table II, and we now have a starting point within 6% for the
3s1/2-3p1/2 transition energy and (accidentally) almost exactly
in agreement with the 3s1/2-3p3/2 transition energies. In our
earlier calculation on lithiumlike bismuth [23], we chose a set
of potentials, which of course gave different transition energies
in lowest order, and showed that inclusion of higher-order
diagrams led to well-converged totals: here we will do this
only for the case of sodiumlike tungsten.

We now wish to begin including the corrections coming
from H̃I . This can be done by using the S matrix, the
time-ordered exponential of the sum of these interaction
Hamiltonians. Carrying out the standard expansion of the
S matrix leads to expressions that can be represented by
Feynman diagrams. To deal with bound-state QED the rules
for these diagrams must be slightly modified, as we wish to
calculate energies rather than scattering amplitudes. To do this,
an adiabatic damping factor e−ε|t | is introduced that multiplies
the interaction Hamiltonian, and one can then show that energy
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(a) (b)

FIG. 1. (a) One-photon exchange diagram between the valence
and a core electron and (b) the action of a counterpotential,
represented by a cross inside a circle, on a valence electron.

shifts can be obtained from this modified Hamiltonian with the
equation [24]

�E = lim
ε→0

iε

2
lim
λ→1

∂
∂λ

〈φ|T (e−iλH̄I )|φ〉
〈φ|T (e−iλH̄I )|φ〉 , (16)

where

H̄I ≡
∫

dx0 e−ε|x0|H̃I . (17)

Note that the first term in the perturbation expansion of
〈φ|T (e−iλH̄I )|φ〉 is 1, so the denominator in the above can
often be neglected, but it will play a role in the evaluation of
two-photon terms.

At this point corrections can be calculated using the stan-
dard tools of quantum field theory. A frequently encountered
integral when Feynman gauge is used is

gijkl(E) = α

∫
d3x d3y

eiĒR

R
ψ

†
i (�x)αμψk(�x) ψ

†
j (�y)αμψl(�y),

(18)

where R = |�x − �y|, αμ = (1,�α), and Ē = √
E2 + iδ. If we

restrict μ to 0 and put E = 0 this is the familiar Coulomb
matrix element of MBPT, gc

ijkl . The definition of Ē builds in
the proper boundary conditions: for real values of E it is of
course simply the absolute value, and when we need to deal
with complex values it gives exponential damping.

III. ONE-PHOTON EFFECTS

A. One-photon exchange terms

In Fig. 1, we show the diagrams for the exchange of a photon
between the valence electron and a core electron, together
with the action of HCT on a valence electron: in terms of
counting photons, one HCT always counts as 1, but one needs
two actions of Aμψ̄γμψ to get a photon propagator. Diagrams
in which the valence electron is not involved, while they do not
vanish, can be ignored for our purposes, as they affect neither
valence removal or transition energies, and the convention of
not including diagrams of this sort will be followed throughout
the calculation. The photon propagator in Feynman gauge is

Dμν(x,y) = −gμν

∫
d4k

(2π )4

e−ik·(x−y)

k2 + iδ

= gμν

1

4πR

∫
dk0

2π
ei|k0|R, (19)

where R = |�x − �y|, and we use a metric where k2 = k2
0 − �k2.

The integral over x0 gives a function multiplying this of the

(a) (b)

FIG. 2. One-photon self-energy and vacuum polarization dia-
grams for the valence electron.

form

Dε = ε

π

1

ε2 + (k0 − E)2
, (20)

where for this problem E = 0 or E = εv − εa . This acts as
a δ function, and one can usually set k0 = E in Eq. (20).
Evaluating the integral over k0 then gives a term varying as 1/ε,
which cancels the ε in Eq. (16). After carrying out the simpler
analysis of the counterterm graph, one finds the energy shift

E1F =
∑

a

[gvava(0) − gvaav(εva)] − Uvv, (21)

where we have introduced the notation

εij ≡ εi − εj . (22)

If we replace g with gc this exactly reproduces the energy
that would be found in MBPT. We are using Feynman gauge,
but note that if we used Coulomb gauge, the replacement just
mentioned is exactly the result of calculating the exchange
of a Coulomb photon. In Coulomb gauge one also has
transverse photons, but their connection to Feynman gauge
is more complicated. However, because we are working with
a local potential, gauge invariance ensures that the results
of a Feynman gauge calculation will be identical to those
coming from a Coulomb gauge calculation so long as a
gauge-invariant set of diagrams is treated.

The term involving gvaav has in general both a real and an
imaginary part, with the latter playing a role in the decay rate of
the ion, discussed further below. We do not tabulate it here, as
we are interested in energies, but note that the imaginary parts
of g terms have to be kept when more than one of them are
present, as is the case for two-photon contributions. The real
part is given as E1 in Tables I and II. We note that if we compare
the 3s energy for the two potentials, a 0.2% discrepancy in
lowest order is reduced to 0.03% after E1 is included.

B. One-loop Lamb shift diagrams

Turning to the other one-photon diagrams, the self-energy
(SE) and vacuum polarization (VP) shown in Fig. 2, we
note that the techniques we use for their evaluation have
been described in considerable detail in Refs. [25,26].
The calculations apply to any state, so we do not repeat the
formulas here. However, there are corrections to the SE term
not important in lowest order that need to be discussed for
later application in the two-photon calculation. If we define
the electron self-energy operator as

�ij (ε) = −ie2
∫

d3x d3y

∫
dnk

(2π )n
ei�k·(�x−�y)

k2 + iδ
ψ̄i(�x)γμ

× SF (�x,�y; ε − k0)γ μψj (�y), (23)
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the self-energy contribution for the valence election is �vv(εv).
(A self-mass counterterm is implicit.) The electron propagator
SF , which satisfies

{[E − UC(r) − U (r)]γ0 + i �γ · �∇x − m}SF (�x,�y; E)

= δ3(�x − �y), (24)

is treated in two ways throughout this calculation. The first
utilizes a spectral decomposition, represented by a sum over
positive and negative energy states,

SF (�x,�y; E) =
∑
m

ψm(�x)ψ̄m(�y)

E − εm(1 − iδ)
. (25)

The term involving δ puts poles in the complex E plane below
the positive real axis for positive energy states and above the
negative real axis for negative energy states. This form for the
propagator is very useful, and fits in with one of our numerical
methods, the use of finite basis sets [27]. These methods allow
us to replace the sum in the spectral decomposition, which has
an infinite sum over bound states along with an integration
over continuum states, with a finite sum, for a typical basis set
of a given angular momentum channel involving 50 negative
energy states and 50 positive energy states. The number 50
is chosen because calculations of terms involving SF have
generally converged by that point, with the use of larger basis
sets not changing the answer appreciably.

The other method of treating the electron propagator uses
differential equation techniques. There, one solves the Dirac
equation away from an energy eigenvalue. Two types of
solution result, one which is finite at the origin but diverges at
infinity, and the other with the situation reversed. SF (�x,�y; E)
can then be formed as a linear combination of products of
these functions. This method is particularly useful when high
accuracy is called for.

The SE term is ultraviolet divergent, and we have regular-
ized that divergence by replacing d4k with dnk where n = 4 −
2εd , with the understanding that εd → 0 after renormalization.
Were we to take εd to vanish, the SE term would be, after
carrying out the d3k integration and using Eq. (18),

�vv(εv) = −i

∫
dk0

2π

∑
m

gvmmv(k0)

k0 − εv + εm(1 − iδ)
. (26)

To numerically evaluate this, we Wick-rotate k0 to the
imaginary axis, k0 → iω. The integration over ω is divergent,
and a subtraction scheme is required to make it finite, but here
we concentrate on the effect of states more deeply bound than
the valence state on the Wick rotation. These lead to poles that
are encircled by this rotation, which give a contribution to the
self-energy we refer to as the pole term,

�vv[p] =
∑

p

gvppv(εvp), (27)

where p sums over all more deeply bound states. The special
case p = v will be discussed below. We note the similarity
of the pole term to the second term in E1F , differing only
by having the opposite sign and summing over both the core
and any valence states with less energy than εv . These terms
generally have real and imaginary parts. They are the only
source of an imaginary part to the energy from one-loop

radiative corrections, as the ω integration is purely real, as
are the vacuum polarization corrections.

