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Qualitative failure of a multiconfiguration method in prolate spheroidal coordinates
in calculating dissociative photoionization of H2
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A formulation of a multiconfiguration time-dependent Hartree-Fock (MCTDHF) method with nuclear motion
is tested by application to a three-body breakup problem, the dissociative photoionization cross section of the H+

2

ion. The representation of the wave function in terms of a set of Slater determinants used for all nuclear geometries,
with a prescribed parametric dependence upon the nuclear geometry such that the cusps follow the nuclei, times a
complete basis expansion in the nuclear degrees of freedom shows promise as a method for treating nonadiabatic
electronic and nuclear motion in molecules. However, the method used here for diatomics, in which the parametric
dependence is prescribed through the choice of prolate spheroidal coordinates, produces qualitatively incorrect
steplike behavior in the calculated cross section near onset. Modifications to the prolate spheroidal coordinate
system that would improve this nonadiabatic diatomic MCTDHF representation are proposed.
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I. INTRODUCTION

Current and next generation experiments using ultrafast
laser light demand ab initio methods for quantum electronic
and nuclear molecular dynamics. There are many situations in
which the coupling of nuclear and electronic motion results in
strong deviations from the fixed-nuclei behavior. Notably, it
was recently pointed out [1] that standard models of tunneling
ionization must be modified to account for the effect of nuclear
motion.

An effective all-purpose tool for calculating the response
of a molecule to intense, short laser pulses must effectively
describe both nonadiabatic nuclear motion and correlated
many-electron quantum dynamics including ionization. The
multiconfiguration time-dependent Hartree-Fock (MCTDHF)
method [2–15] has received considerable attention for the
electronic problem, and more than one group [10,16,17] have
implemented MCTDHF methods including both electronic
and nuclear motion. One of those [17,18] is tested here
by application to the simplest molecular three-body breakup
problem, dissociative ionization of H2

+.
The H2

+ cation is the smallest molecule, and one that
is relevant in environments ranging from interstellar chem-
istry [19,20] to fusion reactors, and as such is well studied in
the literature. It provides the one-electron archetype for fun-
damental processes such as dissociative recombination [20].
Due to its size, it is tractable to include nonadiabatic effects in
calculating its dynamics [21,22]. A comprehensive discussion
of the interaction of H2

+ with general laser fields is found
in Ref. [23]. The two-body breakup, known as dissociative
photoexcitation or photodissociation, has been studied exper-
imentally [24–27] and theoretically [27–30], but our interest
is in dissociative photoionization, the three-body breakup pro-
cess. The three-body breakup has received much attention from
theorists over the decades [31–35], and recently through the
topic of differential cross sections [36] and interference effects
[37–41]. Recent theoretical and experimental work on the sys-
tem may be found in Refs. [42–49] and [50,51], respectively.

Even more recently, the interest in strong-field and ultrafast
physics has led to many experimental and numerical studies on
coupled electronic and nuclear dynamics in this fundamental
system [52–60].

The cross section derives from Fermi’s golden rule, and is
most directly pertinent to experiments performed with weak
fields. The dissociative ionization and dissociative excitation
cross sections were recently calculated using numerically exact
methods within the nonrelativistic approximation and reported
in Refs. [61] (including nonadiabatic couplings) and [62]
(in the Born-Oppenheimer approximation). The effect of the
nonadiabatic coupling terms in the Hamiltonian was analyzed
in Ref. [61]. Among other things, it was found that the doubly
differential cross section (differential with respect to kinetic
energy of the electron) is accurately calculated using a Born-
Oppenheimer final-state wave function, but is incorrect near
onset when calculated with a Born-Oppenheimer initial-state
wave function.

To calculate a cross section using a time-dependent method
we use weak pulses, as would the experiment. The code that
we use [18] includes the ability to treat correlated nonadia-
batic electronic and nuclear motion including ionization and
dissociation with many electrons. It is formulated in prolate
spheroidal coordinates, permitting an implementation of the
exact nonrelativistic Hamiltonian for H2

+ [22]. We omit only
Coriolis coupling terms, responsible for Lambda doubling,
from this Hamiltonian.

