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We study the problem of remote one-qubit mixed state creation using a pure initial state of two-qubit sender
and spin-1/2 chain as a connecting line. We express the parameters of creatable states in terms of transition
amplitudes. We show that the creation of a complete receiver’s state space can be achieved only in the chain
engineered for the one-qubit perfect state transfer (PST) (for instance, in the fully engineered Ekert chain); the
chain can be arbitrarily long in this case. As for the homogeneous chain, the creatable receiver’s state region
decreases quickly with the chain length. Both homogeneous chains and chains engineered for PST can be used
for the purpose of selective state creation, when only the restricted part of the whole receiver’s state space is of
interest. Among the parameters of the receiver’s state, the eigenvalue is the most hard to create and therefore
deserves special study. Regarding the homogeneous spin chain, an arbitrary eigenvalue can be created only if the
chain is of no more than 34 nodes. The alternating chain allows us to increase this length to up to 68 nodes.
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I. INTRODUCTION

The problem of remote creation of a particular quantum
state is one of the fundamental problems in quantum communi-
cation. Its prototype is the pure quantum state transfer problem,
which was first formulated in the well-known paper by Bose
[1] for the homogeneous ferromagnet spin chain with isotropic
Heisenberg interaction. Now the state transfer represents a
special direction in quantum information processing. Among
the spin systems engineered for the either perfect or high-
fidelity (probability) one-qubit pure state transfer, we mention
such well-known systems as the spin chains with properly
adjusted coupling constants (or the fully engineered spin
chains) [2–4] and the homogeneous chains with remote end
nodes (the boundary-controlled [5,6] and optimized boundary-
controlled [7,8] spin chains). In addition, the experimental
realization of the perfect state transfer through the three-qubit
chain in trichloroethylene is proposed in [9].

Studying the perfect state transfer (PST) problem in spin
chains shows its sensitivity to the chain parameters. Moreover,
although it has been achieved for a model system (such as
the nearest-neighbor XY Hamiltonian in [2–4]), it becomes
destroyed by imperfections, such as remote node interactions
and quantum noise, which always reduce the state transfer
fidelity [8,10–13] so that the original state cannot be perfectly
transferred between the ends of a chain. As a consequence, the
high-fidelity (probability) state transfer becomes more popular
in comparison with the PST, which is justified in numerous
papers concerning different aspects of this subject, such as
the entanglement [14–18] transfer through a quantum chain
[19–23], the entanglement creation between distant qubits
[24,25], the so-called ballistic quantum state transfer [26], the
high-dimensional state transfer [27,28], and the robustness of
state transfer [10–13,29].

Nevertheless, the search for alternative ways of quantum
communications free of the destructive effect of imperfections
becomes more and more attractive. Thus, the so-called infor-
mation transfer was proposed in [30]. In this case we take care
of transfer of all the state’s parameters (instead of the quantum
state itself) from the sender to the receiver. These parameters

appear linearly in the receiver’s state, so that we have to
solve a system of linear algebraic equations to obtain these
parameters on the receiver’s side. In turn, this requires a non-
quantum-mechanical tool, which is a price for the robustness
of the information transfer. The conclusion about robustness
is based on a simple observation that any imperfection of
the model changes the coefficients in the above linear system
without changing the transferred parameters (as for the noise,
also the averaged effect leads to such change of coefficients).
Consequently, unlike the state transfer, this process is not
sensitive to the parameters of the spin chain as well as to the
imperfections of the experimental realization of the proposed
model (a nearest-neighbor XY Hamiltonian was used in [30]).

In a recent paper [31], the principles of both perfect
state transfer [1–6,32–34] and state information transfer [30]
were realized in the mixed state-creation algorithm using
short homogeneous spin-1/2 chains with nearest-neighbor XY
interactions. The basic idea of that paper is to handle the
parameters of the creatable state of the remote subsystem
(receiver) by varying the parameters of another subsystem
(sender) through the local unitary transformations of the latter.
Notice that most of the earlier experiments realizing the remote
state creation use photons as carriers of quantum information
[35–41]. State creation based on spin-1/2 chains is suitable for
the state and information transfer or creation over the relatively
short distances, for instance, inside of a particular quantum
device.

In this paper we represent a detailed study of the remote
one-qubit mixed state creation of the receiver (the last node of a
chain) through the long spin-1/2 chain with a pure initial state
of (at most) a two-qubit sender (the first and the second nodes
of a chain). We call the parameters varying with the purpose
to create the needed receiver’s state as the control parameters,
while the parameters of the receiver’s state are referred to as
the creatable parameters. In the case of a one-qubit sender, the
time is required as one of the control parameters needed to
create a large region of the receiver state space. Therefore this
case cannot be considered as one of completely local control
(i.e., control through the local parameters of the sender’s initial
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state) of state creation, because the required time instant must
be reported to the receiver’s side (perhaps through a classical
communication channel). We concentrate on the completely
local control achievable using the two-qubit sender (similar
to Ref. [31]). In this case the large creatable region can be
covered at a properly fixed time instant by just varying the
parameters of the sender’s initial state. In other words, the
time is not included in the list of control parameters. For a
pure initial sender’s state, we express the parameters of the
creatable state in terms of the transition amplitudes and control
parameters so that the receiver’s density matrix acquires the
very simple form. We show that the creation of the complete
one-qubit receiver’s state space can be achieved in the chain
engineered for the one-qubit PST [2–4]. The chain can be
arbitrarily long in this case. As for the homogeneous chains, on
the contrary, the creatable region decreases very quickly with
an increase in the chain length. Apparently, this is an essential
disadvantage of homogeneous chains. However, we show that
this disadvantage leads to some privileges of such chains in
application to the problem of selective-region state creation,
when we intend to work with a particular subregion of the
receiver’s state space. Namely, the homogeneous chains reduce
(or even completely remove) the possibility of a “parasitic”
state creation outside of the required subregion, if only this
subregion is properly selected. Such selective state creation
can be considered as the first step in construction of the
“branched” communication systems having several senders
and one common receiver. Notice that the chains engineered
for the PST do not possess this property, although they can be
used in the selective-region state creation as well.