The fact that the pole term is almost the negative of the
second term of E1F shows a connection between topologically
different diagrams that will be encountered again when we
discuss two-photon physics. This cancellation of the core
terms is needed to enforce the Pauli exclusion principle in our
approach, since the valence electron in an alkali-metal-like
ion cannot decay to a core state a. Were we dealing with a
hydrogenic ion and v was any state above the 1s state, no
one-photon diagram would exist to lead to a cancellation, and
decays to all lower-energy states, unless prohibited by parity
or angular momentum considerations, would be possible.

At this point we elaborate on the pole term when p = v.
This is actually a half pole, and a factor of 1/2 should be
present for that case since that pole is not encircled by the
Wick rotation, but only skirted with a half circle. However,
in order to deal with singularities in parts of the two-photon
calculation we have introduced what we call “reference-state
regularization.” It is distinct from the usual infrared and
ultraviolet regularizations encountered in QED. It consists of
introducing a small parameter δ and the replacement of the
actual valence and core energies (in this case including the
rest mass of the electron) with

εv → εv(1 − δ),

εa → εa(1 − δ εv/εa). (28)

This regulates certain terms, discussed in more detail in
Sec. IV, that would diverge logarithmically to become factors
of lnδ. We generally take the average of a small positive and a
small negative δ, and this procedure leads to the factor 1/2 in
the pole term when p = v.

IV. TWO-PHOTON PHYSICS

A. Two-photon exchange terms

Before beginning the S-matrix calculation, we note that
second-order MBPT gives an important contribution to ener-
gies of highly charged ions, as it behaves as Z0 in the 1/Z

expansion. We wish to show that it can be obtained as a limit
of the diagrams in which two photons are exchanged between
electrons. The MBPT formula is

E(2) =
∑
abm

gc
mvba

(
gc

abmv − gc
abvm

)
εa + εb − εm − εv

+
∑
amn

gc
avmn

(
gc

mnav − gc
mnva

)
εa + εv − εm − εn

+
∑
am

Xam

(
gc

vmva − gc
viav

) + (
gc

vavm − gc
vamv

)
Xma

εa − εm

+
∑

i

XviXiv

εv − εi

. (29)

Here X ≡ VHF − U , where

(VHF)ij =
∑

a

(
gc

iaja − gc
iaaj

)
. (30)
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(b)

(a)

(c)

(d) (e)

FIG. 3. Two-photon exchange diagrams between the valence
and up to two core electrons. A cross inside a circle represents
a counterpotential. Where there is no photon exchanged between
electrons (c), core electrons are treated as spectators only.

We follow the usual MBPT notation that a, b, . . . sum over
only occupied core states, m, n, . . . sum over positive energy
states above the core, and i, j, . . . sum over both. For purposes
of comparison with the part of the S-matrix calculation related
to this contribution, we note that we can rewrite E(2) in terms
of a unrestricted summation over i and j by simply carrying

out manipulations like

∑
m

F (m) =
∑

i

F (i) −
∑

a

F (a). (31)

The result of this exercise casts Eq. (29) into the form

E(2) =
∑
abi

gc
ivba

(
gc

abiv − gc
abvi

)
εa + εb − εi − εv

+
∑
aij

gc
avij

(
gc

ijav − gc
ijva

)
εa + εv − εi − εj

−
∑
abi

(
gc

avib − gc
avbi

)(
gc

ibav − gc
ibva

)
εa + εv − εi − εb

+
∑
ai

Xai

(
gc

viva − gc
viav

) + (
gc

vavi − gc
vaiv

)
Xia

εa − εi

+
∑

i

XviXiv

εv − εi

. (32)

In this form the relation between MBPT and the present S-
matrix calculation is clearest.

Now turning to the present two-photon exchange calcula-
tion, we note that it leads to a number of effects, which we
organize by the number of closed loops. The simplest diagrams
have no loops, and we begin with them. They are shown in
Figs. 3(a)–3(c). The two-photon propagators can be treated as
described above, with the lowest-order approximation giving

E2F =
∑
abi

[gbvbi(0) − gvbbi(εvb)] [giava(0) − giaav(εva)]

εv − εi

+
∑
abi

[gvavi(0) − gvaiv(εav)] [gibab(0) − gibba(εab)]

εa − εi

+
∑
abi

[gviva(0) − givva(εav)] [gabib(0) − gabbi(εab)]

εa − εi

−
∑
abi

[gavbi(εab) − gavib(εvb)] [gibva(εab) − gibav(εvb)]

εa + εv − εi − εb

+
∑
abi

[gbavi(εvb) − gabvi(εva)]givba(εva)

εa + εb − εv − εi

−
∑
ai

[gavai(0) − gvaai(εva)] Uiv + Uvi [gaiav(0) − giaav(εva)]

εv − εi

−
∑
ai

[gaviv(0) − gvaiv(εva)] Uia + Uai [givav(0) − givva(εva)]

εa − εi

+
∑

i

Uvi Uiv

εv − εi

. (33)

We first note that the first, sixth, and eighth terms, if we replace
g(E) with gc, reproduce the last term of Eq. (32). Similarly,
the second, third, and seventh terms reproduce the next to
last term. The fourth term reproduces the third term, and the
fifth the first term. Only the second term of Eq. (32) remains
unaccounted for, and we will see below that it can be found in
a one-loop diagram.

In the above expressions, terms in which the denominator
vanishes are understood to be excluded. While this is automatic
in MBPT, the treatment of these terms requires care in the
present approach. The excluded terms lead to contributions
with an extra power of 1/ε. The leading part of the contribution
cancels with a term arising from expanding the denominator of
Eq. (16), but when matrix elements gijkl(E) are taken together
with the function Dε of Eq. (20), an extra term arises from
Taylor-expanding gijkl(E) = gijkl(k0) + (E − k0)g′

ijkl(k0). A
detailed description of how this works can be found in Sec. II B

of Ref. [28]. These terms are the first of a set of contributions
to the energy that we call derivative terms, which all arise from
similar manipulations. In this case they are

E2F ′ =
∑
ab

g′
avvb(εva)[gvbva(0) − gvbav(εva)]

−
∑
ab

g′
vbav(−εva)[gvaba(0) − gvaab(0)]

−
∑
ab

g′
vbbv(εva)[gvava(0) − gvaav(εva)]

+Uvv

∑
a

g′
vaav(εva) +

∑
a

U[a][a]g
′
vaav(−εva). (34)

We note that particular care must be taken in this derivation,
because while g(E) is an even function, g′(E) is odd, so the
signs of the arguments in the above are important. The matrix
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element of U does not depend on the magnetic quantum
number of core state a, which we emphasize with the [a]
notation.

Evaluation of these terms is computationally simple. How-
ever, the numerical evaluation of one of them is unstable.
This instability comes from the fourth term in E2F . If we
write the negative of the denominator as εi − (εv + �), with
� = εa − εb, we first note that for lithiumlike ions, � vanishes
as there is only one 1s core state, and the denominator vanishes
only for the case that is eliminated by the formalism. However,
for ions with more than one core state, � can be large and
sufficiently positive so as to make the sum εv + � an energy
in the continuum. This should always lead to a vanishing
denominator, characteristic of autoionizing states. We note that
such terms are not present in Eq. (29), the equation for MBPT.
However, they do appear in Eq. (32), which resulted from the
manipulation in which we forced intermediate sums to include
the core. This suggests that the instability is spurious, and we
will show below that this is indeed the case.