The choice of prolate spheroidal coordinates here is not
only a computationally expedient choice. On the contrary,
within the present method [17], the choice of coordinate
system defines the nonadiabatic MCTDHF ansatz via the
parametric dependence of orbitals upon nuclear geometry that
it prescribes. This parametric dependence should be physical,
e.g., orbitals on dissociating atoms should not change shape.
The main conclusion of this work is that the prolate spheroidal
coordinate system for diatomics must be modified, in order to
improve the correlated representation of nuclear and electronic
dynamics described in Ref. [17].
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This is not the first application of a multiconfiguration
method to fully nonadiabatic coupled electronic and nuclear
dynamics. In Ref. [16] the H2

+ ion was studied using the
MCTDH method, that is, using an expansion in orbitals for
the electron and nuclear degrees of freedom. A multielectron
version of this treatment is described in Ref. [10], and was
applied the LiH molecule in Ref. [11]. The present method
differs in that it uses orbitals for the electrons only, taking
the full primitive basis expansion in the nuclear degree
of freedom. In Ref. [11] it is written that our expansion
is not explicitly time dependent in the nuclear part, but
this statement is difficult to interpret because both methods
compute a fully time-dependent electronic and nuclear wave
function.

The present approach [17,18] uses a single set of orbitals
defined in prolate spheroidal coordinates for all bond lengths,
permitting a numerically compact representation of the multi-
dimensional wave function. Prolate spheroidal coordinates are
a choice that is arbitrary, except for the fact that they are nearly
the easiest choice of bond-length-dependent coordinates to
implement. In this method the electronic orbitals have a
parametric dependence upon the bond length by way of the
prolate coordinate system, denoted by a semicolon in the
following expressions. The wave function is expanded in
terms of a linear combination of Slater determinants at each
value of the bond length, with each determinant composed of
time-dependent orbitals:

|�(t)〉 =
∑
κa

Aκa(t)|χκ (R)〉 × |�na(t ; R)〉, (1)

in which each determinant α is specified by the vector �na and
is defined by

|�na(t ; R)〉 = A
(∣∣φna1 (t ; R)

〉 × · · · ∣∣φnaN
(t ; R)

〉)
, (2)

where A is the antisymmetrizer. In contrast to the prescription
here [Eq. (1)], in the method of Refs. [10,11] the wave function
is expanded in terms Aκa(t)| �Nκ (t)〉 × |�na(t)〉 using orbitals
(determinants, cumulants, etc., | �Nκ (t)〉) for the nuclear motion.
The present method using orbitals parametrically dependent
upon nuclear geometry permits an accurate representation of
the electron-nuclear cusp for all bond distances, but introduces
cross terms in the electronic and nuclear kinetic energy
because the total Hamiltonian is not separable in the four
prolate spheroidal coordinates; they do not form an orthogonal
coordinate system.

The time-dependent orbitals |φn(t)〉 are spin restricted, and
expanded in an interpolating piecewise polynomial basis (a
discrete variable representation [63–65]) using a spherical
polar or prolate spheroidal grid as described in Ref. [17].
The grid is defined in the radial and polar directions and the
primitive basis functions include factors of eiMφ/

√
2π .

The cross sections are calculated within the time-dependent
formalism [66,67] and reported in Sec. II. Although they
are generally correct over the full range of incident photon
energies, they exhibit qualitatively incorrect step behavior at
onset. This behavior is discussed in Sec. III. In Sec. IV, we
describe the modification of prolate spheroidal coordinates
that should improve this and other pathologies we have
observed.

II. H2
+ PHOTOIONIZATION CROSS SECTIONS

Cross sections are calculated as described in Ref. [17]. We
have previously reported a detailed test of the method for cross
sections, which follows that of Ref. [67], in Ref. [68].