Following Ref. [31], by the state of the receiver B we mean
the reduced density matrix (the marginal matrix)

ρB = T rrestρ, (1)

where ρ is the density matrix of the whole system and the
trace is calculated over the all nodes except for the last
one (receiver’s node). The one-qubit receiver’s state space
is parametrized by three parameters. One of them is the
eigenvalue and two others are associated with the eigenvectors.
In turn, among the two latter parameters, there is the phase
which has no restriction for creation [31], i.e., any required
value of this phase can be created by a proper choice of
the control parameters. Another eigenvector parameter can,
in principle, be tuned to the required value by the local unitary
transformation of the receiver. On the contrary, the eigenvalue
represents the most difficult creatable parameter because it is
effected by the evolution and it is not sensitive to the local
unitary transformations of the receiver. Thus the eigenvalue
creation deserves special attention. It turns out that any eigen-
value can be created in the homogeneous chain of no more than
Nc = 34 nodes. Any value of this parameter can be created in
the fully engineered chains of arbitrary length, but such chains
themselves are difficult for practical realization. Alternatively,
we consider the alternating chain with even number of nodes
for the purpose of remote eigenvalue creation and show that
this chain increases the parameter Nc up to 68 nodes.

Finally, we mention that the teleportation [36,37,42] can
be considered as a prototype of the remote state creation.
Teleportation is aimed at the long-distance transfer of an

unknown state using the entangled pairs of bits [35,43,44]. An
inherent feature of teleportation is that it requires the classical
channel of information transfer as a necessary component of
the teleportation protocol, unlike the state transfer (creation)
problem. A set of modifications of the state teleportation
(creation) protocol can be found in [41,45–47].

The structure of this paper is the following. In Sec. II,
we represent the basic analytical results concerning the map
between the control parameters of the sender’s initial state and
the creatable parameters of the receiver’s state. We show, in
particular, that the creatable region covers the whole receiver’s
state space at the time instant of PST. The state creation in
chains governed by the nearest-neighbor XY Hamiltonian is
studied in more detail in the same section. In Sec. III we
study the state creation inside of the selected subregions of
the receiver’s state space on the basis of homogeneous and
fully engineered Ekert chains. Section IV is devoted to the
eigenvalue creation in the long homogeneous and alternating
chains, as well as in the chains engineered for the PST. The
basic results of the paper are collected in Sec. V.

II. ONE-QUBIT RECEIVER’S STATE CREATION
THROUGH PURE TWO-QUBIT INITIAL SENDER’S STATE

A. One-excitation evolution

In this section we introduce two requirements simplifying
the spin dynamics calculation.

(1) The Hamiltonian H commutes with the z projection of
the total spin momentum:

[H,Iz] = 0. (2)

(2) The initial state is a superposition of the pure states
with up to a single excited spin.

These two requirements allow us to consider the dynamics
in the following basis of N + 1 independent vectors (instead
of 2N independent vectors in the general case of N -qubit
dynamics):

|0〉≡| 0 . . . 0︸ ︷︷ ︸
N

〉, |n〉 ≡ | 0 . . . 0︸ ︷︷ ︸
n−1

1 0 . . . 0︸ ︷︷ ︸
N−n

〉, n = 1, . . . ,N. (3)

Next, we can write the Hamiltonian in the following two-block
diagonal form:

H = diag(H0,H1), (4)

where H0 is written in the basis of a single vector |0〉 (thus,
it is a scalar) and the block H1 is written in the basis |n〉,
n = 1, . . . ,N . Without loss of generality, we take H0 = 0.

