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Gaussian intrinsic entanglement: An entanglement quantifier based on secret correlations
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Intrinsic entanglement (IE) is a quantity which aims at quantifying bipartite entanglement carried by a quantum
state as an optimal amount of the intrinsic information that can be extracted from the state by measurement. We
investigate in detail the properties of a Gaussian version of IE, the so-called Gaussian intrinsic entanglement (GIE).
We show explicitly how GIE simplifies to the mutual information of a distribution of outcomes of measurements
on a conditional state obtained by a measurement on a purifying subsystem of the analyzed state, which is first
minimized over all measurements on the purifying subsystem and then maximized over all measurements on
the conditional state. By constructing for any separable Gaussian state a purification and a measurement on
the purifying subsystem which projects the purification onto a product state, we prove that GIE vanishes on all
Gaussian separable states. Via realization of quantum operations by teleportation, we further show that GIE is
nonincreasing under Gaussian local trace-preserving operations and classical communication. For pure Gaussian
states and a reduction of the continuous-variable GHZ state, we calculate GIE analytically and we show that it is
always equal to the Gaussian Rényi-2 entanglement. We also extend the analysis of IE to a non-Gaussian case by
deriving an analytical lower bound on IE for a particular form of the non-Gaussian continuous-variable Werner
state. Our results indicate that mapping of entanglement onto intrinsic information is capable of transmitting
also quantitative properties of entanglement and that this property can be used for introduction of a quantifier
of Gaussian entanglement which is a compromise between computable and physically meaningful entanglement
quantifiers.
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I. INTRODUCTION

Since the dawn of quantum information theory, its de-
velopment has been guided by the findings of classical
information theory. Indeed, some key quantum information
concepts, including early entanglement distillation proto-
cols [1], quantum error correction [2], and some fundamental
quantum information inequalities [3], appeared initially as
nontrivial translations of their classical counterparts into the
language of quantum states. Naturally, the further independent
development of quantum information theory has led to the
emergence of concepts with no analogy in classical theory.
This category includes, for instance, bound entanglement [4],
entanglement distribution by separable states [5], and super-
activation of entanglement [6]. It is not surprising then that the
opposite effect occurred when quantum information started to
enrich classical information theory with new concepts such
as bound information [7,8], secrecy distribution by nonsecret
correlations [9], and a classical analogy to superactivation [10].

Classical analogies of quantum phenomena are almost
exclusively cryptographic analogies of some properties of
quantum entanglement. Entanglement is the key resource in
quantum information and it is synonymous with correlations
among two or more quantum systems which cannot be
prepared by local operations and classical communication
(LOCC). The cryptographic parallels of entanglement proper-
ties are carried by classical probability distributions containing
so-called secret correlations [11,12]. The correlations are
a fundamental resource in cryptography and appear in the
scenario when two honest parties, Alice and Bob, and an
adversary Eve, share three correlated random variables A, B,
and E obeying a probability distribution P (A,B,E). The
distribution carries secret correlations if it is impossible for
Alice and Bob to create the distribution by local operations and

public communication [13]. Owing to the apparent similarity
with entanglement, secret correlations can therefore be viewed
as a classical analogy to entanglement [14]. In fact, secret
correlations and quantum entanglement are not just analogs
but are directly linked as the latter can be mapped onto
the former as follows [15]. A third adversary party Eve,
seemingly missing in a quantum state ρAB , is associated with
all information which could potentially be carried by a third
system E, i.e., the global state |�〉ABE of the tripartite system
is a purification of the state ρAB (TrE|�〉ABE〈�| = ρAB). A
given quantum state ρAB can then be mapped onto a probability
distribution P (A,B,E) by performing measurements �A, �B ,
and �E on subsystems A, B, and E of the purification as [15]

P (A,B,E) = Tr(�A ⊗ �B ⊗ �E|�〉ABE〈�|). (1)

The presence of secret correlations in the obtained distri-
bution can be certified with the help of the so-called intrinsic
conditional information defined as [16]

I (A; B ↓ E) = inf
E→Ẽ

[I (A; B|Ẽ)]. (2)

Here,

I (A; B|E) = H (A,E) + H (B,E) − H (A,B,E) − H (E)

(3)

is the mutual information between A and B conditioned on E,
where H (X) is the Shannon entropy [17], and the minimization
is performed over all channels E → Ẽ characterized by a
conditional probability distribution P (Ẽ|E). The intrinsic
information gives a lower bound to the information of
formation [12] quantifying the amount of secret bits [18]
needed for preparation of the distribution, and an upper bound
to the rate at which a secret key can be distilled from the
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distribution [16] in the secret-key agreement protocol [11].
More importantly, the distribution P (A,B,E) contains secret
correlations if and only if I (A; B ↓ E) > 0 [9,12]. Moving
back to the mapping (1) one can then show using intrinsic
information (2) that provided that the state ρAB is entangled
one can always find measurements �j such that the obtained
distribution contains secret correlations [7]. Moreover, the
multipartite form of the mapping (1) is even capable of
mapping more subtle properties of entanglement such as its
boundedness [8].

So far, the mapping (1) has been investigated only from the
point of view of the ability to transmit qualitative properties of
quantum states onto classical probability distributions. A nat-
ural step forward would therefore be to elucidate whether the
mapping can also preserve the quantitative properties of input
states. Specifically, it would be of interest to know whether
there is a function of a probability distribution P (A,B,E)
associated with a quantum state ρAB via mapping (1) which
does not increase under any LOCC operation on the state.
This would mean that the composition of the mapping and the
function preserve the fundamental property that entanglement
does not increase under LOCC operations. This is, however,
important from a practical point of view because such a
function then can be used to quantify entanglement [19].

An interesting attempt to quantify entanglement with the
mapping (1) has been put forward by Gisin and Wolf [7]. They
introduced the following optimized intrinsic information:

μ(ρAB) = inf
{�E,|�〉}

{
sup

{�A,�B }
[I (A; B ↓ E)]

}
, (4)

where the supremum is taken over all projective measurements
{�A = |A〉〈A|} and {�B = |B〉〈B|} on subsystems A and B,
respectively, and the infimum is taken over all purifications
|�〉 of the state ρAB and all positive operator-valued measures
(POVM) {�E} on subsystem E. Further, in Ref. [7] it was
shown that the quantity (4) possesses some properties of an
entanglement measure such as equality to the von Neumann
entropy on pure states and convexity, and it was also calculated
analytically for two-qubit Werner states. The quantity (4) is
particularly interesting because unlike most of the other en-
tanglement measures it is intimately related with a meaningful
protocol: it is an upper bound in the secret-key agreement
protocol [11]. What is more, it may even characterize secret
correlations distillable to a secret key provided that the
conjectured bipartite nondistillable secret correlations with a
strictly positive intrinsic information (the so-called bipartite
bound information [7]) do not exist. Despite this fact, the
other properties of entanglement measures have not been
investigated for the quantity (4) but it inspired the introduction
of a different measure called squashed entanglement [20]. In
particular, the key questions of whether the quantity (4) is
nonincreasing under LOCC operations and whether it can be
calculated also for other quantum states remain open.