This numerical problem could be severe if, for example,
we attempted to use differential equation techniques, which
implicitly include core states, to carry out the sum over i.
However, we chose to evaluate this term with finite-basis-set
techniques [27], in which εi ranges over a set of discrete values.
While it is extremely unlikely that one value would precisely
lead to a vanishing energy denominator, these discrete values
change as the basis set changes, and this affects the answer.
The instability referred to above is the fact that as the basis set
is increased in size, E2F , rather than tending to a converged
value as is usually the case with finite-basis-set calculations,
keeps changing its value regardless of how large the basis set
is made due to the changing value of εv + �. However, as
with the one-photon case, the terms causing the problem can
be shown to cancel with part of the other two-photon exchange
diagram involving one loop. Before discussing that, we again
emphasize that the two g factors in each term are both complex
numbers, and the calculation is carried out with that in mind.
However, while the end result has an imaginary part, we do
not evaluate it here, and will keep only the real part of all
further two-photon terms. Presumably, were one to follow all
imaginary terms from two-photon physics, one would again
find canceling terms enforcing the Pauli exclusion principle,
along with reproducing the two-photon decay rate and radiative
corrections to one-photon decay.

B. Ladder and crossed-ladder diagrams

We now turn to the one-loop diagrams, which can be broken
into two classes, one primarily associated with structure and
the other with screening of the Lamb shift. The structure
diagrams are shown in Figs. 3(d) and 3(e), which we refer to as
the ladder (L) and crossed-ladder (X) diagrams, respectively.
They give the energy shifts

�EL = i

2π

∑
aij

∫ ∞

−∞
dz

× gijav(z)[gavij (z) − gavji(z − εva)]

[εa + z − εi(1 − iδ)] [εv − z − εj (1 − iδ)]
(35)

and

�EX = i

2π

∑
aij

∫ ∞

−∞
dz

×
{

gajiv(z)givaj (z)

[εa + z − εi(1 − iδ)] [εv + z − εj (1 − iδ)]

− gajia(z)givvj (z − εva)

[εa + z − εi(1 − iδ)] [εa + z − εj (1 − iδ)]

}
. (36)

At this point we can complete the connection to MBPT. If
we again replace g(E) with gc, Cauchy’s theorem allows the z

integration to be carried out. For the ladder, if both intermediate
states are positive energy states, the second term of Eq. (32) is
reproduced, which was the only term from Eq. (32) that had
not already been accounted for.

There is of course additional physics present even with the
approximation we have made. For the ladder, while terms
with one positive and one negative energy state vanish, a
contribution survives when both are negative. For the crossed
ladder, the nonvanishing terms after Cauchy integration
involve one positive and one negative energy state. Power-
counting arguments can be made that show these three extra
contributions contribute at the level of 1/Z of the one-loop
Lamb shift, that is, (Zα)3 a.u., and they can be thought of as
being part of the screening of the Lamb shift. We will return to
the connection of MBPT and QED in the three-photon section,
but now continue with the numerical evaluation of the ladder
and crossed-ladder diagrams.

While the basic formulas for �EL and �EX are relatively
simple, and the z integration easily evaluated in the MBPT
approximation, the unapproximated integrals are quite com-
plicated to carry out. The main problem has to do with the
fact that, just as with the one-loop self-energy, a Wick rotation
z → iω is called for. However, the structure of the complex
plane now has not only a set of poles that get encircled,
sometimes appearing as double poles, but also has two cuts
that must be wrapped around. We begin by treating the pole
terms.

For the ladder, if we choose to close the contour from above,
we need to consider poles in quadrants I and III. The first part
of the denominator has poles when

z = −εa + εi(1 − iδ). (37)

We will rename i as p1 if it is encircled. For negative εi the
poles are in quadrant II, and for positive ε either III or IV.
To be in quadrant III requires εp1 � εa , that is, p1 is a core
state more deeply bound than whichever core state a is under
consideration. Summing over all such states gives

�EL(p1) =
∑
ap1i

[
gp1iav(εp1a)gavp1j (εp1v)

εa + εv − εp1 − εi

− gp1iav(εp1a)gavip1 (εp1a)

εa + εv − εp1 − εi

]
. (38)

The second part of the denominator has poles when

z = εv − εj (1 − iδ). (39)

In this case negative energy states have poles in quadrant IV,
and positive energy states have poles in quadrant I, but only
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when εv � εp2 . This gives rise to

�EL(p2) =
∑
ap2i

[
gip2av(εvp2 )gavip2(εvp2 )

εa + εv − εp2 − εi

− gip2av(εvp2 )gavp2i(εap2 )

εa + εv − εp1 − εi

]
. (40)

When these ladder pole terms are evaluated numerically with
finite-basis-set techniques, the same instability as encountered
in E2F appears. However, the terms that give rise to the
instability can be seen to be equal and opposite in the two
cases, so the sum is stable. We note that the cancellation is
only of the unstable terms because the p1 poles do not range
over the entire core. Furthermore, we do not explicitly build in
the cancellation, instead evaluating E2F and the sum of all pole
terms from the ladder and crossed-ladder diagrams separately.
While each has the instability, the sum is completely stable.

The analysis of the crossed-ladder poles is done in a
manner similar to that of the ladder poles. The rest of the
calculation follows exactly along the lines given for the
treatment of excited states of helium given in [28]. As with
our work on lithiumlike ions [15], the ω integration that
remains after the poles and cuts have been dealt with is by
far the most computationally intensive part of the calculation.
We carried this out with both finite-basis-set and differential
equation techniques, as described in that paper. The sum of
the two-photon structure diagrams is denoted E2 in Tables I
and II. It is notable that this rather involved set of calculations
gives a result quite close to that of the MBPT procedure of
Ref. [11], even though MBPT excludes contributions from the
negative energy states and its treatment of retardation is less
complete than the present approach.

C. Lamb shift screening diagrams

The one-loop self-energy has had some screening built
into it by our choosing a screened potential. For example,
from Table I, with only the nuclear Coulomb field present,
the 3s self-energy is 0.2856 a.u. and the Uehling potential
−0.0515 a.u. Referring to Table II, we see that the screening
provided by the KS potential is 18% for both. The diagrams
of Fig. 4 provide further screening (or antiscreening, if the
original potential provides too much screening).

The treatment of these diagrams is almost completely
unchanged from that described in Ref. [15] for lithiumlike ions
because, regardless of the number of core electrons present,
only one photon is exchanged, with the other being part of the
radiative correction. Therefore the valence state can interact
with only one core state at a time. Thus, for the most part,
for alkali-metal-like ions one simply carries out a calculation
for each core state similar to that described in Ref. [15] and
sums them. There is always a sum over the magnetic quantum
number of the core state, and when one does not have an s state
there is a more complicated angular momentum recoupling
factor associated with summing over all magnetic quantum
numbers; otherwise the calculation is basically unchanged. For
example, the derivative term coming from the valence line,

Ev(der) = E1F �′
vv(εv) −

∑
a

g′
vaav(εva) �vv(εv), (41)

(a) (b)

(c) (d)

(e)

(g)

(f)

FIG. 4. Screened self-energy (a)–(d) and vacuum polarization
(e)–(g) diagrams between the valence and a core electron. A cross
inside a circle represents a counterpotential. Where there is no photon
exchanged between electrons (b),(d),(f), core electrons are treated as
spectators only.

is unchanged from Eq. (22) of Ref. [23], but for derivatives
coming from the core states, Eq. (23) of that work must be
changed to

Ecore(der) =
∑

a

�′
[a][a](εa)[gvava(0) − gvaav(εav)]

−
∑

a

�[a][a](εa)g′
avva(εav). (42)

The same issues as discussed after Eq. (34) enter here, namely,
care is needed with the sign of the argument of g′ and the
notation [a] is used to emphasize magnetic quantum number
independence.