Let us consider a pure initial state |�0〉 of our quantum sys-
tem. In accordance with the Schrödinger equation, evolution
of this state reads

|�(t)〉 = e−iH t |�0〉. (5)

As known, the receiver’s state is mixed in general and can be
written as (in the case of one excitation)

ρB ≡ Tr1,2,...,N−1ρ =
(

1 − |fN |2 f ∗
Nf0

fNf ∗
0 |fN |2

)

=
(

1 − R2
N RNR0e

−2πi(�N −�0)

RNR0e
2πi(�N −�0) R2

N

)
. (6)
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Here the trace is taken over the nodes 1, . . . ,N − 1, where the
asterisk means the complex conjugate value and fN , f0 are the
probability amplitudes,

fi = 〈i|e−iH t |�0〉 = Rie
2πi�i , i = 0, . . . ,N, (7)

where Ri and �i are real parameters and Ri are positive.
Remember a natural constraint

|fN |2 + |f0|2 � 1 ⇒ R2
N + R2

0 � 1, (8)

where the equality corresponds to the pure state creation
because in this case fi ≡ 0 (i �= 0,N ) and the only nonzero
eigenvalue equals 1. [The last statement can be directly verified
using Eq. (19) derived below.] This phenomenon is equivalent
to the PST in the case of a one-qubit sender. Constraint (8)
suggests the following parametrization of RN :

RN =
√

1 − R2
0R, (9)

where

0 � R0 � 1, (10)

0 � R � 1, (11)

0 � � � 1, � = �N − �0. (12)

Thus three parameters R0, R, and � (which are defined by
the initial state of our quantum system and by the interaction
Hamiltonian) completely characterize the possible creatable
receiver’s state. However, representation (6) of the density
matrix ρB is not a preferred one because it does not give us a
simple way to estimate whether the whole state space of the
receiver is creatable. The following factorized representation
allows us to realize this estimation, giving the convenient
parametrization of the receiver’s state space:

ρB = UB�B(UB)+, (13)

where �B is the diagonal matrix of eigenvalues and UB is the
matrix of eigenvectors, which read as follows in our case:

�B = diag(λ,1 − λ), (14)

UB =
(

cos β1π

2 −e−2iβ2π sin β1π

2

e2iβ2π sin β1π

2 cos β1π

2

)
, (15)

with λ and βi (i = 1,2) varying inside of the intervals

1
2 � λ � 1, (16)

0 � βi � 1, i = 1,2. (17)

Intervals (16) and (17) cover the whole state space of the
receiver. Note that the maximally mixed state is characterized
by a single parameter λ = 1

2 .
Another advantage of representation (13) is that it separates

the whole parameter space of the receiver’s state into two parts:

The independent eigenvalues of ρB : the only parameter λ,

The independent eigenvector parameters of ρB : β1 and β2 .

(18)

Obviously, the parameters λ and βi , i = 1,2, are related with
R0, R, and � as follows:

λ = 1

2

(
1 +

√(
1 − 2R2

N

)2 + 4R2
NR2

0

)
, (19)

cos β1π = 1 − 2R2
N√(

1 − 2R2
N

)2 + 4R2
NR2

0

, ⇒ (20)

β1π = arccos
1 − 2R2

N√(
1 − 2R2

N

)2 + 4R2
NR2

0

, (21)

β2 = �, (22)

with RN from (9). Clearly, if the triple (R0,R,�) can run all
points in cube (10–12), then the triple (λ,β1,β2) takes all values
inside of the cube (16, 17), and thus the whole receiver’s state
space is creatable. However, this is possible only in special
cases (like the Ekert chain in Sec. II E). Usually, only a part
of the receiver’s state space can be created (see homogeneous
chains in Sec. II E). Formulas (19)–(22) represent the map
between the control parameters of the sender (embedded in
R0, R, and �) and the creatable parameters λ, β1, and β2 of
the receiver. Now we specify the dependence on the control
parameters introducing a particular sender’s initial state.

B. Two-node sender with one excitation initial state

For the purpose of effective remote control of the one-qubit
receiver’s state, we take the two-node sender with the pure
one-excitation initial state of the following general form:∣∣�S

0

〉 = a0|00〉 + a1|10〉 + a2|01〉, (23)

2∑
i=0

|ai |2 = 1, (24)

where ai (i = 0,1,2) are the control parameters with constraint
(24). Since the common phase of a pure state does not effect
the density matrix, we take the real positive a0 without the
loss of generality. Obviously, the above sender’s initial state
can be obtained from the ground sender’s state |00〉 using the
following SU(3) transformation [31]:

UA =

⎛
⎜⎜⎜⎜⎜⎜⎝

a0 − a∗
1√

1 − |a2|2
− a0a

∗
2√

1 − |a2|2

a1
a0√

1 − |a2|2
− a1a

∗
2√

1 − |a2|2
a2 0

√
1 − |a2|2

⎞
⎟⎟⎟⎟⎟⎟⎠,

2∑
i=0

|ai |2 =1,

(25)

i.e., |�S
0 〉 = UA|00〉. This is a five-parameter transformation

(one real parameter a0, two independent amplitudes and two
phases of a1 and a2) and it represents a particular case of
the general eight-parameter SU(3) transformation. We will
show that transformation (25) establishes the maximal possible
control of the one-qubit receiver state in the framework of our
model. Therewith the rest of the quantum system is in the
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ground initial state,

∣∣�rest
0

〉 =
∣∣∣∣ 0, . . . ,0︸ ︷︷ ︸

N−2

〉
. (26)

Thus the initial state of the whole system reads

|�0〉 ≡ ∣∣�S
0

〉 ⊗ ∣∣�rest
0

〉 =
2∑

i=0

ai |i〉. (27)

We see that the control capability of the sender can be
described in two equivalent ways: by the parameters of the
initial state [see Eq. (23)] and by the parameters of unitary
transformation (25) of the ground sender’s state. Since the
initial state itself seems to be more physical and more practical
in comparison with the unitary transformation, hereafter we
focus on formula (23).