To find answers to the latter questions can be a hard or
even intractable task owing to the apparent complexity of the
quantity (4). Nevertheless, the quantity (4) can still inspire
the introduction of a closely related quantity for which the
proof of monotonicity under LOCC operations as well as
its computation can be considerably easier. The quantity in

question is the so-called intrinsic entanglement (IE) defined
as [21]

E↓(ρAB) = sup
{�A,�B }

{
inf

{�E,|�〉}
[I (A; B ↓ E)]

}
. (5)

In comparison with the quantity (4), the order of optimization
in the definition of IE is reversed and hence E↓ � μ due
to the max-min inequality [22]. In fact, the two quantities
may coincide if the intrinsic information (2) together with
the sets {�A,�B} and {�E,|�〉} possess the strong max-min
property [22] which guarantees that the order of optimization
in Eq. (5) can be commuted. Reference [21] further deals
with a Gaussian version of IE, the so-called Gaussian intrinsic
entanglement (GIE). The GIE is defined as in Eq. (5), where
all channels E → Ẽ in Eq. (2), and all quantum states ρAB and
|�〉, and measurements {�j }, j = A,B,E, are assumed to be
Gaussian. It is further shown that GIE simplifies considerably
to the optimized mutual information of a distribution of
outcomes of Gaussian measurements on subsystems A and
B of a conditional state obtained by a Gaussian measurement
on subsystem E of a Gaussian purification of the state ρAB .
Next, it is proved that GIE vanishes if and only if the state
ρAB is separable and that it does not increase under Gaussian
local trace-preserving operations and classical communication
(GLTPOCC). Finally, some analytical formulas are obtained
for GIE as well as IE. First, GIE is calculated analytically for
pure Gaussian states as well as for a two-mode reduction of the
three-mode CV GHZ state [23] and it is shown that it always
coincides with the Gaussian Rényi-2 (GR2) entanglement [24].
Second, an analytical lower bound on IE is derived for a subset
of the set of the non-Gaussian continuous-variable Werner
states [25], which is given by convex mixtures of the two-mode
squeezed vacuum state and the vacuum state.

This paper accompanies the original paper on GIE [21]. It
contains details of proofs of the properties of GIE presented
in Ref. [21]. Additionally, we also provide two results not
mentioned in Ref. [21]. First, we show that the monotonicity
of GIE under GLTPOCC implies the invariance of GIE with
respect to Gaussian local unitaries. Second, we prove that if
we allow for non-Gaussian measurements {�A,�B} in the
definition of GIE we get a quantity which is on pure Gaussian
states equal to the entropy of entanglement in analogy with
the quantifier (4) which is also equal to the entropy of
entanglement for pure states [7].

The paper is organized as follows. Section II contains a
brief introduction into the formalism of Gaussian states. In
Sec. III, we show explicitly that for GIE the channel E → Ẽ

in Eq. (2) can be integrated into Eve’s measurement. The next
Sec. IV contains a proof that in the definition of GIE (5)
we can use a fixed purification and the minimization over
all Gaussian purifications can be omitted. Section V then
presents the construction of a Gaussian measurement which
projects a Gaussian purification of a separable Gaussian state
onto a product state and Sec. VI is dedicated to a detailed
proof of the monotonicity of GIE under GLTPOCC operations.
Derivation of an analytical expression for GIE and proof of
its equality to GR2 entanglement is given for pure Gaussian
states in Sec. VII and for the two-mode reduction of the
three-mode CV GHZ state in Sec. VIII. Finally, in Sec. IX
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we derive an analytical lower bound on IE for a subclass of the
non-Gaussian continuous-variable Werner states. Section X
contains conclusions.

II. GAUSSIAN STATES

In this paper, we consider quantum systems with infinite-
dimensional Hilbert state spaces which can be physically
implemented by modes of the electromagnetic field. A system
of n modes can be conveniently described by a vector of
quadratures ξ = (x1,p1, . . . ,xn,pn)T whose components obey
the canonical commutation rules [ξj ,ξk] = i(�n)jk with

�n =
n⊕

i=1

(
0 1

−1 0

)
(6)

being the so-called symplectic matrix. According to definition,
Gaussian states are quantum states of modes, which possess
a Gaussian Wigner function. An n-mode Gaussian state ρ

is therefore fully characterized by a vector of first moments
〈ξ 〉 = Tr(ξρ), and by a covariance matrix (CM) γ with entries
γjk = 〈{�ξj ,�ξk}〉, where �ξj = ξj − 〈ξj 〉 and {A,B} ≡
AB + BA is the anticommutator. The quantity GIE analyzed
in this paper depends only on the elements of the CM and
thus the vector of the first moments 〈ξ 〉 is from now assumed
to be zero for simplicity. We use Gaussian unitary operations
which are for n modes represented at the level of CMs by a real
2n × 2n symplectic matrix S fulfilling S�nS

T = �n. Recall,
also, that any CM γ can be symplectically diagonalized,
i.e., there exists a symplectic matrix S that brings γ to the
Williamson normal form [26]

Sγ ST = diag (ν1,ν1, . . . ,νn,νn) , (7)

where ν1 � · · · � νn � 1 are the symplectic eigenvalues of γ .
As for measurements, we restrict ourselves to Gaussian

measurements which can be implemented by appending
auxiliary vacuum modes, using passive and active linear optics
(phase shifters, squeezers, and beam splitters) and homodyne
detections. Any such measurement on n modes is described
by the following POVM [27]:

�(d) = 1

(2π )n
D(d)�0D

†(d), (8)

where the seed element �0 is a normalized density matrix
of a generally mixed n-mode Gaussian state with zero first
moments and CM �, D(d) = exp(−idT �nξ ) is the displace-
ment operator, and d = (d (x)

1 ,d
(p)
1 , . . . ,d (x)

n ,d
(p)
n )T ∈ R2n is a

vector of measurement outcomes. From the normalization
condition Tr[�0] = 1 it follows that the POVM (8) satisfies
the completeness condition∫

R2n

�(d)d2nd = 1, (9)

where d2nd = �n
l=1dd

(x)
l dd

(p)
l .

