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Random numbers play a key role in information science, especially in cryptography. Based on the probabilistic
nature of quantum mechanics, quantum random number generators can produce genuine randomness. In
particular, random numbers can be produced from laser phase fluctuations with a very high speed, typically
in the Gbps regime. In this work, by developing a physical model, we investigate the origin of the randomness in
quantum random number generators based on laser phase fluctuations. We show how the randomness essentially
stems from spontaneous emissions. The laser phase fluctuation can be quantitatively evaluated from basic
principles and qualitatively explained by the Brownian motion model. After taking account of practical device
precision, we show that the randomness generation speed is limited by the finite resolution of detection devices.
Our result also provides the optimal experiment design in order to achieve the maximum generation speed.
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I. INTRODUCTION

Random numbers have vast applications in a variety of
tasks, such as secure communication, numerical simulation,
and lotteries. With the development of quantum information
science, random numbers are also indispensable in many
quantum information tasks. For example, in quantum key
distribution (QKD) [1], random numbers are employed for
the preparation of quantum states and the choice of measure-
ment bases in order to guarantee its information-theoretical
security.

Generally, there are two categories of physical random
number generators (RNGs). One type is based on classical
physics, whose randomness originates from the incomplete
knowledge of the RNG system. For instance, classical RNGs
can be based on chaotic behaviors of complicated systems such
as semiconductor lasers [2]. Since a full characterization of
the randomness generation process may enable an adversary
to predict the outcomes, this type of RNG cannot generate
provable randomness. The other type with a mechanism of
measuring a quantum state is called quantum random number
generators (QRNGs). According to the basic principles of
quantum mechanics, true random numbers can be generated,
which means that the outcomes can never be predicted before
the measurement.

QRNGs have developed significantly in the past decade.
The simplest QRNG is shown in Fig. 1, which is designed
by performing single-photon detections. Here a single-photon
|+〉 = (|H 〉 + |V 〉)/√2, which is a superposition of polariza-
tion |H 〉 and |V 〉, passes through a balanced polarization beam
splitter, and then it is detected by single-photon detectors D1

and D2. The event of whether the detector D1 (D2) clicks or
not for each photon is the desired output random number. Till
now, many QRNGs are of this type, but their generation speed
is limited by the dead time of the detectors [3,4]. Subsequently,
some other types of QRNGs have been proposed. One of them
is based on quantum nonlocality, where randomness can be
generated with very high security that does not even rely on
the implementation [5]. The price to pay for such high security
is that the generation speed is so low that the random numbers
cannot satisfy most practical necessities. Another type mea-
sures the photon arrival time from a CW laser and obtains

random numbers from the timing measurement of single-
photon detection relative to an external time reference [6–8].
Restricted by the count rate of the detectors and time resolution
of the time-to-digital converters, the generation speed cannot
be very high. Recently a new type of QRNGs measuring
phase fluctuations from lasers [9–13] outperforms most of
the existing ones in generation speed. Phase fluctuations are
mainly caused by spontaneous emission of excited atoms of
the gain medium in a laser. As a direct effect of vacuum state
fluctuations, spontaneous emission is an excellent resource for
extracting true randomness. In experiments, such a QRNG
based on vacuum fluctuation is realized with a very high
generation speed, up to 1 Gbps [10,12]. It is also shown that
the generation speed has the potential to be extended to 10
Gbps and even 100 Gbps [10].

Such a high speed of the QRNG based on phase fluctuations
leads to a natural question of whether there is a limit
of the generation speed. To answer this question, in our
work, we investigate the randomness generation mechanism
by following a derivation from first principles and use the
Brownian motion model to support it, which is a starting
point to explore the limit of generation speed. We also build a
simple model to express the generation speed as a function
of some device parameters. We show that the generation
speed is finitely limited when considering the precision or
resolution of practical experiment instruments and give the
optimal experiment design in order to achieve the maximum
generation speed.