Obviously, the control parameters appear linearly in evolu-
tion (5) of the state:

|�(t)〉 = e−iH t |�0〉 = a0e
−iH0t |0〉 +

2∑
j=1

aj e
−iH1t |j 〉

= a0|0〉 +
2∑

j=1

aj e
−iH1t |j 〉. (28)

Consequently, the probability amplitudes appearing in the
receiver’s state (6) are also linear functions of the control
parameters:

fN (t) = 〈N |e−iH t |�0〉 =
2∑

j=1

aj 〈N |e−iH1t |j 〉 =
2∑

j=1

ajpNj (t),

(29)

f0(t) = 〈0|e−iH t |�0〉 = a0 ≡ R0, (30)

where

pkj (t) = 〈k|e−iH1t |j 〉 = rkj (t)e2πiχkj (t), k,j > 0, (31)

rkj are positive amplitudes and 2πχkj (0 � χkj � 1) are phases
of pkj . The meaning of pkj is evident. It is the probability
amplitude of the excitation transition from the j th to the
kth spin. We emphasize that these probabilities represent the
inherent characteristics of the transmission line and do not
depend on the control parameters of the sender’s initial state.

Thus we see that the parameter R0 is identical to the
parameter a0 of the initial state [this is a consequence
of condition (2)] and does not depend on the particular
Hamiltonian. Consequently, the only Hamiltonian-dependent
parameter in formulas (19) and (21) is R. Being H dependent,
this parameter is not completely controlled by the sender’s
initial state.

Let us briefly analyze the dependence of λ and β1 on R.
Calculating the derivative of λ with respect to R, we find that
λ has the minimum at Rmin = 1√

2
,

λmin = 1
2

(
1 + R0

√
2 − R2

0

)
, (32)

and reaches its maximal value λmax = 1 at the boundary points
R = 0,1. Thus it takes values in the interval

1
2

(
1 + R0

√
2 − R2

0

)
� λ � 1, (33)

provided that R takes values in its interval (11).
Function cos β1 is a decreasing function of R, taking its

maximal value 1 at R = 0 and its minimal value 2R2
0 − 1 at

R = 1. Thus

2R2
0 − 1 � cos β1 � 1, (34)

provided that R takes values in its interval (11). At the point
Rmin = 1√

2
we have

cos β1|R= 1√
2

= R0√
2 − R2

0

. (35)

C. Analysis of creatable region

To proceed further, we introduce the following parametriza-
tion of the sender’s initial state (23) [satisfying constraint (24)]:

a0 = sin
α1π

2
, a1 = cos

α1π

2
cos

α2π

2
e2iπϕ1 ,

a2 = cos
α1π

2
sin

α2π

2
e2iπϕ2 , (36)

therewith

0 � αi � 1, 0 � ϕi � 1, i = 1,2. (37)

Then

f0(t) = sin
α1π

2
≡ R0, (38)

fN (t) = cos
α1π

2
cos

α2π

2
rN1(t)e2πi[ϕ1+χN1(t)]

+ cos
α1π

2
sin

α2π

2
rN2(t)e2πi[ϕ2+χN2(t)]. (39)

The parameter α1 fixes R0 inside of interval (10) (thus R0 does
not depend on the time t in our case). The amplitude RN of
fN reaches its maximal possible value at some time instant
t if both terms in Eq. (39) have the same phases at this time
instant, i.e., ϕ1 and ϕ2 satisfy the condition

ϕ1 + χN1(t) = ϕ2 + χN2(t). (40)

For instance,

ϕ2 = ϕ1 + χN1(t) − χN2(t). (41)

Therewith we provide any needed phase � (12) at any required
time instant t (�0 ≡ 0 according to the formula (30) for f0):

�(t) ≡ �N (t) = ϕ1 + χN1(t). (42)

So that any required phase β2 (22) of the receiver’s state can
be created.

Owing to phase-relation (40), we have for R

R(t) = cos
α2π

2
rN1(t) + sin

α2π

2
rN2(t). (43)

Our purpose is to find such parameters of the Hamiltonian and
such a time instant t0 that R covers the whole interval (11).
This is possible only if the chain is engineered for the PST. In
general, the following proposition holds.
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Proposition 1. Let R take some particular value Rp at a
given time instant t = t1. Then R takes values at least in the
interval

0 � R � Rp (44)

during the time interval

0 � t � t1. (45)

Proof. This statement follows from the fact that R(0) = 0
and R(t) is a continuous function of t . �

Obviously, R takes values in the bigger interval

0 � R � Rmax (46)

if the value Rmax > Rp is achievable over the time interval
(45). In other words, the following consequence holds.

Consequence 1. Let R reach the maximal value Rmax at
some instant t0 inside of the time interval [0,T ], t0 ∈ [0,T ].
Then all receiver’s states creatable during the time interval
[0,T ] can be created during the shorter time interval [0,t0],
therewith R takes values in interval (46).