The dissociative photoionization cross section of H2
+ is

shown in Fig. 1. In this figure the present results are compared
with an exact numerical treatment using the full grid in the
electronic coordinates and bond length, and with the Born-
Oppenheimer approximation at the equilibrium bond length of
2a0. As already mentioned, such exact results have previously
been reported by us [61] and more recently in Ref. [62].

As in Ref. [61], we additionally compare the results of the
Chase approximation [69] which entails a convolution of the
Born-Oppenheimer result over the wave packets of the initial
and final vibrational states:

σ CH(E − E0)

=
∫ E

0
dE′

∣∣∣∣
∫

dR

√
σ BO

(
E′ + 1

R
− E0(R)

)

×χ0(R)fl(k
′′,R)

∣∣∣∣
2

. (3)

In Eq. (3), E0 is the vibrational ground-state energy, E0(R) is
the Born-Oppenheimer ground-state energy as a function of
the bond length, σ CH and σ BO are the Chase approximation to
the cross section and the calculated Born-Oppenheimer cross
sections, χ0 is the vibrational ground state, and fl is an energy-
normalized continuum Coulomb wave function for nuclear
motion on the repulsive 1/R potential of H2

2+, with k′′2/2 =
E − E′. The cross sections are functions of photon energy.
As can be seen here this approximation reproduces the exact
result to very good accuracy, except at onset (the threshold for
dissociative ionization, approximately 16.2 eV, is substantially
below onset, at approximately 25 eV).

Cross sections for parallel and perpendicular polarization
are shown in Fig. 1 as a function of the number of orbitals
used to describe the single electron for all bond distances in
prolate spheroidal coordinates. The initial-state orbitals are
necessarily all σg , because the masses are equal and Coriolis
coupling terms were omitted. Coriolis coupling terms were
tested and calculated to have an as-expectedly infinitesimal
effect upon the dissociative photoionization cross section of the
total angular momentum J = 0 ground state. The difference
between the partial cross sections into the two components
of the Lambda doublet for perpendicular polarization and the
effect of the coupling term upon the parallel polarization cross
section was on the order of machine precision or less. The
Coriolis coupling terms are therefore neglected in the final
results.

The present calculation depends upon the validity of a
mean-field approximation, and we find that we cannot use
reasonable (about 1/100 fs) mean-field time steps without
introducing large error into the solution. The off-diagonal
terms in the kinetic energy for electrons and nuclei are probably
making large contributions to the mean fields, and the linear
approximation to them that we use [17] is probably breaking
down. All calculations except the one-orbital one have noise
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FIG. 1. (Color online) Cross sections for photoionization of H2
+, including nonadiabatic nuclear motion in the bond length, calculated

with one to four orbitals, compared to the Born-Oppenheimer result and to the Chase approximation. These are the results of four calculations,
using two different laser pulses, one used to calculate the cross section up to 80 eV and one for the onset region, for both parallel, left, and
perpendicular, right, polarization.

near onset that depends upon the mean-field parameters and
that we were not able to easily remove. We have not been able
to calculate results for four or more orbitals using reasonable
mean-field time steps.

The parallel (	) cross section is small. Over all energies
plotted it is actually at a minimum with respect to bond distance
at the equilibrium bond length of the cation (R = 2a0).
Therefore the result with nuclear motion deviates significantly
from and is higher than the Born-Oppenheimer result. In Fig. 1
we see that one orbital yields a result intermediate between
the Born-Oppenheimer result at R = 2.0a0 and the exact
nonadiabatic result, the latter of which is plotted as a black
line in the figure. Except for the onset region, the calculation
with two orbitals is converged to the exact result within visual
accuracy.

In the Born-Oppenheimer approximation the cross section
for perpendicular (
) polarization is much larger than the 	

cross section and relatively constant over the Frank-Condon
region of the cation. Therefore, as shown in the bottom
panel of Fig. 1, the full nonadiabatic result and the Born-
Oppenheimer result at R = 2a0 are almost exactly identical.
The multiconfiguration calculation reproduces the exact result
with only one orbital. No straightforward argument for why
this would be the case seems immediately obvious, and it
would be interesting to test the performance of the one-orbital
calculation using different pulse envelopes.