The rest of this paper is organized as follows. In Sec. II we
review the QRNG scheme and its underlying intuitive physical
model. In Sec. III we quantitatively derive the randomness out-
put from first principles, which is also qualitatively explained
by comparing the similarity with the Brownian motion model.
In Sec. IV we show that the generation speed is finitely limited
and give the optimal experiment design. Then we explain our
result with device imperfection. We discuss another way of
quantifying randomness and conclude in Sec. V.

II. QRNG BASED ON VACUUM FLUCTUATIONS

In this section, we review a typical QRNG scheme based on
measuring the vacuum fluctuations of a laser [12]. As shown
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FIG. 1. The simplest QRNG devices: a balanced polarization
beam splitter and two single-photon detectors D1 and D2.

in Fig. 2, a laser beam passes through a planar light wave
circuit Mach-Zehnder interferometer (PLC-MZI). Due to the
spontaneous emission, there will be a phase fluctuation in
the laser field compared to a plane wave function. The phase
fluctuation is transformed into intensity fluctuation by the
interferometer and then detected by the photodetector (PD).
The output voltage from the PD will be sampled and digitized
by an 8-bit analog-to-digital convertor (ADC), which will
produce true random numbers.

To get the expression of the output randomness, let us first
suppose that the lasing field can be expressed by

E(t) =
√

S exp{i[φ0(t) + φ′(t)]}, (1)

where φ0(t) represents the phase of a plane wave, φ′(t)
represents the phase fluctuations due to spontaneous emission
as well as some other factors, and S represents the photon
number intensity of E. Suppose the time delay between
the two arms of the PLC-MZI is τl , then the measurement
output voltage V (t), which is proportional to the interference
probability, can be expressed by

V (t) ∝ 2E∗(t)E(t + τl) sin[�φ(t)] ∝ P�φ′(t), (2)

where P is the laser output power and �φ′(t) = φ′(t) − φ′(t +
τl) is the total phase fluctuations.

The variance of the phase fluctuations is modeled by

〈�φ′(t)2〉 = Q

P
+ C, (3)

where Q/P and C stand for the contributions from spon-
taneous emission and classical mechanisms, respectively. In
experiments, in order to detect such a variance, we transform
it into the variance of the output voltage by multiplying Eq. (3)

Laser

TC

PLC-MZI

ADCPD

FIG. 2. (Color online) The experiment setup of the QRNG based
on phase fluctuation. (1) A 1.55 μm single-mode cw distributed
feedback (DFB) diode laser (ILX light wave); (2) a compact planar
light wave circuit Mach-Zehnder interferometer (PLC-MZI) with a
500 ps delay difference; (3) a temperature controller used to stabilize
the delay difference of PLC-MZI; (4) a 5 GHZ InGaAs photodetector;
(5) an 8-bit analog-to-digital converter (ADC).
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FIG. 3. Probability distribution of the output voltage. The x axis
stands for the output voltage, and the y axis stands for the probability
density of the voltage. The value range of the output voltage will
be divided to eight intervals. If the voltage is measured to be in
some interval, a 3-bit sequence of random numbers will be generated
accordingly. However, due to the classical noises, we use 〈V 2

Q〉 instead
of 〈V 2〉 to calculate the maximum probability.

by P 2,

〈V 2〉 = AQP + ACP 2 + F, (4)

where A is a constant coefficient and F is the background
noise. The value of AQ, AC, and F can be obtained by fitting
experiment data of P and 〈V 2〉 according to Eq. (4). Then the
laser power P is chosen to maximize the quantum signal to
classical noise ratio γ :

γ = AQP

ACP 2 + F
. (5)

The process to obtain random numbers is shown in Fig. 3,
where we use a 3-bit ADC instead of an 8-bit one for simplicity.
The output voltage is measured and discretized by dividing
its value range into eight intervals. Each voltage interval
corresponds to a 3-bit random number sequence. An 8-bit
ADC works similarly in practice.