The derivative term comes from the part of the spectral
representation of the electron propagator in Figs. 4(c) and
4(d) when εm = εv , to be discussed in connection to the vertex
diagrams below. When εm �= εv the sum over m generates what
we call a “perturbed orbital” term. Such terms were treated in
a general way in Ref. [23], where they were denoted as ṽ or
ã. Because the self-energy is diagonal in magnetic quantum
numbers one can eliminate them from the sum over the core
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and write

�EPO = �vṽ(εv) + �ṽv(εv)

+
∑
[a]

(2ja + 1)
[
�[a][ã](εa) + �[ã][a](εa)

]
. (43)

In the lithiumlike work [15], a simple factor of 2 was used.
The vertex diagrams of Figs. 4(c) and 4(d) were also treated

in generality in Ref. [15], with the state a left unspecified.
As shown in [15], they consist of five terms: �E1 – �E5

where �E1 and �E2 are the direct and exchange terms of
Fig. 4(c) for the valence electron, �E3 and �E4 are those for
the core electrons, and �E5 is the counterpotential vertex term
of Fig. 4(d). Use of spectral representations for the electron
propagators and the Feynman gauge matrix element allows a
compact representation of the terms, specifically

�E15 = −i
∑
mn

∫
dk0

2π

gvnmv(k0)
[∑

a gmana(0) − Umn

]
(εv − k0 − εm)(εv − k0 − εn)

,

(44)

�E24 = −2i
∑
amn

∫
dk0

2π

ganmv(k0)gmvna(εva)

(εa − k0 − εm)(εv − k0 − εn)
,

(45)

�E3 = −i
∑
amn

∫
dk0

2π

ganma(k0)gmvnv(0)

(εa − k0 − εm)(εa − k0 − εn)
. (46)

Here we have combined �E1 and �E5 into �E15, and used
�E24 = 2�E2 = 2�E4. This sum-over-states form is useful
for analysis of pole terms that come from a Wick rotation
and the reference-state singularity. After the Wick rotation
is carried out, an ultraviolet-divergent set of terms results,
which we treat with differential equation techniques. We treat
the ultraviolet divergence by adding and subtracting the same
expression but with both electron propagators replaced with
free propagators. Combining the subtracted term with the
vertex makes the combination ultraviolet finite. The remaining
term is evaluated in momentum space.

Care is required with the treatment of reference-state
singularities, which we illustrate by considering �E24. The
summation over basis states is not defined when m = a and
n = v. However, after a Wick rotation, use of the energy shifts
given in Eq. (28) gives the regulated expression

�Ẽ24 = 2
∑
abw

∫
dω

2π

gawbv(iω)gbvwa(εva)

(iω + εvδ)2
. (47)

Here w and b are used to indicate that the magnetic quantum
numbers of m and n are summed over. If one Taylor-expands
gawbv(iω) = gawbv(0) + |ω|g′

awbv(0) + · · · , the higher-order
terms are finite at ω = 0 and the first term leads to a vanishing
integral. The term linear in k0 leads to an integral proportional
to lnδ multiplying g′

awbv(0). A short analysis shows that this
latter term reduces to the product of normalization integrals.
The net result is that the δ behavior of this term is

�E24 = 2α

π
ln δ

∑
a

gavva(εva). (48)

One check of the calculation is varying δ and making sure this
behavior was seen. The other was showing the independence of
the complete calculation on this regulator. When these graphs
are taken together the complete factor of E1F is formed, which
cancels the valence derivative term. The same thing happens
for the core derivative terms.

We note in passing that while wave function renormal-
ization and vertex renormalization counterterms are present,
making the vertex diagram and the derivative terms ultraviolet
finite, Ward’s identity makes them cancel, and in our calcula-
tion we simply pull out the divergent terms from each diagram,
which in dimensional regularization are terms that vary as 1/δ,
and show that they cancel.

Turning to vacuum polarization, we note that our treatment
in [26] was general, with care required only in using the factor
(2ja + 1) in the core part of the perturbed orbital terms.

Finally, there is a set of two-loop diagrams collectively
referred to as the two-loop Lamb shift. It has been calculated
for the hydrogenic 1s ground state along with 2s, 2p1/2, and
2p3/2 states [29], but is as yet not calculated for sodiumlike
ions. Nevertheless, order-of-magnitude estimates based on the
hydrogenic results with 1/n3 scaling and ad hoc screening
corrections show that two-loop Lamb shifts are completely
negligible for low- to mid-Z sodiumlike ions and only reach
a few tens of meV at very high Z. In view of their small sizes
and high uncertainties, we shall omit these corrections here
and include their effects in our error estimates.

V. THREE-PHOTON EFFECTS

We have so far given a complete description of the con-
tribution to energy levels of all Feynman diagrams involving
one and two photons. Clearly the next logical step to take
in the computational approach used here is to carry out
a QED treatment of all diagrams involving three photons.
As will be described further in the Conclusions, this is a
large-scale task that has not yet been carried out. However, as
mentioned above, second-order MBPT roughly reproduces the
structure-related two-photon QED calculation. For this reason,
to approximate three-photon effects we simply use third-order
MBPT, including the dominant Coulomb correction along with
a part of the Breit interaction terms, following the treatment
of Ref. [11]. This ignores three-photon radiative corrections
involving the one-, two-, and three-loop Lamb shift, which
will again be discussed in the Conclusions. We present these
results in the tables as E3, and note that they are relatively
small.

VI. NUCLEAR CORRECTIONS

A. Nuclear structure effects

We have treated the nucleus as having infinite mass in
the preceding discussion, but now take account of the finite
mass. Before discussing the effect of nuclear recoil we mention
three other nuclear effects that lie outside the scope of QED.
While relatively small, each of these effects leads to some
theoretical uncertainty, and this uncertainty will likely prove
a fundamental barrier to progress in understanding the spectra
of highly charged ions at some point.
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The first uncertainty comes from the finite size of the
nucleus and readily shows up in the lowest-order energy E0
calculated with a nuclear charge distribution modeled as a
Fermi distribution,

ρ(r) = ρ0

1 + e4ln3(r−c)/t
. (49)

Here t = 2.3 fm and the parameter c is taken from Ref. [30].
At Z = 74 the value c = 6.4464 fm from that reference would
have to change to 6.4458 fm to give the value from the more
recent tabulation of Angeli and Marinova [31]. The change in
the 3s energy would be 0.0024 eV, which is smaller than our
theoretical uncertainty. With increasing experimental precision
the need to know nuclear sizes accurately will eventually
become important. This issue has received recent attention
for the proton, where questions about its charge radius have
been raised by experiments on muonic hydrogen [32]. More
electron scattering data, new experiments on muonic atoms,
and advances in nuclear structure theory are all called for to
reduce this uncertainty. Alternatively one can assume QED
is correct and use the spectra, as is done with hydrogen, to
provide an independent method of determining the nuclear
charge radius.

The second uncertainty is the distribution of nuclear mag-
netism, the Bohr-Weisskopf effect [33]. We have not included
it in our treatment of the sodium isoelectronic sequence since
it affects only hyperfine splittings and has very little effect on
weight-averaged energy levels.

The last uncertainty comes from nuclear polarizability,
another kind of two-photon exchange effect in which photons
are exchanged between the valence electron and the nucleus.
Part of this exchange is of course already accounted for in
E2 when the nucleus remains in the ground state. When it
is excited, a new effect called nuclear polarization is present.
This effect can be significant for the actinides with low-lying
nuclear excited states, particularly for the important case of
uranium, where its contribution to the 2s-2p transition energies
amounts to 0.03 eV [34]. However, with 1/n3 scaling and
increased screening for sodiumlike ions, the effect on n = 3
states is likely to be just a few meV for uranium and can be
ignored.