The calculations show interesting behavior at onset, vis-
ible through the considerable numerical noise. The sharply
peaked noise is dependent upon the nonphysical mean-field
parameters of the calculation—in other words, it is entirely
numerical in origin. The salient discrepancy between the
multiconfiguration results shown in Fig. 1 and the other results,
numerical and physical, is that in the former there are a
number of steps equaling the number of orbitals used in the
calculations. Except for the step behavior at onset, the cross
section seems to be converging to the exact result, which is
close to the Chase approximation. We attempt a qualitative
explanation of the step behavior in the following section, and
in the conclusion we describe what would seem to be the
solution.

III. SPURIOUS STEP BEHAVIOR NEAR ONSET

We have observed the step behavior in the dissociative
photoionization cross section at onset and now provide our
best attempt at an explanation of it. Figure 2 shows a schematic
of the density corresponding to an outgoing wave packet
created by a short pulse, in the two coordinate systems,
spherical polar (left) and prolate spheroidal (middle). Because
the Hamiltonian is separable in the former, we expect wave
fronts parallel with the grain of the coordinate system in
the asymptotic region, and this is what we have drawn in
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FIG. 2. Schematic of wave-function density, |�(�r,R)|2, inte-
grated over angular coordinates, for an ionized wave packet created
by a short pulse, in spherical polar coordinates, left, and prolate
spheroidal coordinates, middle. The hypothetical closest approxima-
tion to this wave packet using two orbitals in prolate coordinates is
on the right.

the schematic at left. The left panel shows an outgoing
electronic wave packet not correlated with the nuclear degree
of freedom R. The density at left is well represented as a
product P (R)ρ(r). In contrast, the density is not separable in
prolate coordinates, middle, and any attempt to approximate
it with few orbitals will compromise it, as in the right panel.
The right panel shows a hypothetical best approximation to the
middle panel using only two orbitals. We imagine that artificial
nodes will be created and the fragmentation of smooth wave
fronts seems a plausible explanation for the step behavior at
onset.

We have not performed a falsifiable test of this hypothesis.
We have plotted orbitals from the two-orbital calculation in
search of this behavior and we show the results of that exercise
in Figs. 3–5.

Ideally, the fragmentation behavior would be visible in the
orbitals from the multiconfiguration calculation. However, the
resolution of these orbitals that would be the best for this
purpose is not obvious. We have chosen natural orbitals for
Figs. 3–5—natural orbitals for the electron, and for the bond
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FIG. 3. (Color online) Initial natural orbitals (real valued)
φ(�r; R), evaluated at R = 2.0a0, y = 0, for two-orbital calculation.

distance, which together comprise the Schmidt decomposition
of the wave function [17].

The natural orbitals diagonalize the reduced density matri-
ces in the electronic (φ) and nuclear coordinates (ϕ) of the pro-
late spheroidal coordinate system. They are not independent of
this coordinate system, and different nonorthogonal coordinate
systems will give different natural orbitals and occupancies.
The two-orbital wave function expressed in terms of natural
orbitals is

�(�r,R) = λ1φ1(�r; R)ϕ1(R) + λ2φ2(�r; R)ϕ2(R). (4)

This expression is similar to a Schmidt decomposition but with
the parametrically dependent coordinate.

Figures 3–5 show the electronic natural orbitals φ1 and φ2.
Figure 3 shows them before the pulse; these are the natural
orbitals of the eigenfunction (stationary state). The node in φ2

is radial: this makes sense, due to the parametric dependence of
the prolate spheroidal coordinate system for the electrons upon
the bond length R. Because the size of the orbitals increases
proportionally to the bond length, an orbital is required to
describe “relaxation effects” in the radial degree of freedom.
We refer to the well-known difference between the 2p Hartree-
Fock orbitals in neon and neon cation as an example of the
relaxation effect. The phenomenon observed here, similarly,
is due to the difference in the fixed-nuclei Born-Oppenheimer
wave function for H2

+ at the extrema of the Frank-Condon
region. When the prolate spheroidal coordinates are changed
to better describe the asymptotic region, as discussed in the
conclusion, the nature of the node in the first correlating orbital
may change, but the orbital will always belong to the totally
symmetric irreducible representation.