Finally, the method to quantify the random number gener-
ation speed is as follows. First it is necessary to quantify the
output randomness per sample with the min-entropy function,

H∞(X) = − log2(maxx∈{0,1}n Pr[X = x]), (6)

where X stands for the n random numbers obtained. When as-
suming that the voltage follows a Gaussian distribution, as the
true randomness comes only from the quantum contribution
AQP in Eq. (4), the maximum probability Pr[X = x] can be
calculated from the quantum variance 〈V 2

Q〉:
〈
V 2

Q

〉 = γ

γ + 1
〈V 2〉. (7)

The maximum probability Pr[X = x] equals the area of the
biggest part under the Gaussian function curve G(0,

√
〈V 2

Q〉).
Then we can calculate the output randomness per sample R0,
and the generation speed is the product of R0 and the sampling
rate.

Therefore we can obtain the final randomness generation
rate by making the following assumptions:

(1) The phase difference 〈�φ′(t)2〉 is assumed to satisfy
Eq. (3).
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(2) The outputs of quantum signal follow a Gaussian
distribution.

(3) The random numbers generated from different samples
are mutually independent.

In our work, we start from first principles to theoretically
derive these assumptions. In the original experiment [12], the
final QRNG speed is given by a product of the sampling
frequency and the randomness output in each sample. It seems
that the generation speed can infinitely increase with infinite
sampling speed. However, we show a contrary result. For
given experiment setups, the generation speed is finite and
maximized with a finite sampling speed.

III. IMPROVEMENT OF PREVIOUS QRNG PHYSICAL
MODEL

In this section, we will start with randomness origin in
laser source and then derive assumptions 1 and 2 with basic
physical models from first principles. In assumption 1, the
quantum contribution of phase fluctuations Q in Eq. (3) is a
constant for given experimental parameters. Our result gives
an accurate expression of Q and shows a linear relationship
between Q and τl . For assumption 2, we prove that the output
voltage V follows a Gaussian distribution indeed. Moreover,
we will use a Brownian motion model to describe the behavior
of the random phase and explain our result from an intuitive
perspective.

A. Randomness origin in laser source

Let us first introduce the basics of lasers and the origin
of the randomness from a laser source. The structure of a
laser source mainly consists of an optical resonator and gain
medium. The gain medium can be regarded as ensembles of
charged particles with two-level energy levels denoted by a
ground state |g〉 and an excited state |e〉. When a laser source
is below the threshold, the population of the particles follow a
Boltzmann distribution. If a population inversion is achieved
due to some external factors, the laser source is above the
threshold and begins to generate the laser. Considering the
interaction between atomic electrons and an electromagnetic
field, a population inversion will lead to two kinds of photon
emissions: stimulated emission and spontaneous emission. The
former is of perfect monochromaticity with energy given by

hν = Ee − Eg, (8)

where Ee and Eg are the energies of the excited and ground
level, respectively. The latter is the origin of randomness.

The output state of spontaneous emission can be given by

|�(t)〉 = a(t)e−iω0t |e; 0〉 +
∑
k,s

bks(t)e
−iωkt |g; 1〉, (9)

according to the Weisskopf-Wigner theory [14]. Here |0〉 and
|1〉 denote the vacuum and single photon state, respectively,
a(t) and bks(t) are probability amplitudes, k stands for the
wave vector, ωk = ck is the frequency of the photon, and s

refers to the spin of the charged particle.
According to the probabilistic nature of quantum mechan-

ics, a measurement on |�(t)〉 will lead to a random projection
to one of the eigenstates and the corresponding eigenvalue ωk .

The measurement results, photon frequency ωk , obtained from
sequential measurements are mutually independent, and their
autocorrelation should be zero. Since ωk corresponds to the
quantum phase fluctuation rate of the laser field Fsp(t), we can
treat Fsp(t) as a white noise.

B. Variance of the quantum phase fluctuations

Now we derive the variance expression in Eq. (3) from
first principles. Since the classical phase noise is laser-power
independent [15], the quantity C in Eq. (3) can be treated
as a constant. As mentioned in Sec. II, it can be calculated
by fitting experiment data. Hence, we focus on deriving the
quantum part of Eq. (3).