Thus, if we consider the time t as one of the control
parameters of the state-creation process, then we can cover
a large region of the receiver’s state space even with α2 = 0.
However, this type of remote state creation is not completely
controlled by the local parameters of the sender’s initial state,
since the required time instant (as a control parameter) must
be transmitted to the receiver’s side, which complicates the
communication. To avoid this complication, we involve the
variable parameter α2 in the initial state (23, 36). In this case,
the large region of the receiver’s state space can be created at
the properly fixed time instant, thus making the remote state
creation completely controlled by the local sender’s initial state
(the local control of state creation), because the above time
instant of state registration can be reported to the receiver’s side
in advance. For the sake of simplicity, we analyze such control
for the case of an XY Hamiltonian with the nearest-neighbor
interactions. However, a similar analysis can be elaborated in
more complicated cases as well.

D. Evolution governed by nearest-neighbor XY Hamiltonian

The XY Hamiltonian with nearest-neighbor interaction
reads

H =
N−1∑
i=1

Di[IixI(i+1)x + IiyI(i+1)y]

=
N−1∑
i=1

Di

2
(I+

i I−
i+1 + I−

i I+
i+1), (47)

where Di are the coupling constants between the nearest
neighbors, Ijα (j = 1, . . . ,N , α = x,y,z) is the j th spin
projection on the α axis, and I±

j = Ijx ± iIjy . Hereafter we
assume the symmetry

Di = DN−i , (48)

except for the alternating chain with odd N in Sec. IV B.
Obviously, condition (2) is satisfied for this Hamiltonian. Now
we formulate the following proposition concerning the local
control of the remote state creation.

Proposition 2. Let the function rN1(t) take the max-
imal value rmax at t = t0, rN1(t0) = rmax, and χN1(t0) �=
χ(N−1)1(t0) + n/2 (n = 0,±1). Then R takes values in the
interval

0 � R � rmax (49)

when

0 � α2 � 1 (50)

at the fixed time instant t0.
Proof. The evolution of the pure quantum state is governed

by the Schrödinger equation

i|�〉t = H |�〉. (51)

Since we deal with the nearest-neighbor Hamiltonian (47), its
nonzero elements read

Hi,i+1 = Hi+1,i = Di

2
, i = 1, N − 1. (52)

Let us consider the initial state |�(0)〉 = |1〉. Then the last row
of Eq. (51) can be written in terms of transition amplitudes
(31):

i
d

dt
pN1 = DN−1

2
p(N−1)1. (53)

The complex conjugate of this equation reads

i
d

dt
p∗

N1 = −DN−1

2
p∗

(N−1)1. (54)

Multiplying Eqs. (53) and (54) by, respectively, p∗
N1 and pN1

and adding them we obtain

d

dt
(rN1)2 = DN−1rN1r(N−1)1 sin[2π (χ(N−1)1 − χN1)]. (55)

At the time instant t = t0 corresponding to the extremum of
rN1(t) we have

d

dt
rN1(t0) = 0, and consequently (56)

rN1(t0)r(N−1)1(t0) sin(2π [χ(N−1)1(t0) − χN1(t0)]) = 0. (57)

Since χN1(t0) �= χ(N−1)1(t0) + n/2 (n = 0,±1) by our as-
sumption and rN1(t0) > 0, we obtain

r(N−1)1(t0) = 0. (58)

In view of the Hamiltonian symmetry we can write rij = rji =
r(N−i+1)(N−j+1), and then Eq. (58) yields

r(N−1)1(t0) = rN2(t0) = 0. (59)

This means that condition (40) is automatically satisfied at the
extremum point of rN1 (because the right-hand side of Eq. (39)
has only one term at t = t0). Thus R(t0), defined by Eq. (43),
reads

R(t0) = cos
α2π

2
rmax (60)

and takes values in interval (49) if α2 varies inside of interval
(50). �

In this case we have the completely local state-creation
control with three control parameters α1, α2, and ϕ1. We shall
give the following remarks:
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FIG. 1. The map (α1,α2) → (λ,β1) in the chains engineered for the pure one-qubit PST (for instance, in the Ekert chain with t0 = π ).
Solid and dashed lines correspond to the constant values of the parameters, respectively, α2 and α1; appropriate values of these parameters
are indicated in the picture. The variation intervals (37) of αi are split into ten equal segments, i.e., the parameter increment between the two
neighboring lines is 0.1 in both families of curves. The solid line α2 = 0 coincides with the right vertical coordinate axis; the dashed line
α1 = 0 is disrupted and coincides with the upper and lower horizontal coordinate axes. The solid and dashed lines with, respectively, α2 = 1
and α1 = 1, shrink to the point (λ,β1) = (1,0). The properly scaled neighborhood of this point is depicted in (b). We keep the same gridding
in all pictures below.

(1) Hereafter we refer to the above time instant t0 as the
time instant of highest-probability state transfer (therewith
the highest-probability state transfer is not always the high-
probability state transfer [33] because this probability, i.e.,
rmax, can be far from 1). The creation of the complete receiver’s
state space is possible if rmax = 1, i.e., if the chain is engineered
for the pure one-qubit PST.