In the present analysis of IE [Eq. (5)], we assume that the
state ρAB ≡ ρA1...ANB1...BM

is an (N + M)-mode Gaussian state
of N modes A1,A2, . . . ,AN and M modes B1,B2, . . . ,BM ,
which is described by the CM γAB . Further, we also assume that
|�̄〉ABE is an (N + M + K)-mode Gaussian purification of the
state ρAB , which contains K purifying modes E1,E2, . . . ,EK ,

and which is described by the CM γ̄π . By performing Gaussian
measurements (8) with covariance matrices (CMs) �A, �B ,
and �E on subsystems A, B, and E of the purification |�̄〉ABE ,
the mapping (1) yields a zero-mean Gaussian distribution
P (dA,dB,dE) of measurement outcomes dA,dB , and dE , which
is given by the formula

P (dA,dB,dE) = e−dT �−1d

πN+M+K
√

det�
, (10)

where d = (dT
A ,dT

B ,dT
E )T and

� =
(

γAB + �A ⊕ �B γ̄ABE

γ̄ T
ABE γ̄E + �E

)
≡
(

α β

βT δ

)
(11)

is the classical covariance matrix (CCM) [28] of the dis-
tribution expressed with respect to AB|E splitting. Here,
γAB, γ̄ABE , and γ̄E are blocks of the CM γ̄π of the purification
|�̄〉ABE , when expressed with respect to the same splitting,
i.e.,

γ̄π =
(

γAB γ̄ABE

γ̄ T
ABE γ̄E

)
. (12)

In what follows, we analyze a Gaussian version of the
quantifier (5), where the role of the distribution P (A,B,E)
is played by the Gaussian distribution (10).

III. PROOF THAT ANY GAUSSIAN CHANNEL CAN
BE INTEGRATED INTO EVE’S MEASUREMENT

At the beginning we show that the quantity IE [Eq. (5)]
greatly simplifies in the Gaussian scenario. First, we prove
that any Gaussian channel E → Ẽ appearing in Eq. (2) can be
always incorporated into Eve’s measurement.

The proof goes as follows. We assume that the channel
E → Ẽ in Eq. (2) is a Gaussian channel dE → d̃E mapping
a 2K × 1 column vector dE onto an L × 1 column vector d̃E ,
where dE contains measurement outcomes of a measurement
on Eve’s K modes of an (N + M + K)-mode purification
|�̄〉ABE of the state ρAB . Such a channel is described by a
linear transformation

d̃E = XdE + y, (13)

where X is a fixed real L×2K matrix and y = (y1,y2, . . . ,

yL)T is an L × 1 random column vector distributed with a zero
mean Gaussian distribution characterized by an L × L CCM Y

with elements Yij = 〈{yi,yj }〉, i,j = 1, . . . ,L. The input to the
channel is a vector dE of Eve’s measurement outcomes, which
is distributed according to a zero mean Gaussian distribution
with a fixed CCM δ = γ̄E + �E given in Eq. (11). The channel
is therefore fully characterized by a joint Gaussian distribution
P (dE,d̃E) with zero mean and a CCM of the form

χ =
(

δ δXT

Xδ XδXT + Y

)
. (14)

The input Gaussian distribution P (dA,dB,dE) [Eq. (10)] is then
transformed by the channel as

P̃ (dA,dB,d̃E) =
∫

P (d̃E|dE)P (dA,dB,dE)d2KdE, (15)
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where

P (d̃E |dE) = P (dE,d̃E)

P (dE)
= e−(d̃E−XdE )T Y−1(d̃E−XdE )

√
πLdetY

(16)

is a conditional Gaussian probability distribution of the
channel. We now substitute into the right-hand side (RHS)
of Eq. (15) for the distribution P (dA,dB,dE) from Eq. (10),
which gives the output distribution (15) in the form

P̃ (dA,dB,d̃E) = e−d̃T �̃−1d̃

πN+M+ L
2

√
det�̃

, (17)

where d̃ = (dT
A ,dT

B ,d̃T
E )T and

�̃ =
(

α βXT

XβT XδXT + Y

)
, (18)

where the matrices α, β, and δ are defined in Eq. (11).
The figure of merit considered in this paper is the

conditional mutual information I (A; B|E) of the output
distribution (17) which coincides with the standard mutual
information I (A; B) of the corresponding conditional distri-
bution P̃ (dA,dB |d̃E) [21]. The latter distribution is Gaussian
and the mutual information depends on its CCM which is given
by the Schur complement [29] of the CCM (18),

σAB = α − βXT (XδXT + Y )−1XβT , (19)

where the inverse is to be understood generally as the
pseudoinverse.

Now, we prove that for any channel (13) there is a
measurement on Eve’s modes characterized by a CM �̃E such
that

σAB = α − β(γ̄E + �̃E)−1βT . (20)

As a result, without loss of generality, we can omit the
minimization appearing in Eq. (2) and the intrinsic conditional
information I (A; B ↓ E) in the definition (5) can thus be
replaced with the standard conditional mutual information
I (A; B|E) [Eq. (3)].

Our proof utilizes the singular value decomposition [29] of
the matrix X,

X = USVT , (21)

where U is an L×L real orthogonal matrix, V is a 2K × 2K

real orthogonal matrix, and S is an L × 2K rectangular
diagonal matrix of the form

S =
(

sQ OQ×(2K−Q)

O(L−Q)×Q O(L−Q)×(2K−Q)

)
, (22)

where OI×J is an I×J zero matrix, sQ = diag(ς1,ς2, . . . ,ςQ)
is a Q × Q diagonal matrix with the strictly positive sin-

gular values ς1 � ς2 � . . . � ςQ > 0 on the diagonal, and
Q = rankX. Inserting Eq. (21) into (19) one obtains

σAB = α − βVST (SVT δVST + UT YU)−1SVT βT . (23)

Making use of Eq. (22) one can further express the L × L

matrix SVT δVST , appearing in the round brackets in Eq. (23),
as

SVT δVST = τQωQτQ, (24)

where τQ is an L × L matrix of the form

τQ = sQ ⊕ 1L−Q (25)

and

ωQ = (VT δV)Q ⊕ O(L−Q)×(L−Q), (26)

where (VT δV)Q is the first Q × Q block of the matrix VT δV
and 1I is an I × I identity matrix. Substitution for SVT δVST

in Eq. (23) from (24) and utilizing the formula

τ−1
Q S =

(
1Q OQ×(2K−Q)