B. One-electron nuclear recoil

We now turn to the proper treatment of recoil effects,
defined as terms suppressed by powers of m/M , with M

the mass of the nucleus. While straightforward to include in
the nonrelativistic case, in the relativistic case the problem is
nontrivial even for one-electron ions. While the first proper
treatments for the one-electron case were given long ago, it is
only relatively recently that results valid to all orders in Zα

have been presented, though only first order in m/M , in [35]
and [36]. The second reference is valid only for a two-body
system, as it employed a variant of the Bethe-Salpeter equation.
An extremely compact re-derivation of the one-electron results
also applicable to the many-electron case was presented by
Shabaev in Ref. [37]. The remainder of this section presents
his derivation using S-matrix techniques.

The simplest way to derive the leading effect of the finite
mass of the nucleus can be made in the context of classical

mechanics, where in a system with Ne light particles of
mass m (the electrons) and a heavy particle of mass M (the
nucleus), one considers the heavy particle’s nonrelativistic
kinetic energy

TN =
�P 2
N

2M
(50)

and evaluates it in the center-of-mass system. If one treats the
electrons nonrelativistically, so that their kinetic energy is

Te =
Ne∑
i=1

�pi
2

2m
, (51)

eliminating TN through

�PN → −
Ne∑
i=1

�pi (52)

turns Ttot = Te + TN into

Ttot =
Ne∑
i=1

�pi
2

2mr

+ HMP, (53)

where mr = m/(1 + m/M) is the reduced mass, and

HMP =
∑
i �=j

�pi · �pj

2M
(54)

is the mass-polarization Hamiltonian. When this classical
argument is extended to nonrelativistic quantum mechanics,
it incorporates recoil exactly. As mentioned above, to treat the
electrons relativistically, one cannot simply replace m with
mr in the Dirac equation, even for hydrogenlike atoms [38].
However, if one works in the approximation of keeping only
m/M corrections, extending the classical argument described
above to field theory, as shown by Shabaev in Ref. [37],
allows recoil to be treated relativistically for both one- and
many-electron systems. Before we reconsider this argument
in the framework of our S-matrix approach, we note that terms
of order (m/M)2 would require a different treatment, as the
kinetic energy of the nucleus would be more complicated.
This problem has of course been solved for the two-particle
case, most strikingly for positronium where there is no recoil
expansion, through the use of the Bethe-Salpeter equation [39].

To generalize Eq. (52) to field theory, we first note that the
electron momentum is now described as a single field operator,

�pe = −i

∫
d3x ψ†(x) �∇ψ(x). (55)

Here the electron field operator ψ(x) = ψ(�x,t) is given by

ψ(x) =
∑
np

ψnp
(�x)e−iEnp t bnp

+
∑
nm

ψnm
(�x)e−iEnm td†

nm
,

(56)
where np and nm are positive and negative energy states,
respectively, and normal ordering is implicit. The state ψnm

must be charge conjugated to describe positrons created by
d
†
nm

, but when they enter as intermediate sums, this step is
not necessary. While there is also momentum carried by the
electromagnetic field, we do not treat it here as it leads to
m/M contributions suppressed by powers of α. However, the
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electromagnetic field modifies the nuclear momentum in the
usual way, with Eq. (50) now becoming

TN → | �PN + Ze �A(�0,t)|2
2M

. (57)

The position of the nucleus is close to the origin, so �A is
evaluated there. Now using the field theory generalization of
Eq. (52),

�PN → − �pe, (58)

we see that including the kinetic energy of the nucleus leads
to three new operators to be added to H̃I ,

HR = HR(CC) + HR(CT) + HR(TT), (59)

with

HR(CC) = − 1

2M

∫
d3x

∫
d3y ψ†(�x,t)

× �∇xψ(�x,t) · ψ†(�y,t) �∇yψ(�y,t), (60)

HR(CT) = iZe

M
�A(�0,t) ·

∫
d3x ψ†(�x,t) �∇xψ(�x,t), (61)

and

HR(TT) = Z2e2

2M
�A(�0,t) · �A(�0,t). (62)

We note the similarity of HR(CC) with the Coulomb part of
the QED Hamiltonian HC when Coulomb gauge is used (as it
is in this part of the calculation), where

HC = e2
∫

d3x

∫
d3y

1

|�x − �y| ψ†(�x,t)ψ(�x,t)ψ†(�y,t)ψ(�y,t).

(63)
Both are instantaneous interactions, but a photon propagator
is present in the latter.

We now have three new operators to add to H̃I in our S-
matrix formulation, and treating them to first order will account
for all m/M corrections. However, we are still dealing with a
many-electron problem, so higher-order corrections from the
nonrecoil parts of the interaction Hamiltonian will be present.
A major advantage of this approach is that by choosing a
realistic potential those higher-order corrections to an already
small correction are negligible, as can be seen from Tables I
and II for Z = 74.

We begin with HR(CC). While it is possible to express this
in terms of an electron propagator, we carried out its analysis
simply in terms of the field operators. For the one-electron
case, where |0C〉 = |0〉, the true vacuum, the analysis leads to

�ER1(CC) = 1

2M

⎛
⎝∑

np

�pvnp
· �pnpv −

∑
nm

�pvnm
· �pnmv

⎞
⎠.

(64)
An advantage of relativistic finite-basis-set methods is that
they split naturally into positive and negative energy terms,
making the evaluation of terms like �ER1(CC) particularly
straightforward.

We now continue to the transverse photon terms. In this
case we must go beyond first-order perturbation theory and
include the ordinary interaction with the photon field, which

we refer to as HT , either once or twice. We will encounter the
transverse photon propagator, defined by

Dij (�x,x0; �y,y0)

= −i 〈0|T [Ai(�x,x0)Aj (�y,y0)]|0〉

=
∫

dk0

2π
e−ik0(x0−y0)

∫
d3k

(2π )3
ei�k·(�x−�y)

δij − kikj

�k2

k2
0 − �k2

≡
∫

dk0

2π
e−ik0(x0−y0)Dij (�x,�y; k0). (65)

To evaluate the effect of HR(CT), which has a single photon
field, one interaction with HT is required. We call this term
�ER(CT), given by the formula

�ER(CT) = iZe

2M

∑
m

∫
d3x

∫
d3y

∫
dk0

2π
Dik(�x,�0; k0)

× ψ†
v (�x)αiψm(�x) ψ

†
m(�y)∇jψv(�y)

k0 + εv − εm

. (66)

Turning to HR(TT), we note that two factors of HT are
required by the presence of the two-photon fields. The formula
for the associated energy shift is

�ER(TT) = Z2e2

2M

∑
m

∫
d3x

∫
d3y Dik(�x,�0; ω)Djk(�y,�0; ω)

× ψ†
v (�x)αiψm(�x) ψ

†
m(�y)αjψv(�y)

k0 + εv − εm

. (67)

Like the two-photon exchange diagrams, �ER(CT ) and
�ER(T T ) are evaluated by carrying out a Wick rotation
k0 → iω. As with those diagrams, this rotation passes poles,
which lead to a set of easily evaluated terms.

We tabulate the sum of these recoil corrections, which agree
well in the case of hydrogenlike ions with known results, as
Recoil 1 in Tables I and II.