(2) The conditions of proposition 2 hold for the homoge-
neous and Ekert chains whose evolution is governed by the
XY Hamiltonian (47) with the nearest-neighbor interactions
at least over the time intervals ∼N considered here. In this
case two control parameters α1 and α2 are enough to cover the
maximal region in the space (λ,β1), therewith the parameter
ϕ1 is responsible for β2 and has no influence on λ and β1.
In other cases the phases φi , i = 1,2 [see Eqs. (36)], must
be included into the set of active control parameters to obtain
similar results.

In Secs. II E and III we consider only the two-parameter
state-creation control, i.e., the creation of λ and β1 varying
α1 and α2, and explore several features of such control.
The creation of β2 is trivial and will not be considered
below.

E. State-creation algorithm as a map of control parameter
space (α1,α2) into creatable parameter space (λ,β1)

If we need to create a receiver’s state inside of a particular
subregion of the whole receiver’s state space, we need to
know the appropriate parameters of the sender’s initial state.
This prompts us to consider the state-creation algorithm as
a map of parameters of arbitrary sender’s initial state (the
so-called control parameters, α1 and α2 in our case) to the set of
parameters of the receiver’s state space (the so-called creatable
parameters, λ and β1 in our case). This map is depicted in Fig. 1

for the ideal case of the completely creatable receiver’s space.
As mentioned above, this situation can be realized in the chains
engineered for the PST. The Ekert chain can be considered as
an example [2], then

Di =
√

i(N − i) (61)

in Eq. (47), therewith t0 = π . In the case of a homogeneous
spin chain [Di ≡ D, i = 1, . . . ,N − 1, in Eq. (47); we put
D = 1 for simplicity (dimensionless time t)], the map differs
from that shown in Fig. 1. We observe that the creatable region
of the receiver’s space decreases very quickly with the chain
length, as shown in Fig. 2, where chains of 6, 60, and 120
nodes are considered at time instants t0 = 7.884, 63.881, and
124.761, respectively. Figures 1 and 2 help us to select the
needed region in the control parameter space (α1,α2) to create
the state inside of the required region of the creatable parameter
space (λ,β1).

III. SELECTION OF CREATABLE SUBREGIONS

We have considered a problem of maximal possible cover-
ing of the receiver’s state space. It is shown for Hamiltonian
(47) that the maximal creatable region corresponds to the
time instant t0 of the highest-probability state transfer. Any
deviation from t0 reduces the creatable region. However, this
unpleasant phenomenon turns out to be useful if we would
like to work only with a restricted subregion of the receiver’s
state space without interacting with its remaining part. For
instance, this problem appears in a “branched” communication
line when we need to share the creatable region among several
senders, so that each sender works only with its own subregion.
In fact, Fig. 2 shows that the creatable region of a homogeneous
chain of 120 nodes is restricted, roughly speaking, by the
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FIG. 2. The map (α1,α2) → (λ,β1) in the homogeneous chains with N = 6, 60, and 120 at time instants t0 corresponding to the maximum
pN1 (the highest-probability state transfer).

rectangle 0.74 < λ � 1, 0 � β1 < 0.21, so the region outside
of this rectangle can be safely used for other purposes.

Now we describe the separation of several nonoverlapping
creatable subregions. Our results are based on the following
observation. If we take t1 < t0, then the conditions of Proposi-
tion 2 are broken so that we do not cover the maximal creatable
region varying the control parameters α1 and α2. Moreover, the
parameter R in formulas (19) and (21) can not take all values in
interval (44) (remember that t is fixed here, unlike Proposition
1). In general, the lower and upper boundaries appear:

qmin(t1) � R � qmax(t1). (62)

Thus, considering K chains of different lengths Ni , N1 <

· · · < NK , and appropriate time instants ti such that

qi
min(ti) > qi+1

max(ti+1), i = 1, . . . ,K − 1, (63)

we may select K nonoverlapping creatable subregions in the
receiver’s state space. All these regions have the only common
point (λ,β1) = (1,0).

First, we consider the selective state creation using the
homogeneous chains. In this case we use the time instants
ti and the chain lengths Ni as parameters selecting the proper
creatable subregions. Combining both these parameters, we
can vary the creatable subregion in a needed way. Examples of
two particularly selected creatable subregions corresponding
to (N,t) = (6,9.375) and (60,62.7) are shown in Fig. 3(a).

Next, we perform the above selection using the Ekert chain
[2]. In this case we can create different subregions using the
chains of the same prescribed length N and varying the time
instants ti of the state registration. Examples of three creatable
subregions corresponding to the chain of N = 120 spins and
the registration time instants t = 2.994, 2.895, and 2.816 are
shown in Fig. 3(b).

The privilege of homogeneous chains is that their creatable
regions are restricted as shown in Fig. 2, which reduces the
possibility of “parasitic” state creation from an “alien” sender.
For instance, the sender responsible for the lower region
in Fig. 3(a) (N = 60) cannot create the states in the upper
selected region (corresponding to N = 6), regardless of the

FIG. 3. Selectivity in the remote state creation. By choosing the proper chain lengths and/or the time instants of the state registration we
obtain different braid-shaped creatable regions. Gridding lines inside of each braid are the same as in Fig. 1, i.e., the parameters αi , i = 1,2
take values in interval (37). (a) The homogeneous spin chains of N = 6 and 60 with the state-detecting time instants t = 9.375 and 62.7,
respectively. (b) The Ekert chain with N = 120 and the state-detecting time instants t = 2.994, 2.895, and 2.816.
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values of the control parameters, this conclusion follows from
comparison of Figs. 3(a) and 2(b). However, the opposite is
not true and a six-node chain can create the “parasitic” states
in the lower subregion of Fig. 3.