To derive the dynamic evolution of the laser field, let us
consider the laser field changes during an infinitesimal time
interval δt . Taking account of the stimulated and spontaneous
emission, the laser field change can be given by

E(t + δt) − E(t) = [f (E(t)) + Esp(t)]δt, (10)

where Esp(t) corresponds to the laser field from spontaneous
emission and f (E(t)) corresponds to the contributions of
stimulated emission and any other factors that may affect the
laser field. Thus, the dynamic evolution of the laser field can
be given by [16]

dE(t)

dt
= f (E(t)) + Esp(t). (11)

For the laser field E expressed in Eq. (1), the total phase
φ(t) can be rewritten in detail as

φ(t) = φ0(t) + φ1(t) + φsp(t), (12)

where φ1(t) and φsp(t) represent the classical and quantum
phase noise, respectively. The total phase dynamically evolves
according to

dφ(t)

dt
= 1

S(t)
Im

[
E∗(t)

dE(t)

dt

]

= Im[E∗(t)f (E(t))]
S(t)

+ Im[E∗(t)Esp(t)]

S(t)

= Im[e−iφ(t)f (E(t))]√
S(t)

+ Im[e−iφ(t)Esp(t)]√
S(t)

. (13)

The evolution of the phase φsp(t) is thus given by

dφsp(t)

dt
= Im[e−iφ(t)Esp(t)]√

S(t)
= Fsp(t). (14)

Due to the Weisskopf-Wigner theory, as discussed in Sec. III A,
we can regard Fsp(t) as a white noise. In fact, they are
identically independent distributed (i.i.d.) for different time
t .

In the experiment setup in the last section, the time delay
between the two arms in the PLC-MZI is τl . Then the phase
difference �φsp induced by quantum spontaneous emission is

�φsp = φsp(t0 + τl) − φsp(t0) =
∫ t0+τl

t0

Fsp(t) dt. (15)
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The variance of the quantum phase fluctuation can be written
as

〈
�φ2

sp

〉 =
〈[∫ t0+τl

t0

Fsp(t) dt

]2
〉

=
〈[∫ t0+τl

t0

Fsp(t) dt

][∫ t0+τl

t0

Fsp(t ′) dt ′
]〉

=
∫ t0+τl

t0

〈Fsp(t)Fsp(t ′)〉dt dt ′

= Rsp

2〈S〉
∫ t0+τl

t0

δ(t − t ′) dt dt ′

= Rspτl

2〈S〉 . (16)

Here we make use of the autocorrelation of Fsp(t),

〈Fsp(t)F ∗
sp(t − τl)〉 = Rspδ(τl)

2〈S〉 , (17)

which is derived from the aforementioned white noise assump-
tion with an autocorrelation function:

〈Esp(t)E∗
sp(t − τl)〉 = Rspδ(τl). (18)

where Rsp is a constant factor which can be physically
interpreted as the spontaneous emission rate. We refer to
Ref. [16] for details of derivation of Eq. (17).

So we can draw a conclusion with the deduction above that
the variance of the quantum phase fluctuations 〈�φ2〉 ∝ τl .
Moreover, the same result can be interpreted physically with
a Brownian motion model.

Brownian motion is a physical phenomenon which de-
scribes the random motion behavior of tiny particles suspended
in a fluid. Due to the collision of the molecules in the fluid, the
tiny particles will move randomly. Einstein’s theory about the
Brownian motion shows that the variance of the displacement
of the tiny particles is linearly proportional to the elapsed time,
which is very similar to Eq. (20).

Considering the complex laser field as a vector in two-
dimensional coordinates, when a photon is added to the field by
spontaneous emission, as shown in Fig. 4, there will be a small
shift both in phase and in amplitude [17]. Due to the property
of spontaneous emission, each increment caused by a photon
emitted is completely random in direction and with a constant
step length. Thus, the lasing field vector can be regarded
as a two-dimensional random walk, which can be proved
to be a Brownian motion process [18]. Then we can draw
the same conclusion that the variance of the quantum phase
fluctuations 〈�φ2〉 ∝ τ with the characteristics of Brownian
motion process.