Figure 4 shows the natural orbitals during the pulse, at
t = 0, 0.5, and 1.0 fs. One can see flux moving outward. They
are formally gauge dependent and these have been calculated
and plotted in the length gauge. (The multiconfiguration ansatz
is gauge invariant; differences in results for different gauges
betray basis set error in the primitive one-electron basis used
to construct the orbitals.)

Figure 5 shows the natural orbitals after the pulse, as the
system is ringing down, at t = 0, 1.75, and 3.5 fs after the end
of the pulse. One can see the dominant wave number decreas-
ing; higher momenta escape more quickly. We have attempted
to identify some pattern in Figs. 4 and 5, by comparing these
results to the natural orbitals from calculations with different
( �=2) numbers of orbitals. No clear indication of the behavior
depicted in the schematic in Fig. 2, going from the middle to
the right panel, presented itself, and showing these results from
calculations with different numbers (1, 3, 4, etc.) of orbitals
seems to convey no more information. This issue must rest until
a better method of analyzing the results is found, or until the
behavior is ameliorated through the coordinate transformation
described in the conclusion.

The analysis based on visual inspection of the natural
orbitals presented here is lacking, but we consider the intuitive
explanation of the step behavior at onset based on wave fronts
to be compelling, and perhaps there is evidence of it in our
calculations, even in the figures here. In the next section, we
discuss the solution to the step behavior problem, which should
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FIG. 4. (Color online) Natural orbitals φ(�r; R) for two-orbital propagation during the pulse, as the ionized flux moves outward, at, from
top to bottom, t = 0, 0.5, and 1.0 fs after the start of the pulse, evaluated at R = 2.0a0, y=0. In each panel, the left image is the real part; the
right, translated by 80 bohrs, is the imaginary. The left three panels are the first natural orbital (occupancy approximately 96%) and the right
are the second (4%).

be clear at this point: the modification of the nonadiabatic
MCTDHF ansatz, i.e., modifying the underlying coordinate
system.

IV. CONCLUSION

Although it produced results for bound vibronic (J = 0)
states in good agreement with prior benchmark nonadia-
batic calculations, the application to dissociative ionization
has clearly strained this MCTDHF method for diatomic
molecules [17,18]. Although the large-scale behaviors of the
H2

+ dissociative photoionization cross sections calculated
are accurate, for both parallel and perpendicular polarization
the region near onset is calculated to contain a number of
unphysical steps equal to the number of orbitals used in the
calculation. Near onset, the total energy is the lowest possible
for ionization, and the momentum is being shared most
equally between electrons and nuclei. Therefore nonadiabatic
effects are most important in this region [61,70], and it is not
unsurprising that this is the point of failure.

We have argued that because the prolate coordinates ξ and
R are nonorthogonal, and therefore necessarily not aligned
with the moments of inertia of the system, the outgoing wave
describing the total breakup of the system that is the best
approximation to the true solution with few orbitals will be
fragmented. We did not find this behavior in the wave functions
that we calculated, but our analysis was visual and cursory and
some evidence of it may lie in our data.

The method used here [17,18] for nonadiabatic electronic
and nuclear dynamics of diatomic molecules makes use of
simplifications based on the prolate spheroidal coordinate
system. These are among the easiest coordinates to program
because the parametric dependence of the orbitals upon the
nuclear geometry (the single coordinate R) is the simplest
possible: their shape does not change, only their size. For
a diatomic molecule, considering the triad of coordinates
(η,ξ,R), improving the coordinates means that a nonorthogo-
nal coordinate transformation must be applied to these already-
nonorthogonal coordinates. Keeping the orbitals orthogonal
as a function of geometry will probably not be the most
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FIG. 5. (Color online) Natural orbitals φ(�r; 2.0) for two-orbital propagation after the pulse, at t = 0, 1.75, and 3.75 fs after the end of the
pulse, as the wave function is ringing down, plotted in the same way as Fig. 4. At R = 2.0a0, the wave function is absorbed via complex
coordinate scaling starting at approximately r = 80a0.