IV. LONG-DISTANCE EIGENVALUE CREATION IN
HOMOGENEOUS AND NONHOMOGENEOUS CHAINS

A. Three types of creatable parameters

In Secs. II C and II E we show that the whole receiver’s state
space [31] cannot be remotely created using an arbitrary spin
chain. But are there equivalent obstacles for creation of each
of the three parameters λ, β1, and β2 of the receiver’s state
space? It seemed that all these parameters behave differently
in the state-creation process.

First of all, we shall emphasis the principal difference
between the eigenvalue λ and the eigenvector parameters
βi , i = 1,2. The latter have an advantage in that they, in
principle, can be tuned to the required values by the local
unitary transformation of the receiver (assuming that unitary
transformations are applicable on the receiver side), which is
a quantum-mechanics operation. Indeed, if we have created
the receiver’s state in the form of Eq. (13), i.e., ρB =
UB�B(UB)+, while the required state is ρreq = ŨB�B(ŨB)+
[for the one-qubit receiver, the unitary transformation ŨB

has the form (15) with different parameters], then ρreq =
ŨB(UB)+ρBUB(ŨB)+, i.e., the above-mentioned local trans-
formation of the receiver reads

U loc = ŨB(UB)+. (64)

Notice that the transformation U loc depends on the sender’s
control parameters, which are included in UB . Consequently,
the receiver needs information about (some of) the control
parameters to apply the proper U loc. This information must
be transferred from the sender to the receiver using some
additional (classical) communication channel, similar to the
teleportation algorithm. This means that by inserting U loc into
the state-creation algorithm, we lose the completely remote
control of all parameters of the receiver state, except for the
eigenvalues (matrix �B), which cannot be changed by U loc.
In this paper we do not consider the local transformations of
the receiver as a part of the state-creation algorithm.

It is also shown in Sec. II C that the most reliable parameter
is the phase β2 [31], because any of its values can be created
using the phases ϕi , i = 1,2, of the sender’s initial state.
Moreover, this property of the parameter β2 does not depend
on the Hamiltonian governing the spin dynamics (this can be
simply demonstrated). All this suggests that we consider this
parameter as a preferable candidate for the carrier of quantum
information.

Thus the eigenvalue λ turned out to be the most defenseless
parameter, because (i) we are not able to create its arbitrary
value (in general) and (ii) it cannot be changed by the
local unitary transformations of the receiver. Therefore the
eigenvalue is completely defined by the sender’s initial state
and by the interaction Hamiltonian, and consequently, the
eigenvalue creation deserves special study.

Let us consider the λ creation in more detail using three
types of chains: the homogeneous chain, the alternating chain,
and the chain engineered for the one-qubit PST (Ekert chain).

B. Eigenvalue creation using an Ekert chain, homogeneous,
and alternating chains

Considering the state creation based on a spin chain of
general position, the maximal variation interval (16) for λ

becomes compressed. The reason is pointed out in Sec. II C,
where the expression for λ as a function of R is represented [see
Eq. (19)]. It was shown that the left boundary of eigenvalue
λl = 1

2 can be created if R > Rmin = 1√
2

[see Eq. (32)].
Consequently, this boundary is achievable if only Rmin � rmax

in Eq. (49). This prompts us to introduce the parameter
λcr

min(N ), indicating the minimal eigenvalue creatable on the
receiver site is a characteristic of the chain.

Considering the homogeneous spin chain [Di = D1 = 1,
i = 1, . . . ,N − 1 in Eq. (47)], we see from Fig. 2 that
λcr

min(N ) = 1
2 only if the chain is short enough [Fig. 2(a)],

unlike the long chains [Figs. 2(b) and 2(c)]. The general
dependence of λcr

min on N is shown in Fig. 4, indicating that
there is such a critical length Nhom

c = 34 that

λcr
min > 1

2 for N > Nhom
c . (65)

Of course, λcr
min(N ) = 1

2 and it does not depend on the chain
length in the case of an Ekert chain (NPST

c = ∞). However,
such chains are hard to realize, so we are forced to look for
alternative ways of increasing the parameter Nc.

A simple way to do that is using an alternating chain.
In this case Di = D1 = 1, i = 1,3,5, . . . , and Di = D2 = d,
i = 2,4,6, . . . in Eq. (47). Therewith d is called the alternation
parameter. The results of our calculations for the chain with an
even number of nodes are collected in Fig. 5. To simplify
calculations we put α2 = 0 in this subsection. Using the
variable parameter α2, we would only slightly modify the
figures without changing the parameter Nc.

