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Configuration interaction with antisymmetrized geminal powers
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To avoid the combinatorial computational cost of configuration interaction (CI), we previously introduced the
symmetric tensor decomposition CI (STD-CI) method, which takes advantage of the antisymmetric nature of
the electronic wave function and expresses the CI coefficients compactly as a series of Kronecker product states
(STD series) [W. Uemura and O. Sugino, Phys. Rev. Lett. 109, 253001 (2012)]. Here we extend the variational
degrees of freedom by using different molecular orbitals for different terms in the STD series. This scheme
is equivalent to the linear combination of the Hartree-Fock-Bogoliubov state or the antisymmetrized geminal
powers (AGPs). The total energy converges very rapidly within 0.72 μhartree taking only 10 terms for the water
molecule, and the convergence is likewise fast for Hubbard tetramers. The computational cost scales as the fifth
power of the number of electrons and the square of the number of terms in the STD series, indicating the promise
of this AGP-based scheme for highly accurate and efficient computation of quantum systems.
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I. INTRODUCTION

Determining the ground state of a many-body system
is the most basic problem in many fields of science, such
as condensed matter physics, nuclear physics, and quantum
chemistry. Many numerical approaches have been developed
so far to obtain the wave function. In the configuration
interaction (CI) [1], multiple quasiparticle states are generated
from a mean-field wave function and the coefficients for their
linear combination are determined by solving an eigenvalue
problem, while in the variational Monte Carlo (VMC) [2],
the quasiparticles are generated stochastically to obtain the
expectation value of the total energy to be variationally
determined. In the tensor network (TN) framework [3],
the total energy is variationally determined using specific
quasiparticle states generated according to an assumed TN.
In those popular schemes, accessible degrees of freedom are
usually not very large. This is particularly the case for CI albeit
being the most versatile in that CI is free from the well-known
negative sign problem of QMC and the dimensional restriction
of the tensor network [3]. In this view, extending the degrees
of freedom accessible by CI is a very important problem.

In the field of quantum chemistry, the CI wave function of
an N -electron system is expanded as

�(x1 · · · xN ) =
M∑

i1···iN=1

Ai1···iN ψi1 (x1) · · ·ψiN (xN ), (1)

in terms of the molecular orbitals (MOs) ψi(x), which are
represented as a linear combination of the atomic orbitals
(AOs) φa as

ψi(x) =
M∑

a=1

Uiaφa(x), (2)

using elements of an orthogonal matrix U . The CI coefficients
Ai1···iN , which are elements of an antisymmetric tensor of order
N [4] and dimension M , are varied to minimize the total energy
and thus the full-CI calculation is, in practice, hampered by
the degrees of freedom that grow combinatorially with N .
Usually, the CI series is truncated to make the computation
tractable; however, when starting from the Hartree-Fock (HF)

wave function by taking the permutation tensor εi1···iN in place
of Ai1···iN and the HF orbital ψHF

i in place of ψi , the CI
series usually converges very slowly [1]. The convergence
does not, in general, speed up drastically even when starting
from multiple Slater determinants. Instead, use of localized
MOs in place of the canonical HF orbitals is known to be
effective for this purpose [5], and, recently, significant speedup
was achieved by using nonorthonormal Slater determinants
comprised of nonorthonormal MOs that augment the HF
orbitals [6]. It is therefore expected that CI can be made more
practicable by using optimal MOs for this purpose.

Apart from CI, the many-body perturbation theory such as
the coupled cluster (CC) [7] has been developed to collect
infinite correction terms, thereby enabling the correction of
the total energy of the water molecule, for example, within
the error of 0.53 mhartree by taking up to triple excitations
(CCSDT). However, the computational cost scales as O(N8),
which is still prohibitively high for application to many
systems of interest. Thus, accelerating the convergence of
the CI series should open up the possibility to treat, with
unprecedented accuracy, a whole new class of problems in
electronic structure theory of strongly correlated systems.