O(L−Q)×Q O(L−Q)×(2K−Q)

)
≡ I (27)

further yields the matrix (23) in the form

σAB = α − βVIT
(
ωQ + YU,sQ

)−1IVT βT , (28)

where

YU,sQ
= τ−1

Q UT YUτ−1
Q (29)

is an L × L positive-semidefinite matrix. Substitution for the
matrix I from Eq. (27) into (28) further yields

σAB = α − βVWVT βT , (30)

with

W =
(

wQ O

OT Õ

)
(31)

being a 2K × 2K matrix, where we have defined O ≡
OQ×(2K−Q), Õ = O(2K−Q)×(2K−Q), and

wQ ≡ [(ωQ + YU,sQ

)−1]
Q

(32)

is the first Q × Q block of the matrix (ωQ + YU,sQ
)−1. If we

express the matrix (29) in the block form

YU,sQ
=
(
A C
CT B

)
, (33)

where A is a Q × Q block, C is a Q × (L − Q) block, and B
is an (L − Q) × (L − Q) block, we can write

wQ = [(VT δV)Q + A − CB−1CT ]−1, (34)

where we have used the blockwise inversion [29]

(
A C

CT B

)−1

=
(

(A − CB−1CT )−1 A−1C(CT A−1C − B)−1

(CT A−1C − B)−1CT A−1 (B − CT A−1C)−1

)
. (35)

Repeated use of the formula [29]

(A − CB−1CT )−1 = A−1 + A−1C(B − CT A−1C)−1CT A−1 (36)

062313-4



GAUSSIAN INTRINSIC ENTANGLEMENT: AN . . . PHYSICAL REVIEW A 91, 062313 (2015)

further reveals that the 2K × 2K matrix W given in Eq. (31)
can be obtained as a limit of the 2K × 2K matrix

Wx =
[
VT δV +

(
A − CB−1CT O

OT x1

)]−1

, (37)

when x → +∞, x � 0, and 1 ≡ 12K−Q. The Schur comple-
ment (30) is then obtained from the matrix

σAB,x ≡ α − βVWxVT βT (38)

in the limit for x → +∞. By substitution we get immediately

σAB,x ≡ α − βZ−1
x βT , (39)

with

Zx = γ̄E + �E + V
(
A − CB−1CT O

OT x1

)
VT , (40)

where we have used the equality δ = γ̄E + �E . The last matrix
in the latter equation is positive semidefinite and therefore the
matrix

�̃x
E = �E + V

(
A − CB−1CT O

OT x1

)
VT (41)

represents a legitimate CM of a Gaussian quantum state.
Consequently, a Gaussian measurement (8) on Eve’s system
described by a CM �E followed by a Gaussian channel (13)
characterized by the matrices X and Y on the outcomes
of the measurement can be replaced with another Gaussian
measurement with the CM �̃E = �̃x→+∞

E which concludes
the proof.

IV. PROOF THAT MINIMIZATION OVER
PURIFICATIONS CAN BE OMITTED

The next step of simplification of IE [Eq. (5)] is the proof
that in the Gaussian scenario, without loss of generality,
we can use in Eq. (5) a fixed minimal purification [30]
of the state ρAB , i.e., a purification containing minimum
possible number of purifying modes. Moreover, we also show
that the minimization over all Gaussian purifications can be
integrated into a minimization over Eve’s measurement.

According to the assumption, the state ρAB is an (N + M)-
mode Gaussian state, where subsystem A consists of N

modes and subsystem B consists of M modes. The minimal
purification of such a state is an (N + M + R)-mode pure
Gaussian state |�〉ABE satisfying TrE|�〉ABE〈�| = ρAB , for
which the purifying subsystem E consists of R � N + M

modes, where R is the number of symplectic eigenvalues of
the CM γAB of the state ρAB , that are strictly greater than
one [30]. When expressed with respect to the AB|E splitting
the CM (≡γπ ) of the minimal purification reads as

γπ =
(

γAB γABE

γ T
ABE γE

)
, (42)

where

γE =
R⊕

i=1

νi12, γABE = S−1

(⊕R
i=1

√
ν2

i − 1σz

O2(N+M−R)×2R

)
. (43)

Here, σz = diag(1,−1) is the Pauli diagonal matrix and S is the
symplectic matrix that brings the CM γAB to the Williamson

normal form (7), where n = N + M and ν1 � ν2 � · · · �
νR > νR+1 = · · · = νN+M = 1.

In Eq. (5), we consider the minimization over all Gaussian
purifications of the investigated Gaussian state ρAB . For any
such purification |�̄〉ABE with K-mode purifying subsystem
E, there is a Gaussian unitary transformation UE(S̄E) on
Eve’s modes which connects the purification |�̄〉ABE with the
minimal purification |�〉ABE by the formula [31,32]

|�̄〉ABE = U
†
E(S̄E)|�〉ABE|{0}〉ER+1...EK

. (44)

Here, |{0}〉ER+1...EK
≡ ⊗K−R

i=1 |0〉ER+i
is the product of K − R

ancillary vacuum modes that Eve can use, and the op-
erator UE(S̄E) symplectically diagonalizes reduced state
ρ̄E = TrAB(|�̄〉ABE〈�̄|) of Eve’s subsystem E. Denoting
the CM of the purification |�̄〉ABE as γ̄π one can express
the transformation (44) on the level of CMs in the form

γ̄π = [1AB ⊕ S̄−1
E

]
γπ ⊕ 1ER+1...EK

[
1AB ⊕ (S̄T

E

)−1]
, (45)

where 1AB is a 2(N + M) × 2(N + M) identity matrix,
1ER+1...EK

is a 2(K − R) × 2(K − R) identity matrix, and S̄E is
the 2K × 2K symplectic matrix symplectically diagonalizing
the local CM γ̄E of Eve’s subsystem, i.e.,

S̄Eγ̄ES̄T
E = γE ⊕ 1ER+1...EK

, (46)

where γE is the diagonal 2R × 2R CM of the reduced state
of subsystem E of the minimal purification |�〉ABE given in
Eq. (43). Expressing now the CMs γπ and γ̄π with respect to
the A|B|E splitting,