Generally, when a laser source is above the threshold, its
output power P is proportional to the photon number intensity
S [16],

P = C〈S〉, (19)

where C is a constant determined by intrinsic parameters of a
laser diode. Thus, we derive the first assumption:

〈
�φ2

sp

〉 = CRspτl

2P
. (20)

FIG. 4. (Color online) The laser field changes �E for the incre-
ment of a single photon. The length of �E is equal to 1, and the
phase of �E is completely random. It has the same physical picture
as a step of a two-dimensional random walk from A to B, which has
been proved to be a Brownian motion.

Compared with Eq. (3), we can easily get

Q = CRspτl

2
. (21)

As for assumption 2, to see why the voltage V follows a
Gaussian distribution, we only need to prove that the phase
difference �φsp follows the same distribution according to
Eqs. (2) and (7). From the definition in Eq. (15), for Fsp(t) is
i.i.d., the integrals of Fsp(t) in the same length of time period
are also i.i.d.; therefore we can think that �φsp is the sum of
N i.i.d. variables, where each one is given by∫ t+τl/N

t

Fsp(t ′) dt ′. (22)

Due to the central limit theorem, we can easily conclude that
�φ follows a Gaussian distribution, and its variance is given
in Eq. (16).

IV. MAXIMIZE OUTPUT RANDOMNESS AND
GENERATION SPEED

In previous experiments, the random number generation
speed is the product of the output randomness per sample and
the sampling rate. Even with perfect detectors, the QRNG
speed is limited by the sampling rate [19]; that is, the
output randomness per sample is finite. On the other hand,
it seems that the generation speed will infinitely increase
with infinite sampling rate. In this section, we calculate the
randomness output for given experiment setups. We show that
the output randomness and random number generation speed
are maximized with finite sampling rate when other experiment
parameters are fixed.

In our analysis, the time delay τl and the sampling time
interval τs are free variables. As the PLC-MZI interferes two
laser beams whose emission time difference is τl , we can
equivalently regard it as that the interference comes from two
points in the same beam with time difference τl . As shown
in Fig. 5(a), we can assume the points A and B interfere, for
example.

When τl � τs , the quantum randomness �φsp in Eq. (15) is
independent between different samples, because the integral
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A B

FIG. 5. (Color online) (a) The output of the PLC-MZI in each
sample can be regarded as an interference from points A and B in
the same beam with time difference τl . (b) When the sampling rate
increases, there will be an overlap between different samples, and the
quantum randomness �φsp is not mutually independent for different
samples.

of Fsp(t), which is i.i.d., does not overlap between different
samples. We thus show the assumption 3 is correct for τl �
τs . It is straightforward to see that the output randomness
will increase with increasing sampling speed as long as the
condition τl � τs holds.

On the other hand, as shown in Fig. 5(b), when τl > τs , the
random output �φsp for successive samples has overlapped
integrals, and the quantum phase differences �φsp are not
independent for different samples. Apparently, assumption
3 cannot be satisfied and the derivation needs to be further
adjusted. In this case, one needs to quantify the output
randomness and the generation speed. We know that if τl

is fixed at a certain value, an increasing sampling rate from
the situation τl = τs will result in an increasing generation
speed. Since the uncertainty (entropy) of the system is finite,
as shown later, the generation speed would saturate when the
sampling rate is high enough. To find the optimal sampling
rate, without loss of generality, we take τl as an integer multiple
of τs . Then as shown in the Appendix, this situation can be
regarded as that the random numbers are generated with a
smaller τ ′

l that τ ′
l = τs , and we can equivalently quantify the

output randomness with the parameters τ ′
l and τs .

Thus, when considering the maximum production of ran-
domness, we can always focus on the case of τl = τs . Then we
just need to optimize τl to achieve the most output randomness.
First, the coherence time τc can be defined by that the variance
of φsp changes (2π )2:

〈�φ2〉 = CRspτc

2P
= (2π )2. (23)

In this case, we can rewrite Eq. (20) by

〈�φ2〉 = 4π2 τl

τc

, (24)

and the variance of the output voltage is given by〈
V 2

Q

〉 = AP 2〈�φ2〉 = 4AP 2π2 τl

τc

. (25)

The output voltage follows a Gaussian distribution, and the
output random number is from the voltage in a certain interval.
In the practical scenario where there might exist classical
noises and potential adversaries, the minimum randomness
for each sampling, as shown in Fig. 6, can be expressed as

R0 = − log2 Pmax,

000 001 010 011 100 101 110 111

)
V(P

voltage

FIG. 6. A shift of the voltage partition caused by classical noise
and potential adversaries will always reduce the output randomness
per sample, and the randomness has a minimum with the partition
here, which represents the worst case.