The key to the development that we present here is in a
compact representation of the antisymmetric tensor Ai1···iN .
With this in mind, we proposed in our previous work [8]
to represent Ai1···iN as a product of εi1···iN and a symmetric
tensor Si1···iN and then to decompose the latter into a series of
Kronecker products of a set of vectors such that

Si1···iN =
K∑

r=1

cr
i1

· · · cr
iN

. (3)

Such decomposition of an order-N tensor into a linear
combination of rank-1 tensors is known in the literature as
the canonical decomposition [9] or the parallel factor decom-
position [10]. In our approach, which we call the symmetric
tensor decomposition CI (STD-CI), variational parameters are
the set of vectors c and the orthogonal matrix U and thus
the degrees of freedom are KM + M(M − 1)/2. The number
of order-1 tensors (i.e., the rank of the tensor decomposition
K [4]), was found to be relatively few for small molecules
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FIG. 1. (Color online) Energy error (in units of t) of the four-site
U = 1.0 Hubbard model for ESTD and STD-CI.

(H2, He2, and LiH) and the Hubbard tetramer (Figs. 1–4). This
suggests effectiveness of the tensor decomposition in com-
pactly describing the wave function with a rapidly converging
series (STD series) when the molecular orbitals are optimized
together. Note that each term in the STD series contains all
possible Slater determinants, which means that all the terms
of the CI series are regrouped differently to form different
terms of the STD series. The computational cost thereby
required is proportional to K2M6 when using the algorithm
to handle the permutation tensor developed in Ref. [8], so
that the effectiveness of STD-CI depends on the the rank of
the decomposition K required to accurately express the wave
function. When applied to larger systems, however, we have
found that the rank K needed for sufficient convergence is
increased in general. In addition, the computation suffers from
loss of significance in the floating-point arithmetic as will
be shown below. Therefore, an improvement in the tensor
decomposition is clearly desirable.

In this context, one may use a more elaborate tensor decom-
position, such as the tensor train network (TTN) suitable for
one-dimensional systems [11,12] or the projected entangled
pair states (PEPS) extended to two-dimensional systems [13].
Indeed, the former approach was applied to several molecular
systems [14]. However, here we take a different approach:
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FIG. 2. (Color online) Same as Fig. 1, but for U = 100.0. For
K � 2, the error is within 0.01 to 0.1 for both methods, which is
within 1 to 10 in units of U .
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FIG. 3. (Color online) Same as Fig. 1, but for U = 10 000.0. For
K � 3, the error is within 0.0001 to 0.001 for both methods, which
is within 1 to 10 in units of U .

within the canonical decomposition technique, the degrees of
freedom are extended by using different nonorthonormal MO
coefficients for different terms in the STD series. That is,
we use a general complex matrix Ur

ia for the MO coefficient
although it was described as cr

i Uia in the original STD-CI
scheme, extending thereby the degrees of freedom to KM2. We
will call our new scheme the extended STD (ESTD). As will
be shown below, each term in the STD series corresponds to a
different Hartree-Fock-Bogoliubov (HFB) wave function [15].
Since the HFB wave function is called alternatively the
antisymmetrized geminal power (AGP) [16,17], ESTD may
also be referred to as a linear combination of AGP.

The AGP wave function has been used for variational
calculations in a different context. In quantum chemistry, a
single AGP (i.e., K = 1) has been used as the trial wave
function to obtain the potential energy surface of small
molecules [18–21]. In VMC calculations, single AGP [22–25]
or multi-AGP [26,27] is multiplied by a correlation factor
of the Jastrow type to form a Jastrow-AGP (JAGP) trial
wave function; the optimization is done only for the Jastrow
parameters with the MO coefficients kept unchanged from the
initial HF orbitals or the initial natural orbitals constructed
by performing a small preparatory CI calculation. In nuclear
physics, multiquasiparticle states are generated from a single
AGP and are linearly combined to describe the wave function.
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FIG. 4. (Color online) Residual error of the total energy of the
H2O molecule obtained by ESTD and STD-CI.
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This computational scheme is called the generator coordinate
method (GCM) [28]. The total-energy scheme of GCM was
formulated by Onishi and Yoshida [29], and the mathematical
structure was studied recently by other groups [30,31].
Contrary to those earlier works, we fully optimize the MO
coefficients in our ESTD scheme without introducing the
correlation factor. In the present scheme, we use an algorithm
to decompose the permutation tensor into products of the
second-order permutation tensors thereby allowing us to
reduce the computational scaling to K2M5. Contrary to
STD-CI, this scheme does not require orthonormalization of
AOs so that one can take advantage of the AO basis that is
spatially localized and chemically comprehensible. We will
show below that the STD series can be drastically shortened
for the H2O molecule and Hubbard tetramers. This may open
up the possibility of interpreting strongly correlated systems
in terms of MOs. In the next section, we introduce the outline
of our formalism. We restrict our study to systems with even
numbers of electrons throughout this paper.