The chain with an even number of nodes is considered in
Fig. 5. The parameter R responsible for the λ creation takes
its critical value 1√

2
inside of different time intervals depicted

in Figs. 5(a) and 5(b). The lines (or spots) mean that any λ

from the interval 1
2 � λ � 1 can be created for the proper N

and d. The envelopes of these figures give the parameter N even
c

as a function of d. The most reasonable time interval, 0 � t �
1.3 min (d, 1

d
), is depicted in Fig. 5(a): the alternation allows us

to increase the length Nc until N even
c = 36. A more significant

increase in Nc is observed over the second time interval
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FIG. 4. The homogeneous spin chains: the minimal creatable
eigenvalue λcr

min as a function of chain length N .
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FIG. 5. The eigenvalue creation in the alternating spin chains with even N over the different time intervals. Lines (or spots) correspond to the
creation of any λ from the interval 1

2 � λ � 1 for the appropriate N and d . The envelope of each figure represents the critical length N even
c as a

function of the dimerization parameter d: (a) 0 � t � 1.3N min (d, 1
d

), (N even
c )max = 36 > N hom

c = 34; (b) 1.3 min (d, 1
d

) < t � 1.5N max (d, 1
d

),

(N even
c )max = 68 > N hom

c .

1.3 min (d, 1
d

) < t � 1.5 max (d, 1
d

) shown in Fig. 5(b). (The
numerical coefficients 1.3 and 1.5 are empiric.) In this case
N even

c = 68, which is twice bigger than Nhom
c . This results

from the chain “dimerization” with a decrease in the alternation
parameter d. We see that the function N even

c (d) is not unique
for d < 1 if R achieves its critical value 1√

2
over the time

interval corresponding to Fig. 5(b).
The case of odd N is not interesting because it does not

yield any increase of the critical length in comparison with the
homogeneous chain (Nodd

c = 33 < Nhom
c ), as shown in Fig. 6.

V. CONCLUSIONS

In this paper we study several aspects of the remote
state creation using the homogeneous, Ekert, and alternating
spin-1/2 chains. To simplify calculation, we require the
commutation condition (2) for the Hamiltonian and one-spin
excitation initial state. Based on these requirements are the
following results:

(1) The receiver’s density matrix can be simply expressed
in terms of the probability amplitudes. These amplitudes are
the characteristics of the transmission line known in advance
(Secs. II A and II B).

(2) Three parameters of the creatable one-qubit-state space
can be referred to as the phase and amplitude of the eigenvector
and the eigenvalue. We show that an arbitrary eigenvector’s
phase can be created using the proper values of the control
parameters (Sec. II C), the eigenvector’s amplitude can be

tuned by the unitary transformation of the receiver, while the
eigenvalue is most difficult to create and thus deserves special
consideration (Sec. IV).

(3) Being the most reliably creatable, the eigenvector’s
phase (parameter β2) is a preferable candidate for the quantum
information carrier in quantum communication lines.

In addition, the following results were obtained for the
nearest-neighbor XY Hamiltonian (47):

(1) The arbitrary parameters of the two-qubit pure sender’s
initial state are the control parameters establishing the com-
plete local control of the receiver’s creatable region at the
properly fixed time instant of the state registration (Secs. II
and III).

(2) The maximal creatable region corresponds to the time
instant associated with the highest-probability state transfer
(although this probability may be far from unit, i.e., “highest”
does not mean “high”). The creatable region decreases very
quickly with the chain length of a homogeneous chain. As
anticipated in [31], the complete state space of the one-qubit
receiver can be created only in the spin chain engineered for
the pure one-qubit PST (Secs. II C and II E).

(3) The map (control parameter space) → (creatable
parameter space) is numerically described and depicted in
Figs. 1 and 2, thus helping one to choose the control parameters
needed to create a particular receiver’s state (Sec. II E).
Everywhere in Figs. 1–3 we use the same gridding of the
parameter space (α1,α2).

(4) By choosing different lengths of the homogeneous
chain and different time instants of the state registration we can

FIG. 6. The same as Fig. 5 for the chain with odd N and the time interval 0 � t � 3N min (d, 1
d

); (N odd
c )max = 33 < N hom

c .
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select the needed creatable subregion. A similar result can be
achieved using the Ekert chain of a fixed length and different
time instants of the state registration (Sec. III).

(5) Considering the process of the remote eigenvalue
creation, we show that the arbitrary eigenvalue can be created
through the homogeneous spin chain of up to 34 nodes, through
the alternating chain of up to 68 nodes, and through the Ekert
chain of arbitrary length (Sec. IV B).

Among the aspects deserving deeper study, we mention
(i) the transformation of created states using the tool of local
(nonunitary) operations; (ii) the robustness of state creation
with respect to chaotic permutations and model imperfections,
in particular, the effect of remote spin interactions has to be
clarified; and (iii) the model with a two-excitation initial state
(instead of the single-excitation one) has to be explored.

We also notice that the creation and evolution of quantum
correlations is another direction of quantum information
processing stimulating intensive investigations (for instance,
see Refs. [48–53]). Currently, the quantum entanglement
[14,15,17,18] and the quantum discord [54–57] are widely
accepted measures of quantum correlations. The remote
creation of entangled quantum states and states with quantum
discord is one more problem postponed for further study.
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