γ̄π =

⎛
⎜⎝

γA ωAB γ̄AE

ωT
AB γB γ̄BE

γ̄ T
AE γ̄ T

BE γ̄E

⎞
⎟⎠ (47)

and

γπ =

⎛
⎜⎝

γA ωAB γAE

ωT
AB γB γBE

γ T
AE γ T

BE γE

⎞
⎟⎠ , (48)

one gets from Eq. (45) for the 2(N + M) × 2K block
(γ̄ T

AE,γ̄ T
BE)T the expression(

γ̄AE

γ̄BE

)
=
(

γAE O2N×2(K−R)

γBE O2M×2(K−R)

) (
S̄T

E

)−1
. (49)

Further, by inverting Eq. (46) we can also express the CM γ̄E

as

γ̄E = S̄−1
E

(
γE ⊕ 1ER+1...EK

) (
S̄T

E

)−1
. (50)

As any Gaussian channel on Eve’s measurement outcomes
can be integrated into Eve’s measurement the CCM relevant
to the optimization of the conditional mutual information is
given by the Schur complement

σ̄AB = α −
(

γ̄AE

γ̄BE

)
(γ̄E + �̄E)−1

(
γ̄AE

γ̄BE

)T

(51)

of the CCM

�̄ = γ̄π + �A ⊕ �B ⊕ �̄E ≡
(

α β

βT δ̄

)
, (52)
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where �A, �B , and �̄E are CMs of the measurements on
Alice’s, Bob’s, and Eve’s subsystems and the last 2 × 2 block
matrix is the expression of the matrix �̄ with respect to AB|E
splitting. Inserting from Eq. (49) into Eq. (51) one gets after
some algebra

σ̄AB = α −
(

γAE

γBE

)
TR

(
γAE

γBE

)T

, (53)

where TR is the first 2R × 2R diagonal block of the 2K × 2K

matrix

T = [γE ⊕ 1ER+1...EK
+ �̄E(S̄E)

]−1
, (54)

and �̄E(S̄E) = S̄E�̄ES̄T
E is a 2K × 2K CM of another of Eve’s

measurements. If we express finally the latter matrix in the
block form

�̄E(S̄E) =
(

Ā C̄

C̄T B̄

)
, (55)

with Ā being a 2R × 2R matrix and B̄ being a 2(K − R) ×
2(K − R) matrix we can express the block TR using formula
(35) as

TR = [γE + Ā − C̄(B̄ + 1)−1C̄T ]−1. (56)

The matrix

�E ≡ Ā − C̄(B̄ + 1)−1C̄T (57)

can be viewed as a CM of an R-mode conditional Gaussian
state obtained by projecting the last K − R modes of a K-
mode Gaussian state with CM (55) onto a coherent state and
therefore �E is a legitimate CM of a physical quantum state.
Consequently, one finally gets for the matrix (51) the following
equation:

σ̄AB = α −
(

γAE

γBE

)
(γE + �E)−1

(
γAE

γBE

)T

= σAB. (58)

Thus, for any Gaussian purification and any Gaussian mea-
surement on subsystem E, the matrix (51) can be obtained
from the minimal purification with CM (42) and a Gaussian
measurement with CM (57) on Eve’s part of the purification.
Hence, when calculating the quantity defined in Eq. (5) in
the Gaussian scenario we can consider only a fixed minimal
purification and we can omit the minimization with respect to
all Gaussian purifications, which accomplishes the proof.

Having found simplifications of IE in the Gaussian scenario,
we are now in the position to incorporate them into the
definition (5). Let us consider a Gaussian state ρAB and its
minimal purification with CM (42) which has been mapped
by Gaussian measurements with CMs �A, �B , and �E onto
the Gaussian distribution of the form (10). As we have
already said, the intrinsic information in Eq. (5) can be
replaced with the standard conditional mutual information
(3), which coincides with the standard mutual information
[≡Ic(A; B)] of the corresponding conditional distribution. The
latter distribution possesses the CCM in the form of the Schur
complement [29]

σAB = γAB + �A ⊕ �B − γABE (γE + �E)−1 γ T
ABE, (59)

where γAB, γABE , and γE are submatrices of the CM γπ of
the minimal purification of the state ρAB , which are defined

in Eq. (43). From the formula for mutual information of a
bivariate Gaussian distribution [33], it follows further that
Ic(A; B) = f (γπ ,�A,�B,�E), where

f (γπ ,�A,�B,�E) = 1

2
ln

(
detσAdetσB

detσAB

)
(60)

with σA,B being local submatrices of CCM (59). If we use now
the definition of IE [Eq. (5)], and we take into account that we
can omit minimization over all purifications, we arrive finally
at the following formula for GIE [21]:

EG
↓ (ρAB) = sup

�A,�B

inf
�E

f (γπ ,�A,�B,�E) . (61)

Before going further, let us note one consequence stemming
from the fact that for any purification with K purifying modes
described by the CM (47) and any measurement on the modes
with CM �̄E we can find a measurement with CM (57) on
the minimal purification giving the same matrix (51). This
implies that for any two purifications containing a generally
different and not necessarily minimal number of purifying
modes, we can find measurements on the purifying subsystems
which yield the same matrix (51). To show this, consider
two purifications with CMs γ̄π and γ ′

π which contain K and
K ′ purifying modes, respectively, where K � K ′. By using
Eq. (45) for both the CMs γ̄π and γ ′

π one finds that they are
connected by a similar equation

γ ′
π = [1AB ⊕ S −1

E

]
γ̄π ⊕ 12(K ′−K)

[
1AB ⊕ (S T

E

)−1 ]
. (62)

Here, 12(K ′−K) = 1EK+1...EK′ and the symplectic matrix SE =
[S̄−1

E ⊕ 12(K ′−K)]S ′
E satisfies SEγ ′

ES T
E = γ̄E ⊕ 12(K ′−K) and

it consists of symplectic matrices S̄E and S ′
E which sym-

plectically diagonalize the local CMs γ̄E and γ ′
E of CMs γ̄π

and γ ′
π , respectively, corresponding to subsystem E. Making

use of the formula (62), we can now repeat the procedure
leading from Eq. (45) to (58) to show that for the purification
with CM γ ′

π and an arbitrary measurement with CM �′
E on

subsystem E there always exists a measurement with CM
�̄E on the purification with CM γ̄π for which it holds that
σ ′

AB = σ̄AB . If we perform, on the other hand, on the subsystem
E of the purification with CM γ ′

π the measurement with
CM �′

E ≡ S −1
E [�̄E ⊕ 12(K ′−K)](S T

E )−1, one finds easily that
the matrix σ ′

AB is equal to the matrix σ̄AB corresponding to
the purification with CM γ̄π and the measurement with CM
�̄E . Therefore, without loss of generality, we can consider
in the formula (61) an arbitrary fixed purification, i.e., a
fixed purification containing an arbitrary number of purifying
modes, and we can restrict ourselves to minimizing only
over all Gaussian measurements on the purifying modes. This
property proves to be useful in the proof of the monotonicity
of the GIE under GLTPOCC, which is given later.