II. FORMALISM

In the original STD-CI, we applied the canonical decom-
position to the symmetric part of the CI coefficient [Eq. (3)],
so that the wave function Eq. (1) is rewritten using Eq. (2) as

�(x1 · · · xN ) =
M∑

a1···aN =1

Aa1···aN
φa1 (x1) · · ·φaN

(xN ), (4)

with the CI coefficient becoming

Aa1···aN
=

M∑
i1···iN=1

K∑
r=1

cr
i1

· · · cr
iN

εi1···iN Ui1a1 · · · UiNaN
, (5)

where K is the rank of the symmetric tensor decomposition
and cr

i is a set of complex vectors. We will take the convention
for the subscript such that i,j, . . . correspond to MOs and
a,b, . . . to AOs. In the extended STD-CI (ESTD), we expand
the degrees of freedom by replacing the product cr

i Uia with a
general complex matrix Ur

iα such that

Aa1···aN
=

K∑
r=1

M∑
i1···iN=1

εi1···iN Ur
i1a1

· · ·Ur
iNaN

≡
K∑

r=1

Ar
a1···aN

. (6)

Using the fact that the permutation tensor of order N for even
N can be decomposed into a product of the second-order
permutation tensors as

εi1···iN = 1

(N/2)!2N/2

∑
σ∈SN

sgn(σ )εiσ (1)iσ (2) · · · εiσ (N−1)iσ (N ) (7)

= 1

(N/2)!2N/2
Â(εi1i2εi3i4 · · · εiN−1iN ), (8)

where SN is the symmetric group of degree N and Â is the
antisymmetrizer, Eq. (6) can be represented as

Ar
a1···aN

= 1

(N/2)!2N/2
Â

(
γ r

a1a2
γ r

a3a4
· · · γ r

aN−1aN

)
(9)

using the antisymmetrized geminal

γ r
ab ≡

∑
ij

εijU
r
iaU

r
jb. (10)

This shows that our ESTD is an extension of the antisym-
metrized geminal power [16,17] in that AGPs are linearly
combined. In the second-quantization form, the state vector is
given by

|�〉 =
K∑

r=1

|γ r〉 (11)

with

|γ r〉 = 1

(N/2)!2N/2

[
M∑

ab=1

γ r
abc

†
ac

†
b

]N/2

|0〉 (12)

= exp

[
t

2

∑
ab

γ r
abc

†
ac

†
b

]
|0〉

∣∣∣∣∣
tN/2

, (13)

where the subscript tN/2 means taking a coefficient of degree
N/2 from the Hartree-Fock-Bogoliubov state [15]. This
indicates a formal similarity of the ESTD wave function with
that of the generator coordinate method [28], and thus one can
take advantage of the formulas developed for the GCM. For
example, we can use the matrix elements derived by Onishi
and Yoshida [29] such as

〈γ r2 |γ r1〉 = exp

[
1

2
tr log(1 + γ r2†γ r1 t)

]∣∣∣∣
tN/2

(14)

≡ Pf(1 + γ r2†γ r1 t)|tN/2 (15)

〈γ r2 |c†acb|γ r1〉 =
(

γ r1γ r2†t

1 + γ r1γ r2†t

)
ba

Pf(1 + γ r2†γ r1 t)

∣∣∣∣
tN/2

(16)

〈γ r2 |c†ac†bcdcc|γ r1〉

=
(

2

[
γ r1γ r2†t

1 + γ r1γ r2†t

]
ca

[
γ r1γ r2†t

1 + γ r1γ r2†t

]
db

+ t

[
1

1 + γ r1γ r2†t
γ r1

]
cd

[
γ r2† 1

1 + γ r1γ r2†t

]
ba

)

× Pf(1 + γ r2†γ r1 t)

∣∣∣∣
tN/2

, (17)

where γ † corresponds to the Hermitian conjugate of γ and Pf
denotes the Fredholm Pfaffian which is the square root of the
Fredholm determinant