C. Two-electron nuclear recoil

When more than one electron is present, additional recoil
corrections related to mass polarization are present. Leading
two-electron recoil corrections are given by the generalized
mass-polarization Hamiltonian

HMP = 1

2M

∑
i �=j

{ �pi · �pj + V (ri)[�αi + (�αi · r̂i)r̂i] · �pj }, (68)

where the second term in the summation is the relativistic
correction to mass polarization [40] and has been shown to
arise from the exchange of one transverse photon in a QED
formalism [16]. Higher-order relativistic corrections from the
exchange of two transverse photons have been calculated for
lithiumlike ions [16]. They are negligibly small at low Z but
are significant at high Z as they increase very rapidly along the
isoelectronic sequence. However, as pointed out in [15], these
corrections are well approximated by the expectation values
of the operator 1

2M

∑
i �=j �qi · �qj where

�qi = 1
2 V (ri)[�αi + (�αi · r̂i) r̂i]. (69)
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TABLE III. Breakdown of structure and QED contributions to the ionization potentials (a.u.) of the n = 3 states for selected sodiumlike
ions using the Kohn-Sham potential.

Terms Z = 30 Z = 40 Z = 50 Z = 60 Z = 70 Z = 83 Z = 92

3s1/2

E0 −26.32286 −57.07157 −100.1534 −156.4747 −227.3405 −344.3878 −444.9521
E1 −0.76169 −1.07398 −1.3790 −1.6751 −1.9593 −2.3037 −2.5180
E2 −0.01956 −0.02364 −0.0285 −0.0346 −0.0423 −0.0560 −0.0687
E3 0.00060 0.00056 0.0005 0.0005 0.0004 0.0005 0.0005
Recoil 1 0.00025 0.00038 0.0005 0.0007 0.0008 0.0012 0.0014
Recoil 2 −0.00003 −0.00004 −0.0001 −0.0001 −0.0001 −0.0001 −0.0002
SE 0.00625 0.01991 0.0479 0.0987 0.1844 0.3814 0.6101
Uehling −0.00054 −0.00206 −0.0059 −0.0142 −0.0312 −0.0806 −0.1519
WK 0.00000 0.00003 0.0001 0.0004 0.0010 0.0035 0.0075
SE screen −0.00131 −0.00212 −0.0035 −0.0057 −0.0091 −0.0167 −0.0257
VP screen 0.00005 0.00014 0.0003 0.0007 0.0014 0.0032 0.0059
Sum −27.09884 −58.15238 −101.5209 −158.1034 −229.1944 −346.4552 −447.0911

3p1/2

E0 −24.81041 −54.77595 −97.0181 −152.4192 −222.2571 −337.7626 −437.1343
E1 −0.68279 −0.93787 −1.1671 −1.3603 −1.5034 −1.5800 −1.5251
E2 −0.02424 −0.03049 −0.0376 −0.0466 −0.0582 −0.0790 −0.0989
E3 0.00067 0.00066 0.0006 0.0006 0.0006 0.0006 0.0007
Recoil 1 0.00024 0.00037 0.0005 0.0006 0.0007 0.0010 0.0011
Recoil 2 −0.00013 −0.00020 −0.0003 −0.0003 −0.0004 −0.0004 −0.0005
SE −0.00015 −0.00023 0.0004 0.0033 0.0120 0.0449 0.0994
Uehling 0.00000 −0.00004 −0.0002 −0.0009 −0.0028 −0.0115 −0.0286
WK 0.00000 0.00000 0.0000 0.0000 0.0001 0.0007 0.0020
SE screen −0.00079 −0.00140 −0.0026 −0.0045 −0.0077 −0.0156 −0.0258
VP screen 0.00004 0.00013 0.0003 0.0006 0.0013 0.0032 0.0061
Sum −25.51756 −55.74501 −98.2241 −153.8266 −223.8148 −339.3987 −438.7039

3p3/2

E0 −24.60326 −53.96151 −94.7313 −147.1273 −211.4351 −313.4420 −396.7226
E1 −0.69489 −0.97285 −1.2461 −1.5159 −1.7850 −2.1438 −2.4103
E2 −0.02349 −0.02886 −0.0345 −0.0410 −0.0484 −0.0598 −0.0687
E3 0.00064 0.00062 0.0006 0.0005 0.0005 0.0004 0.0004
Recoil 1 0.00024 0.00036 0.0005 0.0006 0.0007 0.0009 0.0010
Recoil 2 −0.00013 −0.00019 −0.0003 −0.0003 −0.0004 −0.0004 −0.0004
SE 0.00027 0.00125 0.0040 0.0101 0.0220 0.0521 0.0879
Uehling 0.00000 0.00000 0.0000 −0.0001 −0.0002 −0.0006 −0.0012
WK 0.00000 0.00000 0.0000 0.0000 0.0000 0.0001 0.0002
SE screen −0.00094 −0.00156 −0.0026 −0.0042 −0.0066 −0.0113 −0.0161
VP screen 0.00004 0.00011 0.0003 0.0005 0.0009 0.0019 0.0032
Sum −25.32152 −54.96262 −96.0095 −148.6771 −213.2515 −315.6024 −399.1266

As a result, two-electron recoil corrections for many-electron
systems are closely given by the relativistic mass-polarization
Hamiltonian

H rel
MP = 1

2M

∑
i �=j

( �pi + �qi) · ( �pj + �qj ), (70)

and results for sodiumlike ions thus calculated are listed as
Recoil 2 in Tables I and II.

VII. APPLICATION TO THE SODIUM
ISOELECTRONIC SEQUENCE

In addition to the Kohn-Sham results for Z = 74 in
Table II, structure and QED contributions to the ionization
potentials of the 3s and 3p states as calculated with the same
potentials are shown for a few more selected sodiumlike ions

in Table III. The nonrelativistic 1/Z-expansion behavior of
the structure terms is apparent here, along with the effect
of the relativistic Zα expansion [41] as is evidenced by
the slowly varying, nonconstant E2 term. While the recoil
corrections are seen to go up slowly with Z, QED corrections
are definitely increasing very rapidly along the isoelectronic
sequence.

In Table IV, total ionization potential and transition energy
results are given for ions with Z = 30–100, along with the
root-mean-square nuclear charge radii Rrms as derived from the
Fermi c and t parameters which, as mentioned at the beginning
of the previous section, are used to model the nuclear potentials
here. The same nuclear parameters are used in our earlier work
for lithiumlike ions [15]. Nuclear finite-size corrections are
small corrections, and uncertainties in Rrms have very little
effects on most contributions to the ionization energy except
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TABLE IV. Root-mean-square nuclear radius Rrms (fm), 3s, 3p1/2, and 3p3/2 ionization potentials (a.u.), and 3s-3p transition energies �3p

(eV) for sodiumlike ions.