V. GAUSSIAN MEASUREMENT PROJECTING
PURIFICATION OF A SEPARABLE GAUSSIAN

STATE ONTO A PRODUCT STATE

A basic property of any entanglement measure is that
it vanishes on all separable states [34]. In Ref. [7], it was
shown that for any separable state, whatever measurements
are performed by Alice and Bob there is always Eve’s
measurement such that the conditional mutual information (3)

062313-6



GAUSSIAN INTRINSIC ENTANGLEMENT: AN . . . PHYSICAL REVIEW A 91, 062313 (2015)

of the probability distribution (1) vanishes. Inspired by the
proof of the latter statement, we show here that also the GIE
is zero for all separable Gaussian states.

The vanishing of the GIE on separable Gaussian states
is a direct consequence of the fact that for any separable
Gaussian state ρ

sep
AB there is a Gaussian measurement on the

purifying system E of the minimal purification of the state,
that projects modes A and B onto a pure product state.
Indeed, by performing such a measurement on subsystem
E of the minimal purification of a separable state ρ

sep
AB , one

finds that the conditional distribution P (dA,dB |dE) factorizes
as P (dA,dB |dE) = P (dA|dE)P (dB |dE) for any measurement
on subsystems A and B. Consequently, the conditional mutual
information (3) and therefore also GIE are equal to zero.

It remains to find the measurement mentioned above. The
sought measurement can be constructed after consideration of
a measurement on another purification created using the sepa-
rability criterion [35]. According to the separability criterion,
a Gaussian state with CM γ

sep
AB is separable if and only if there

exist pure-state CMs γ
p

A,B such that the matrix Q ≡ γ
sep
AB −

γ
p

A ⊕ γ
p

B � 0. If V denotes the orthogonal matrix diagonaliz-
ing the matrix Q, i.e., V T QV = diag(λ1,λ2, . . . ,λP ,0, . . . ,0),
where λi , i = 1, . . . ,P , are the strictly positive eigenvalues of
the matrix Q, the state ρ

sep
AB can be expressed as

ρ
sep
AB =

∫
p(r)

⊗
j=A,B

Dj [(V r)j ]
∣∣γ p

j

〉
j

〈
γ

p

j

∣∣D†
j [(V r)j ]�P

l=1drl.

(63)

Here, Dj (dj ) stands for the Jj -mode displacement operator
performing phase-space displacement of the subsystem j

by dj = (d (x)
j1

,d
(p)
j1

, . . . ,d
(x)
jJj

,d
(p)
jJj

)T with ξj = (xj1 ,pj1 , . . . ,

xjJj
,pjJj

)T being the vector of the quadratures of

the subsystem, p(r) ≡ �P
i=1exp(−r2

i /λi)/
√

πλi , |γ p

A,B〉A,B

are pure states with CMs γ
p

A,B and zero displace-
ments, V is the 2(N + M) × P matrix composed
of the first P columns of the matrix V , r =
(r1,r2, . . . ,rP )T , (V r)A = [(V r)1,(V r)2, . . . ,(V r)2N ]T , and
(V r)B = [(V r)2N+1,(V r)2N+2, . . . ,(V r)2(N+M)]T . Now, we
construct a new (N + M + P )-mode purification by encod-
ing the displacements rj , j = 1, . . . ,P , into the eigenvec-
tors |rj 〉Ej

of position quadratures of P purifying modes
E1,E2, . . . ,EP as

|�̃〉ABE =
∫ √

p(r)
⊗

j=A,B

Dj [(V r)j ]
∣∣γ p

j

〉
j
|r〉E�P

l=1drl,

(64)

where |r〉E ≡ |r1〉E1 |r2〉E2 . . . |rP 〉EP
. By measuring position

quadratures on all modes of the subsystem E with the outcome
r′ one gets the following product conditional state:

DA[(V r′)A]
∣∣γ p

A

〉
A
DB[(V r′)B]

∣∣γ p

B

〉
B
. (65)

At this point, we have shown that there is a Gaussian
measurement that can be performed on the P modes of the
(N + M + P )-mode pure state |�̃〉ABE that leaves Alice’s and
Bob’s modes separable. As the (N + M + R)-mode minimal
purification |�〉ABE and the (N + M + P )-mode purification
|�̃〉ABE both possess the same reduced state ρ

sep
AB , there is a

Gaussian unitary transformation UE(S̃E) which transforms the
purification (64) into the minimal purification as [31,32]

UE(S̃E)|�̃〉ABE = |�〉ABE| {0}〉ER+1...EP
. (66)

Here, |{0}〉ER+1...EP
≡ |0〉ER+1 |0〉ER+2 . . . |0〉EP

is the product
of P − R vacuum states and R � P is the number of
symplectic eigenvalues of the CM γ

sep
AB that are strictly

greater than one. The operator UE(S̃E) on the P modes
E1,E2, . . . ,EP corresponds to the symplectic transformation
S̃E symplectically diagonalizing the 2P × 2P CM γ̃E of
the subsystem E of the purification (64), i.e., S̃Eγ̃ES̃T

E =
diag(ν1,ν1, . . . ,νR,νR,1,1, . . . ,1,1), where ν1,ν2, . . . ,νR are
symplectic eigenvalues of the CM γ

sep
AB which are strictly

greater than one. Thus, by appending P − R vacuum states
|0〉Ej

, j = R + 1,R + 2, . . . ,P , to the minimal purification

|�〉ABE , applying the Gaussian unitary U
†
E(S̃E) to the sub-

system E, and projecting the subsystem onto the position
eigenstate |r′〉E , we get the product state (65). Simple algebra
reveals that this measurement can be rewritten as a projection
of R modes E1,E2, . . . ,ER of the minimal purification
|�〉ABE onto an unnormalized (and generally unnormalizable)
Gaussian state