Pf(1 + γ r2†γ r1 t) =
√

det(1 + γ r2†γ r1 t). (18)

It was shown in Ref. [32] that Pf(1 + γ r2†γ r1 t) is a polynomial
of degree M/2 since roots of the characteristic polynomial
of a product of two antisymmetric matrices are pairwise
degenerate.
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The total energy can be obtained from the matrix element
of the Hamiltonian (H)

〈γ r2 |H|γ r1〉 =
∑
ab

hab〈γ r2 |c†bca|γ r1〉

+ 1

2

∑
abcd

Vabcd〈γ r2 |c†ac†bcdcc|γ r1〉, (19)

where h corresponds to the sum of the kinetic energy and the
external potential and V is the Coulomb repulsion. Contrary to
standard GCM schemes, we explicitly obtain the coefficient of
tN/2 in Eqs. (14)–(17) instead of using the particle projection
method [29,32]. A similar projection method [29,32] can
be applied to the HFB state to adapt the wave function
to the spatial and spin symmetries, which is necessary to
obtain accurate ground-state wave functions, but we do not
use it in the present study to compare ESTD and full-CI
without the symmetry adaptation. We also explicitly obtained
the derivatives of the energy with respect to γ , with which
to optimize the parameters Ur

ia using the Broyden-Fletcher-
Goldfarb-Shanno algorithm (BFGS) [33–37]. We emphasize
that ESTD allows the handling of nonorthogonal AOs by
replacing γ r

ab by (s1/2γ rs1/2)ab where s is the overlap matrix
of AOs, although orthogonality is assumed for simplicity in
the present formulation.

When using general complex matrices for Ur
ia in practical

numerical works, the computation is sometimes impossible to
carry on because of the loss of significance in the floating-point
arithmetic. To avoid this problem, we make the geminal
complex unitary as well as antisymmetric so that all the
eigenvalues are equal to unity in the absolute values although
the convergence speed is slightly affected. Note that the
geminal can be made unitary by the following redefinition of
Ur

ia: noticing that the second-order permutation tensor ε is real
antisymmetric, we can apply the canonical transformation [38]
by which

ε = Ū T

(
0 	

−	 0

)

Ū = Ū T

(
0 	1/2

	1/2 0

)(
0 I

−I 0

)(
0 	1/2

	1/2 0

)
Ū , (20)

where 	 and I are, respectively, the real diagonal and identity
matrices, Ū is a real orthogonal matrix, and the superscript
T means taking the matrix transpose. The geminal [Eq. (10)]
then becomes

γ r = (Ur )T
(

0 I

−I 0

)
Ur, (21)

where Ur has been redefined as

Ur →
(

0 	1/2

	1/2 0

)
ŪUr . (22)

Since Ur was introduced in Eq. (6) as a general matrix to be
determined variationally, this redefinition does not affect the
resulting formulas. In this way the geminal becomes complex
unitary when restricting Ur

ia to be complex unitary. We call
such restricted ESTD the antisymmetrized unitary geminal
powers (AUGPs) hereafter. The variation of the unitary matrix

can be done using the Cayley transform

U = (1 + X)−1(1 − X) (23)

with a skew-Hermitian matrix X.

III. RESULTS

We have applied ESTD and AUGP to the water molecule
and half-filled Hubbard tetramers and compared the total
energy with the STD-CI and the full-CI calculations. In the
water molecule, we set the geometry condition to

O = (0,0,0),H = (−1.809,0,0), (0.453549,1.751221,0)

(24)

in atomic units. The calculation was done using the basis set
STO-3G. The minimal basis set is sufficient for comparison
between the different schemes, although larger basis sets will
be required for highly quantitative calculations. The Hubbard
tetramer has a tetrahedral geometry, and all the sites are
connected by the transfer integral of unity (t = 1). The Hubbard
U was taken as 1, 102, and 104.

Figures 1–3 show the total energy referred to the full-CI
calculation, or the residual error vs the tensor rank of the
decomposition. The convergence is much faster for ESTD
than for STD-CI. For larger U cases, the residual error is
initially almost insensitive to the rank and the value amounts
to 1–10 when rescaled in units of U . Then the residual error
drops suddenly when K is larger than 2 for U = 102 and 3
for U = 104. This might indicate that the antiferromagnetic
(AF) ground state cannot be described even at a qualitative
level when the number of parameters is unreasonably small.
For U = 104, the total energy is almost the same for ESTD,
STD-CI, and full-CI when the rank is 6. We postulate that
the parameter set for STD-CI happens to become suitable for
describing the AF limit only at K � 6.