Z Rrms 3s 3p1/2 3p3/2 �3p1/2 �3p3/2 Z Rrms 3s 3p1/2 3p3/2 �3p1/2 �3p3/2

30 3.955 −27.0988 −25.5176 −25.3215 43.029 48.363 66 5.083 −198.914 −193.992 −185.972 133.92 352.17
31 3.998 −29.6691 −28.0074 −27.7770 45.218 51.487 67 5.210 −206.246 −201.213 −192.609 136.96 371.08
32 4.079 −32.3569 −30.6143 −30.3452 47.418 54.741 68 5.123 −213.737 −208.589 −199.368 140.08 391.00
33 4.104 −35.1626 −33.3387 −33.0262 49.631 58.135 69 5.192 −221.385 −216.122 −206.249 143.21 411.88
34 4.171 −38.0867 −36.1811 −35.8200 51.856 61.679 70 5.237 −229.194 −223.815 −213.252 146.38 433.83
35 4.156 −41.1299 −39.1420 −38.7270 54.094 65.387 71 5.246 −237.167 −231.669 −220.377 149.61 456.88
36 4.230 −44.2927 −42.2220 −41.7471 56.346 69.268 72 5.290 −245.304 −239.686 −227.626 152.88 481.07
37 4.245 −47.5757 −45.4217 −44.8806 58.613 73.337 73 5.299 −253.610 −247.870 −234.998 156.19 506.47
38 4.242 −50.9795 −48.7417 −48.1276 60.895 77.606 74 5.359 −262.084 −256.221 −242.493 159.54 533.10
39 4.244 −54.5049 −52.1825 −51.4882 63.193 82.088 75 5.351 −270.732 −264.744 −250.113 162.96 561.07
40 4.273 −58.1524 −55.7450 −54.9626 65.508 86.798 76 5.376 −279.555 −273.439 −257.858 166.42 590.40
41 4.318 −61.9228 −59.4298 −58.5511 67.839 91.750 77 5.401 −288.555 −282.311 −265.728 169.92 621.16
42 4.415 −65.8169 −63.2375 −62.2537 70.188 96.960 78 5.418 −297.736 −291.361 −273.724 173.48 653.41
43 4.410 −69.8354 −67.1690 −66.0707 72.556 102.44 79 5.437 −307.101 −300.593 −281.845 177.09 687.23
44 4.475 −73.9791 −71.2250 −70.0022 74.943 108.22 80 5.475 −316.651 −310.009 −290.094 180.73 722.67
45 4.502 −78.2490 −75.4064 −74.0486 77.350 114.30 81 5.483 −326.392 −319.614 −298.469 184.45 759.83
46 4.526 −82.6457 −79.7140 −78.2099 79.778 120.71 82 5.505 −336.326 −329.409 −306.972 188.21 798.76
47 4.542 −87.1704 −84.1486 −82.4864 82.227 127.46 83 5.531 −346.455 −339.399 −315.602 192.02 839.55
48 4.613 −91.8238 −88.7112 −86.8784 84.698 134.57 84 5.539 −356.785 −349.586 −324.362 195.89 882.30
49 4.619 −96.6069 −93.4027 −91.3860 87.192 142.07 85 5.578 −367.318 −359.976 −333.250 199.79 927.04
50 4.655 −101.521 −98.2241 −96.0095 89.710 149.97 86 5.632 −378.058 −370.571 −342.268 203.72 973.89
51 4.704 −106.567 −103.176 −100.749 92.252 158.30 87 5.640 −389.011 −381.376 −351.416 207.75 1023.01
52 4.804 −111.745 −108.261 −105.605 94.818 167.08 88 5.663 −400.179 −392.395 −360.694 211.80 1074.43
53 4.752 −117.058 −113.478 −110.578 97.414 176.33 89 5.670 −411.568 −403.633 −370.104 215.93 1128.29
54 4.826 −122.506 −118.830 −115.668 100.03 186.08 90 5.804 −423.174 −415.093 −379.646 219.88 1184.45
55 4.807 −128.090 −124.317 −120.875 102.68 196.35 91 5.700 −435.025 −426.783 −389.320 224.29 1243.72
56 4.840 −133.812 −129.940 −126.199 105.36 207.17 92 5.861 −447.091 −438.704 −399.127 228.23 1305.18
57 4.855 −139.673 −135.702 −131.641 108.07 218.57 93 5.744 −459.420 −450.866 −409.067 232.78 1370.20
58 4.877 −145.674 −141.602 −137.201 110.81 230.57 94 5.794 −471.980 −463.271 −419.141 236.99 1437.83
59 4.893 −151.817 −147.644 −142.880 113.58 243.20 95 5.787 −484.798 −475.928 −429.350 241.36 1508.80
60 4.915 −158.103 −153.827 −148.677 116.38 256.50 96 5.816 −497.868 −488.840 −439.695 245.65 1582.97
61 4.962 −164.534 −160.153 −154.593 119.21 270.50 97 5.816 −511.206 −502.017 −450.175 250.04 1660.72
62 5.031 −171.111 −166.625 −160.629 122.08 285.23 98 5.844 −524.810 −515.463 −460.792 254.32 1742.00
63 5.041 −177.836 −173.243 −166.784 124.98 300.72 99 5.865 −538.692 −529.188 −471.547 258.61 1827.11
64 5.089 −184.710 −180.009 −173.060 127.92 317.01 100 5.886 −552.858 −543.199 −482.439 262.85 1916.20
65 5.099 −191.735 −186.925 −179.455 130.90 334.15

the one-electron eigenenergy E0. Indeed, it has been shown
that different choices of Rrms can lead to fractions of an eV
changes in the 2s-2p transition energies for mid- to high-Z
lithiumlike ions, with up to 0.7 eV change for lithiumlike
thorium (Z = 90), and that these changes are largely due to
differences in the 2s eigenenergies, and to a lesser extend
the 2p eigenenergies [15]. For the n = 3 states of sodiumlike
ions considered here, uncertainties in the finite nuclear size
corrections are less significant due to the 1/n3 scaling, and
as in the case of lithiumlike ions, can easily be corrected
by recalculating the 3s and 3p eigenenergies E0 with more
reliable nuclear charge radii.

In Table V, the present 3s-3p transition energies are
compared with experiment and with other theories. Uncer-
tainties in the present results at low Z are due mainly to the
incomplete treatment of higher-order correlation corrections
in evaluating the E3 term. At high Z, they are dominated by
the omission of two-loop Lamb shifts. Experimental results
listed in Table V are from NIST’s online database of atomic

spectra [42] at low to mid Z and from electron-beam ion-trap
(EBIT) measurements at high Z [20,21,43]. On the theory
side, high-precision results are available for selected ions from
the relativistic MBPT (RMBPT) calculations of Blundell [14]
who evaluated all screened QED corrections in Figs. 2 and
4 except the vertex exchange terms in Fig. 4(d), which were
deemed to be very small and were neglected. There are also
relativistic configuration-interaction (RCI) results for Z = 74
[20,44] and 92 [43] which include directly calculated QED
energies, although QED screening and relaxation effects are
only approximately accounted for by evaluating the one-loop
diagrams in Fig. 2 with Kohn-Sham wave functions specific to
the initial and final states. By far the most complete theoretical
tabulation of these energies is by Kim et al. [13]. It is based
on multiconfiguration Dirac-Fock (MCDF) calculations with
correlation energies derived from RMBPT and the resulting
structure energies are thus essentially the same as the RMBPT
energies of Refs. [11] and [14]. However, as QED corrections
are calculated with the ad hoc Welton’s method [45] and are
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TABLE V. The 3s-3p transition energies (eV) of sodiumlike ions. RMBPT results are from [14]. Unless otherwise specified, experimental
results are from the NIST Atomic Spectra Database [42].

3s-3p1/2 3s-3p3/2

Z Present RMBPT Expt. Present RMBPT RCI Expt.

30 43.029(2) 43.025(1) 43.023 48.363(2) 48.362(1) 48.361
31 45.218(2) 45.212 51.487(2) 51.485
32 47.418(2) 47.412 54.741(2) 54.739
33 49.631(2) 49.630 58.135(2) 58.135
34 51.856(2) 51.826 61.679(2) 61.662
35 54.094(2) 54.090 65.387(2) 65.386
36 56.346(2) 56.340 69.268(2) 69.267
37 58.613(2) 58.607 73.337(2) 73.337
38 60.895(2) 60.877 77.606(2) 77.597
40 65.508(2) 65.503(2) 86.798(2) 86.795(2)
42 70.188(2) 70.187 96.960(2) 96.963
50 89.710(1) 89.710 149.97(1) 149.97
54 100.03 100.05 186.08 186.13
55 102.68 102.73 196.35 196.38
56 105.36 105.39 207.17 207.24
64 127.92(1) 127.94(1) 317.01(1) 317.07(1)
72 152.88(2) 152.91(2)a 481.07(2) 481.14(31)a

73 156.19(2) 156.19(2)a 506.47(2) 506.14(37)a

74 159.54(2) 159.57(2)a 533.10(2) 533.09(5)b 533.20(11)c

533.43(38)a

78 173.48(3) 173.51(1) 653.41(2) 653.41(1)
79 177.09(3) 177.14(3)a 687.23(3) 686.28(83)a

80 180.73(3) 180.78(2) 722.67(3) 722.67(1)
82 188.21(3) 188.27(2) 798.76(3) 798.76(1)
90 219.88(5) 219.98(2) 1184.45(5) 1184.44(1)
92 1305.18(5) 1305.11(7)d 1305.12(2)d

aReference [21].
bReference [44].
cReference [20].
dReference [43].

rather crude, these transition energy results are not included in
the present comparisons.