�′
0 = 〈{0} |UE(S̃E)|r = 0〉E〈r = 0|U †

E(S̃E)| {0}〉, (67)

displaced by some factor dependent on the elements of the
vector r′ and symplectic matrix S̃E , where in Eq. (67) we have
omitted the subscripts of the state |{0}〉ER+1...EP

for brevity.
Now, let us define a normalized R-mode zero mean Gaussian
state

�0 = 〈{0} |UE(S̃E)|s〉(x)
E 〈s|U †

E(S̃E)| {0}〉
Tr
[〈{0} |UE(S̃E)|s〉(x)

E 〈s|U †
E(S̃E)| {0}〉] , (68)

which is obtained by replacing the P -mode position eigen-
vector |r = 0〉E in the state in Eq. (67) with a P -
mode zero mean position squeezed vacuum state |s〉(x)

E ≡
|s1〉(x)

E1
|s2〉(x)

E2
. . . |sP 〉(x)

EP
, where |sj 〉(x)

Ej
is the zero mean position

squeezed vacuum state of mode Ej with the squeezing
parameter sj . It is now obvious that by performing a
Gaussian measurement �E(dE) = DE(dE)�0D

†
E(dE)/(2π )R

on the subsystem E of the minimal purification |�〉ABE , we
project the purification onto a product state

DA(d ′
A)
∣∣γ p

A

〉
A
DB(d ′

B)
∣∣γ p

B

〉
B

(69)

in the limit of infinite squeezing parameters sj . The vectors
of displacements d ′

A and d ′
B are linear combinations of the

elements of the vector dE of the measurement outcomes [36].
We have therefore found that for any separable Gaussian
state of two subsystems A and B, there is a Gaussian
measurement (8) on the purifying part of the state that projects
the minimal purification onto a product of pure local states of
subsystems A and B as we set out to prove.

VI. MONOTONICITY OF GIE UNDER GAUSSIAN
LOCAL TRACE-PRESERVING OPERATIONS

AND CLASSICAL COMMUNICATION

The most important property of any good entanglement
measure is its monotonicity [19], which means that the measure
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does not increase under LOCC operations. Specifically, a
good Gaussian entanglement measure should not increase
under (generally probabilistic) Gaussian local operations and
classical communication (GLOCC) [37]. In this section, we
prove that the GIE defined in Eq. (61) is nonincreasing under
the subset of GLOCC given by GLTPOCC. This means that
if the operation (≡E) transforms the input Gaussian state ρI

AB

onto a state ρE
AB , then

EG
↓
(
ρI

AB

)
� EG

↓
(
ρE

AB

)
. (70)

It was shown in the previous section that for two different
purifications having in general a differing number of modes,
one can always find measurements on Eve’s modes of either
purification that yield the same matrix (59). Therefore, for
CMs γπ and �E in Eq. (59) we can consider a CM of an
arbitrary (not necessarily minimal) purification and a CM of
a measurement on Eve’s modes of this purification. In the
following paragraph, we prove the monotonicity of GIE under
GLTPOCC by using a suitable nonminimal purification of the
output state ρE

AB .
A trace-preserving operation E transforms the input state

ρI
AB to a state

ρE
AB = Trin

[
χ
(
ρI

AB

)T ⊗ 1out
]
, (71)

where χ is a positive-semidefinite operator representing the
operation [38] on the tensor product HAB ⊗ Hout of the input
Hilbert space HAB and the output Hilbert space Hout, 1out is
the identity operator on the output Hilbert space, and Trin is the
trace over the input Hilbert space. The map preserves the trace
of the input state, i.e., Trin[ρI

AB] = Trout[ρE
AB], which imposes

the following constraint on the state χ :

Trout[χ ] = 1in, (72)

where Trout is the trace over the output Hilbert space and 1in is
the identity operator on the input Hilbert space.

Let us denote for the state ρI
AB its minimal purifica-

tion |�〉ABEρ
with the CM γ I

π . Let us further denote the
measurements on subsystems A, B, and E that achieve the
optimum in Eq. (61) as �A(dA), �B(dB), and �Eρ

(dEρ
) and

the corresponding CMs as �I
A, �I

B , and �I
E , respectively. That

is,

EG
↓
(
ρI

AB

) = f
(
γ I

π ,�I
A,�I

B,�I
E

)
. (73)

Likewise, the purification of the state ρE
AB is denoted as

|�E 〉ABE and it has the CM γ E
π . The measurements on

subsystems A, B, and E, which achieve the optimum in
Eq. (61) are denoted as �E

A(dA), �E
B(dB), and �E

E(dE) and
they have the CMs �E

A, �E
B , and �E

E , respectively. That is,

EG
↓
(
ρE

AB

) = f
(
γ E

π ,�E
A,�E

B,�E
E

)
. (74)

To prove the inequality (70) we will now find a suitable
nonminimal purification of the state (71). The purification can
be constructed using the trick that any Gaussian operation on a
known state can be implemented via teleportation [36,39].
First, we prepare an (N + M + Nout + Mout)-mode state
χAinBinAoutBout of N -mode subsystem Ain, M-mode subsystem
Bin, Nout-mode subsystem Aout, and Mout-mode subsystem
Bout, which represents the operation E . Next, subsystems

A and B of the input state ρI
AB are teleported by a stan-

dard continuous-variable teleportation [40], where the state
χAinBinAoutBout serves as a quantum channel. The sender performs
Bell measurements on pairs of subsystems (A,Ain) and (B,Bin)
and sends the outcomes of the measurements to the receiver
who appropriately displaces his subsystems Aout and Bout. As
a result, he obtains the output state ρE

AoutBout
of the operation E .