Table I shows detailed comparison of the total energy
calculated by AUGP and full-CI for the Hubbard tetramer with
U = 102. The calculation was done using double precision
with K = 3. The residual error is 2.2 × 10−11 while the error
was around 10−15 for ESTD [Fig. (2)]; in either scheme the
error is close to the double precision limit.

Figure 4 shows the residual error of the total energy of
the H2O molecule. ESTD shows strikingly faster convergence
than STD-CI. In the ESTD and STD-CI calculations, we used
quadruple precision since serious loss of significance occurred
with double precision. Because of this problem, we could not
easily obtain accurate results using K larger than 4 for ESTD,
and thus we could not reduce the residual error below 10−5

hartree. Table II shows the result of the same system obtained
by using AUGP with double precision. In obtaining the residual

TABLE I. Total energy (in units of t) of the Hubbard tetramer with
U = 100 obtained by the AUGP with K = 3. The result obtained by
the full-CI is also shown.

Method Total energy

AUGP −0.119880248924950
Exact −0.119880248946222
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TABLE II. Total energy (in hartrees) of H2O obtained by AUGP.
For comparison, the full-CI calculation was done using our own code
and the CASSCF calculation using the GAUSSIAN09 package.

Method Total energy

AUGP, K = 1 − 61.508355
AUGP, K = 2 − 72.985876
AUGP, K = 3 − 73.457483
AUGP, K = 4 − 75.006008
AUGP, K = 6 − 75.011870
AUGP, K = 8 − 75.012385975
AUGP, K = 10 − 75.012425100
Exact (ours) − 75.012425818
Exact (Gaussian) − 75.012425839

error, we used the total energy from the full-CI calculation as
the reference, but the result is almost the same when using
the complete active space self-consistent field (CASSCF)
calculation performed using GAUSSIAN09 package [39]. The
table shows that the error is 6.4 × 10−3 hartree with K = 4
and is reduced to 7.2 × 10−7 hartree with K = 10. Figure 5
shows a comparison of the residual error of the energy of H2O
for ESTD and AUGP. The figure shows that the residual energy
for AUGP is reduced almost linearly in log-scale with respect
to K , indicating an exponential convergence. The overall slope
of two methods is almost the same. Although AUGP yields
slower convergence than ESTD, the AUGP is very stable. It is
not difficult to obtain the optimal parameters Ur

ia even when
the calculation is started from random initial values.

IV. CONCLUSION

To efficiently represent the CI wave function, we have
applied the canonical decomposition algorithm to the symmet-
ric part of the CI coefficient. Therein the molecular orbitals
are fully optimized, without imposing the orthonormality
condition, differently for different terms in the decomposition
series. The computational scheme, which we call the extended
symmetric tensor decomposition (ESTD), is equivalent to the
linear combination of the Hartree-Fock-Bogoliubov states or
the linear combination of the antisymmetrized geminal power
(AGP). By this, we can rearrange the full-CI series into the
canonical decomposition series (STD series). By applying
ESTD to the water molecule and Hubbard tetramers, we found
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FIG. 5. (Color online) Residual error of the total energy of H2O
obtained by ESTD and AUGP.

that the total energy rapidly converges well within ten terms
(K = 10) for the STD series. The ESTD calculation was found
to be numerically unstable when the number of electrons is
increased to as large as 10 because of the loss of significance in
the floating-point arithmetic. This problem could be avoided by
restricting the MO coefficients to be complex unitary although
the convergence speed with respect to tensor rank K was
slightly affected. The computational cost of ESTD scales as
K2M5 where M is the number of MOs. The result suggests that
the AGP-based scheme is a promising computational tool for
quantum systems. In this context, it will be an important target
of future study to clarify how K depends on the complexity
and the size of the system. Our calculation was done without
parallelization, but an acceleration by a factor of K2 can be
expected because of the almost independent nature of the
computation. Further acceleration is expected by applying the
tensor decomposition scheme to the two-electron integrals as
done in Ref. [40]; such technique may possibly reduce the
scaling to K2M4.
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