= − log2

[
�′

(
a

2

)
− �′

(
− a

2

)]
,

= − log2

⎡
⎣�

⎛
⎝ a

2
√〈

V 2
Q

〉
⎞
⎠ − �

⎛
⎝− a

2
√〈

V 2
Q

〉
⎞
⎠

⎤
⎦,

= − log2

[
2�

(
λ√
τl

)
− 1

]
, (26)

where �′(x) and �(x) are the cumulative distribution functions
of a Gaussian distribution (0,

√
〈V 2

Q〉) and a standard Gaussian
distribution, respectively, a is the length of a voltage interval,
and λ is a constant determined by experiment parameters
according to

λ = a

4πP

√
τc

A
. (27)

In a fixed sample time T , the total output randomness is

Rtot = T

τs

R0,

= −T

τl

log2

[
2�

(
λ√
τl

)
− 1

]
, (28)

where we make use of the relation τl = τs . Moreover, if we
multiply Eq. (28) by 1/T , the result stands for the random
number generation speed Rs ,

Rs = − 1

τl

log2

[
2�

(
λ√
τl

)
− 1

]
. (29)

Here we show the relationship between Rs and τl in Fig. 7. We
can see that the generation speed Rs has a maximum.

The existence of maximum generation speed can be intu-
itively explained, which is mainly owing to the finite resolution
of the ADC. In Eq. (24), we can see that the variance of
the detected random number is linearly proportional to the
sampling time interval when τs = τl . With increasing sampling
speed, the sampling time interval τs will decrease. When τs

is small enough, the detected random numbers will lie almost
always in the same interval of the ADC. In other words, we
will not detect the quantum noise. In this case, the output
randomness in each sample is almost zero as can be inferred
from Eq. (26). Therefore, considering the resolution of ADC,
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FIG. 7. (Color online) The unit of the random number generation
speed Rs and the time delay difference τl are bit/s and s, respectively.
To merely show their relationship, we set the constant λ to be 1

√
s for

simplicity. Then we can see that Rs has a maximum at τl = 0.88˜s.
In experiments, the actual value of the optimized τl can be calculated
similarly with an accurate λ.

the output randomness will be upper bounded with a finite
value. Additionally, in experiments, if a high-resolution ADC
is not available, we will add a high-gain amplifier after the
photodetector, which is equivalent to increasing parameter A

in Eq. (4). However, combining Eqs. (4) and (25) we can
see that the additional classical noise introduced will increase
with sampling rate, that is, the extra noise contributed by the
amplifier may overpower the benefit it brings in.

On the other hand, it is interesting to see whether the
resolution is the ultimate restriction of the generation speed.
When the resolution is almost infinite, can we get infinite
randomness output with the discussed experiment setup? Here
we show that even if the resolution of the ADC can be infinite,
the generation speed will not increase infinitely. Given a
perfect photon-number resolving detector, the upper bound
of the min-entropy is determined by the photon number within
the detection time window [19]. Suppose that the maximum
of the photon number detected per sample is N , the total
randomness output in the setup, as shown in Fig. 2, is at most
log2 (N + 1) ∼ log2 N (when the photon numbers detected
per sample follows a uniform distribution). That is, the upper
bound of randomness extracted per sample is about log2 N .
Actually the value of the voltage measured with the ADC is
discrete. As the sampling rate increases, the voltage measured
by the ADC will finally fix at some certain value, and the
output randomness will be zero. Therefore, there still exists a
limit of the speed of generating random numbers.