As shown in Table V, agreements between theory and
experiment are generally very good. This is further illustrated
in Figs. 5 and 6 for the 3s-3p1/2 and 3s-3p3/2 transitions,
respectively, where discrepancies are seen to be mostly within
0.1 eV even at high Z. In spite of the close agreements,
the 3s-3p1/2 RMBPT energies in Fig. 5 can be seen to
deviate more and more from the present results as Z

increases, and these discrepancies arise mainly from the
structure energy differences. The same trend has also been
observed in the 2s-2p1/2 structure energy differences between
RMBPT and our S-matrix calculations for lithiumlike ions
[15] and underscores the importance of the correct treatment
of frequency-dependent Breit interactions and ladder and
cross-ladder correlation diagrams in Figs. 3(d) and 3(e). It
is interesting to note that the experimental results of Gillaspy
et al. at Z = 72–79 [21] appear to track the RMBPT results
closely, though they are also consistent with the present results,
which have comparable uncertainties of about 0.02–0.03 eV
in this Z range.

In Fig. 6, it can be seen that the present 3s-3p3/2

transition energies are in good agreements with RMBPT
results [14] along the isoelectronic sequence and with RCI

results at Z = 74 and 92 [20,43,44]. While this is due in
part to cancellations of errors between the structure and QED
energies, neither of these differences is too much larger. With
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FIG. 5. (Color online) Experimental and theoretical energies rel-
ative to the present results for the 3s-3p1/2 transition. Solid circles,
RMBPT [14]; crosses, NIST [42]; open triangles, Gillaspy et al. [21].
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FIG. 6. (Color online) Experimental and theoretical energies rel-
ative to the present results for the 3s-3p3/2 transition. Solid circles,
RMBPT [14]; open circles, RCI [20,43]; crosses, NIST [42]; closed
triangles, EBIT [20,43].

the estimated uncertainties of 0.02 and 0.05 eV at Z = 74 and
92, respectively, the present results are also in good agreement
with the EBIT measurements [20,43]. Not shown here are the
measurements of Gillaspy et al. [21] which are listed in Table V
but are mostly outside the range of this figure. Those results
are nevertheless consistent with the present ones as they have
relatively large uncertainties.

VIII. CONCLUSIONS

One of the best-known successes of QED is the accurate
theoretical prediction of the anomalous magnetic moment of
the electron, made possible by the smallness of the expansion
parameter α/π in the formula

ae =
∑
i=1

Ci

(
α

π

)i

. (71)

The constants Ci are now known up to i = 5 [46], and are all
of order 1. Because α/π is about two parts per thousand,
the theoretical uncertainty is now well under the part per
trillion level. The calculation of ae is the best example of
precision calculation in physics. Another example of the theory
working with extremely high accuracy is the determination
of the electron mass through study of the g factors of
hydrogenic ions [47]. Given these successes, and the fact
that the electromagnetic interaction is the dominant force in
all of atomic physics and chemistry, it is natural to ask if
the successful application of QED to the electron anomalous
magnetic moment can be extended to many-electron systems.
However, a diagrammatic approach to problems with more
than one electron generally fails, as the interaction between
electrons cannot be treated perturbatively. An exception to
this case, which we have concentrated on in this paper, is in
highly charged ions, where the attraction to the nucleus is
much larger than the electron-electron interaction. This allows
one to expand in powers of both 1/Z and α, which leads to
rapid convergence providing one avoids expanding in Zα.

The isoelectronic sequences amenable to treatment with the
methods described in this paper include all alkali metals, and
also any ion with a single electron outside closed shells. An
important example of the latter case is the copper isoelectronic
sequence, where measurements on many ions have been
carried out, some with very high accuracy. An alkali metal
of particular interest that has been relatively unstudied is
potassium. The ground state of potassiumlike ions is 3d3/2. The
3d fine structure of these ions is almost totally free of nuclear
size uncertainty, and in the range Z = 27–33 the transition lies
in the optical range and could be measured in principle with
extremely high accuracy, as the ground state has zero width
and the 3d5/2 state is very narrow. This then could be used to
provide an independent determination of α, with the precision
almost certainly limited by theory. Many terms, however,
cancel out when dealing with fine structure, as was illustrated
in Ref. [48]. With 19 electrons, variational methods are imprac-
tical, so the approach given here seems the most promising.

In order to extend this work to more sequences one must
change the starting point from a†

v|0C〉 to that appropriate for the
sequence in question. An obvious sequence to be considered
is the helium isoelectronic sequence, which has recently been
measured [49] to have a spectrum possibly in disagreement
with theory [50]. Our approach is at present limited to states
that do not have significant configuration mixing, a disad-
vantage of the S-matrix formalism. Specifically, as the 2p1/2

and 2p3/2 states have different energies, 1s2p1/2 and 1s2p3/2

J = 1 configurations cannot be mixed to form starting states
for perturbation calculations. While states without mixing do
not have this problem, and a QED treatment of the ladder and
crossed-ladder diagrams has been given for the 1s2p1/2

3P0

and 1s2p3/2
3P2 states in Ref. [28], most experiments involve

the strongly mixed 1s2p 1,3P1 states, so progress in this
direction with our methods awaits the overcoming of the
difficulty just mentioned. The same comment applies to the
fairly wide range of systems which can be described with a
particle-hole approach [51]. Excited states of the noble gases,
in particular, have many excitations where a core electron is
excited to a valence state, with the starting point being

Favaaa
†
v|0C〉, (72)

where Fav is an angular decoupling factor. However, the case
with one electron outside a closed shell remains the simplest
many-body problem to study, and we return to discussion of
that case.

We have presented results only for at least 19-times-ionized
sodiumlike ions. Were we to use the Kohn-Sham potential on
neutral sodium, QED effects such as the Lamb shift would
be much smaller than the discrepancy between MBPT taken
through third order and experiment, which is over 1% for the
3s removal energy. While the Lamb shift has been evaluated
for neutral sodium [52,53], it depends on the potential used.
Its size, however, is of order 12 μhartrees. We consider it an
outstanding challenge to methods of solving the Schrödinger
equation to reach the μhartree level, so that the actual value
of the Lamb shift could be reliably inferred through the
disagreement between theory and experiment.

We turn finally to the issue of QED in the context of highly
charged ions. Assuming that structure has been solved to a
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certain accuracy, one then wishes to calculate QED effects to
at least the same accuracy. Provided that nuclear uncertainties
can be controlled, the systematic evaluation of all three-photon
diagrams in a completely field-theoretic manner is clearly
the obvious next step. When all three photons are exchanged
between electrons, it should be possible to show that the result
presented here, E3, is recovered along with QED corrections,
just as was done for two-photon exchange in this paper.
These QED corrections are at the forefront of one-electron
QED bound-state calculations, and should enter at the α3 a.u.
level. There are many diagrams involving three photons, the
three-loop Lamb shift, entering at order Z4α5, one-photon
exchange corrections to the two-loop Lamb shift at Z3α4, and
two-photon exchange corrections to the one-loop Lamb shift
at Z2α3. Comparing these scalings to the basic order of the
energy level of an ion, Z2, we see that all are quite small, but
important at the ppm level.

In conclusion, we have generalized methods used in the
lithium isoelectronic sequence to many-electron alkali-metal
sequences. These methods have been applied to sodiumlike
ions and good agreement with experiment and other calcu-
lations found. Theoretical progress will involve a complete
evaluation of the three-photon diagrams along with improve-
ment in the accurate solution of the many-body problem.
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