efficient ansatz for a diatomic or polyatomic, so slow variable
discretization [71] or another method for operators differential
in the nuclear coordinates will then need to be applied to matrix
elements between Slater determinants at different geometries,
and this issue presents a significant barrier. However, with
the technology based on biorthogonalization described in
Refs. [17] and [68], and for small polyatomic vibrational mo-
tions excluding dissociation, this barrier may be easily crossed.

When the coordinate system that is parametrically depen-
dent upon nuclear geometry is changed, the natural orbital
occupations (which are not functions of nuclear geometry,
the nuclear coordinates having been traced out) will change,
and different coordinate systems will produce more efficient
diatomic and polyatomic MCTDHF representations. We an-
ticipate that an improved coordinate system will reduce or
eliminate the step behavior at onset seen here. We also expect
that it will reduce the number of orbitals that are required to
converge both the cross-section calculation for all energies and
the results for more-intense pulses for which Fermi’s golden
rule breaks down.

We conclude with two examples of coordinate systems that
would be expected to improve the representation, based on
the results and arguments we have presented in the prior
three sections. It should be clear that we seek a coordinate
system that, without loss of generality, approximately equals
the spherical polar coordinate system at long range (r � R).
Here we will consider modifying only the ξ prolate variable,
defining a new variable ζ such that the coordinates are
(ζ,η,φ,R). The prolate coordinate η is equal to cos θ at long
range. It is not clear what the absolute best ζ would be, but any
of the following might suffice. Whereas the old coordinate is

ξ =
√

x2 + y2 + (
z − R

2

)2 +
√

x2 + y2 + (
z + R

2

)2

R
, (5)

and can be written more compactly,

ξ = 1

R

(√
r2 + R2

4
− zR +

√
r2 + R2

4
+ zR

)
, (6)
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two options for the new coordinate are ζ = R(ξ−1)
2 and

R
2

√
ξ 2 − 1:

ζ =

⎧⎪⎨
⎪⎩

1
2

(√
r2 + R2

4 − zR +
√

r2 + R2

4 + zR − R
)

1
2

(
√

2r2 − R2

2 + 2
√(

r2 + R2

4

)2 − R2z2
) . (7)

Either of these two choices for the new coordinate ζ replacing
ξ would make the coordinate system equal to spherical polar
coordinates in the asymptotic region, and be amenable to
a straightforward product grid. Any deviation from prolate
spheroidal coordinates will necessitate separately calculating
and storing the two-electron matrix elements for every R, but
this is manageable due to the sparsity of these matrix elements.
Which coordinate transformation gives the electronic and
nuclear kinetic-energy operator most easy to implement
remains to be seen.

It is important to develop an all-purpose tool for solving the
Schrödinger equation for chemical systems because current
developments in ultrafast laser technology are beginning to
open a new world of experiments manipulating and probing
the structure of quantum matter. Our initial results here
on a difficult problem—accurately computing the dissocia-
tive photoionization cross section—for the simplest system
have pushed our implementation [18] to the breaking point.
The method with nuclear motion is not useful presently due to
the stability issues that precluded the appearance of results with

more than three orbitals here. The cross sections calculated
here are good enough to be useful, especially with prior
knowledge of the pathology we have identified, and in fact
were accurate with few orbitals over most of the domain
of the cross section. Only at onset were they deficient. We
have argued that the step behavior is the natural result of
applying the present MCTDHF ansatz [17] with a coordinate
system skewed relative to the moments of inertia of the
system, as any set of nonorthogonal Born-Oppenheimer-like
coordinates defined relative to the nuclei will be, and presented
several options for diatomic molecules that all should perform
better than prolate spheroidal coordinates and that all are
equivalent to spherical polar coordinates in the asymptotic
region. Implementation of one or more of these coordinate
transformations within the code used here [18] is a task for the
future.
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