Moreover, here we assume that the response time of the
photodetector is small enough to be ignored. In practice, the
photodetector has finite bandwidth, so the detection can be
understood as an integral process over a certain time interval,
which is the origin of detector response time. If we consider
it in our model, we only need to replace τl with τl + τr , where
τr represents the detector response time satisfying τs > τr

and τc > τr [9].

V. DISCUSSION AND CONCLUSION

In randomness evaluation, we quantify it with min-entropy.
In a sense, we assume that the classical noise is known
to the adversary but not malicious. In a recent work, the
malicious classical noise scenario is considered by quantifying
the randomness with conditional min-entropy [20]. Assuming
the classical noise e also to be Gaussian, in our min-entropy
formula, Eq. (6), Pr(X) should be replaced with a conditional
probability Pr(X|e) to calculate the conditional min-entropy
Hc. When the adversary is assumed to have full control over
the classical noise, the conditional min-entropy minimizing
Hc over e should be used in the worst case scenario. On
the other hand, when the adversary is restricted to passive
eavesdropping, the conditional min-entropy averaging Hc on
the distribution of e is used instead. Here we point out that the
quantification of randomness in our model is quite similar to
the worst-case conditional min-entropy when the variance of
e is small enough, which needs more study in the future work.

In conclusion, by reviewing the QRNG scheme and its
underlying intuitive physical model, we derive the assumptions
and provide a more rigorous model for the QRNG based on
vacuum fluctuation. Our result suggest that random number
generation speed in such a QRNG is finitely bounded in
practice, and the device parameters can be optimized to
maximize the generation speed.
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APPENDIX: DEMONSTRATION OF THE EQUIVALENCE
OF OUTPUT RANDOMNESS IN TWO SITUATIONS:

τs � τl and τs = τ ′
l

In this Appendix, we show the output randomness generated
in two situations: τs � τl and τs = τ ′

l are the same. First, we
need to notice that when the sampling rate is high enough, we
can think τl to be an integer multiple of τs ; that is, τl = nτs ,
where n is a positive integer.

Here denote the phase by φk with label k representing the
time sequence, then the raw data can be given by

d1 = φn+1 − φ1,

d2 = φn+2 − φ2,

. . . .

(A1)

In experiments, autocorrelation of the random numbers {dk}
in the situation τs � τl is very high. To reduce the autocorre-
lation, “exclusive OR” operations can be applied to every two
adjacent sequences of random numbers, as shown in Fig. 8.
After the exclusive or operation, we can get new sequences of
random numbers:

d ′
1 = d2 − d1 = φn+2 − φn+1 − (φ2 − φ1),

d ′
2 = d3 − d2 = φn+3 − φn+2 − (φ3 − φ2),

· · · .

(A2)

Denote bk = dk+1 − dk; then we can see from the main
context that bk are independent random numbers. Then we can
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t

FIG. 8. (Color online) After an exclusive OR operation between
every two adjacent sequences of random numbers, the new sequences
can be expressed as bn+1 − b1, bn+2 − b2, . . ..

express the d ′
k by

d ′
1 = bn+1 − b1,

d ′
2 = bn+2 − b2,

· · · .

(A3)

Then we can easily see that the randomness of {bk} is
the same to that of {d ′

k} in the asymptotic case, while the
randomness of {bk} is generated when we have an equivalent
interferometer with τ ′

l = τs .

[1] C. H. Bennett and G. Brassard, in Proceedings of the IEEE
International Conference on Computers, Systems and Signal
Processing (IEEE Press, New York, 1984), pp. 175–179.

[2] I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, Phys. Rev.
Lett. 103, 024102 (2009).

[3] T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and
A. Zeilinger, Rev. Sci. Instrum. 71, 1675 (2000).

[4] A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and
H. Zbinden, J. Mod. Opt. 47, 595 (2000).

[5] S. Pironio, A. Acı́n, S. Massar, A. B. de La Giroday, D. N.
Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A.
Manning et al., Nature (London) 464, 1021 (2010).

[6] M. A. Wayne and P. G. Kwiat, Opt. Express 18, 9351 (2010).
[7] M. Wahl, M. Leifgen, M. Berlin, T. Röhlicke, H.-J. Rahn, and
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