Let us now consider a pure state

|�〉 = |�〉ABEρ
|χ〉AinBinAoutBoutEχ

(75)

formed as a product of the minimal purification |�〉ABEρ
(with

CM γ I
π ) of the input state ρI

AB and a suitable purification
|χ〉AinBinAoutBoutEχ

of the state χAinBinAoutBout , which will be spec-
ified later. Now, we perform Bell measurements on the pairs
of subsystems (A,Ain) and (B,Bin). A Bell measurement on a
pair of modes (j,jin), j = A1, . . . ,AN,B1, . . . ,BM , is formally
described by the set of rank-one operators {|βj 〉jjin〈βj |}βj ∈C,
where βj is the measurement outcome, C is the set of complex
numbers, and [41]

|βj 〉jjin =
∞∑

n=0

Dj (βj )|n〉j |n〉jin , (76)

where Dj (βj ) = exp(βja
†
j − β∗

j aj ) = Dj [
√

2(Reβj ,Imβj )T ]

is the displacement operator on mode j , aj (a†
j ) is the

annihilation (creation) operator of the mode, and |n〉, n =
0,1, . . . , are the Fock states. If we now perform the Bell
measurements on pairs of modes (A1,A1in), . . . ,(AN,AN in)
and (B1,B1in), . . . ,(BM,BMin) of the state (75) followed by
compensation of the displacements exactly as in the implemen-
tation of a generic Gaussian operation by teleportation [39],
we obtain a pure state of the form

|�E 〉AoutBoutEρEχ

= 1√
p0

AAin〈 ˜{0}|BBin〈 ˜{0}|�〉ABEρ
|χ〉AinBinAoutBoutEχ

, (77)

where
√

p0 is the normalization factor, and where we have de-
fined | ˜{0}〉jjin ≡ |βj1 = 0〉j1j1in . . . |βjJj

= 0〉jJj
jJj in , j = A,B,

where JA = N and JB = M is the number of modes of
subsystems A and B, respectively. The state (77) satisfies
TrEρEχ

(|�E 〉AoutBoutEρEχ
〈�E |) = ρE

AoutBout
and therefore it is the

sought suitable purification of the state ρE
AB . Consequently, the

prescription

P (dA,dB,dEρ
,dEχ

) = Tr
[|�E 〉〈�E |�E

Aout
(dA) ⊗ �E

Bout
(dB)

⊗ �E
EρEχ

(
dEρ

,dEχ

)]
(78)

defines the optimal distribution whose conditional mutual
information equals to EG

↓ (ρE
AB) where �E

Aout
(dA), �E

Bout
(dB),

and �E
EρEχ

(dEρ
,dEχ

) are optimal measurements with CMs

�E
A, �E

B , and �E
E . Here, a different symbol �E

EρEχ
(dEρ

,dEχ
)

for the optimal measurement �E
E(dE) has been used to express

the fact that it acts on two purifying subsystems Eρ and Eχ .
Here and in what follows, we also omit the indices of the
purification (77) for brevity.

Now, we will construct a suitable purification
|χ〉AinBinAoutBoutEχ

of the state χAinBinAoutBout representing
the Gaussian map E . As the map can be created by local
operations and classical communication, the corresponding
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Gaussian state χAinBinAoutBout is separable across AinAout|BinBout

splitting [36]. For the 2(N + Nout + M + Mout)-dimensional
CM γ

χ

AinAoutBinBout
of the state there therefore exist

local 2(N + Nout)-dimensional CM γ
χ

AinAout
and

2(M + Mout)-dimensional CM γ
χ

BinBout
corresponding to

generally mixed Gaussian states χAinAout and χBinBout of the
subsystems A and B such that [35]

O ≡ γ
χ

AinAoutBinBout
− γ

χ

AinAout
⊕ γ

χ

BinBout
� 0. (79)

Repeating the algorithm leading to Eq. (63) for the case of the
state χAinBinAoutBout , we then arrive at the following expression
of the state:

χAinBinAoutBout=
∫

q(r)D(W r)
(
χAinAout ⊗ χBinBout

)
D†(W r)dP ′

r.

(80)

Here, dP ′
r ≡ �P ′

l=1drl , q(r) ≡ �P ′
i=1exp(−r2

i /oi)/
√

πoi with
oi , i = 1,2, . . . ,P ′, being all strictly positive eigenvalues of the
matrix O, W is the 2(N + Nout + M + Mout) ×P ′ matrix com-
posed of the first P ′ columns of the matrix W which diagonal-
izes the matrix O as WT OW = diag(o1,o2, . . . ,oP ′ ,0, . . . ,0),
and r = (r1,r2, . . . ,rP ′)T . Further, for CM γ

χ

jinjout
, j = A,B,

there always exist pure-state CMs γ
χ,p

jinjout
such that [42]

Tj ≡ γ
χ

jinjout
− γ

χ,p

jinjout
� 0, j = A,B. (81)

Denoting as Rj , j = A,B, the orthogonal matrix bring-
ing the matrix Tj to the diagonal form, i.e., RT

j TjRj =
diag(t j1 ,t

j

2 , . . . ,t
j

Pj
,0, . . . ,0), where t

j

l , l = 1,2, . . . ,Pj , are the
strictly positive eigenvalues of the matrix Tj , we can further
express the local Gaussian states χjinjout as

χjinjout=
∫

qj (rj )Dj (Rj rj )
∣∣γ χ,p

jinjout

〉
jinjout

〈
γ

χ,p

jinjout

∣∣D†
j (Rj rj )dPj rj .

(82)

Here, dPj rj ≡ �
Pj

l=1drjl , qj (rj ) ≡ �
Pj

i=1exp(−r2
ji/t

j

i )/
√

πt
j

i ,
RA is the 2(N + Nout) × PA matrix composed of the first PA

columns of the matrix RA, RB is the 2(M + Mout) × PB matrix
composed of the first PB columns of the matrix RB , and rj =
(rj1,rj2, . . . ,rjPj

)T . Inserting now into Eq. (80) for the states
χAinAout and χBinBout from Eq. (82) we get

χAinBinAoutBout =
∫

q(r)D(W r)

×
[ ⊗

j=A,B

qj (rj )Dj (Rj rj )
∣∣γ χ,p

jinjout

〉
jinjout

〈
γ

χ,p

jinjout

∣∣D†
j (Rj rj )

]

×D†(W r)dPArAdPB rBdP ′
r. (83)

By encoding the vectors of displacements r, rA, and rB into
eigenvectors |r〉EO

, |rA〉EA
, and |rB〉EB

of position quadratures
of Eve’s (P ′ + PA + PB)-mode subsystem Eχ ≡ (EOEAEB),
we obtain finally the sought purification

|χ〉=
∫ √

q(r)qA(rA)qB(rB)D(W r)
⊗

j=A,B

Dj (Rj rj )
∣∣γ χ,p

jinjout

〉
jinjout

⊗ |r〉EO
|rA〉EA

|rB〉EB
dPArAdPB rBdP ′

r, (84)

where we have omitted the indices AinBinAoutBoutEχ of the
purification |χ〉 for brevity.

A specific feature of the state (84) is that by a simple
measurement on the purifying subsystem Eχ we can project
the state onto a displaced product state χAinAout ⊗ χBinBout of the
subsystems (Ain,Aout) and (Bin,Bout). More precisely, consider
the following measurement on Eve’s subsystem Eχ :

�̃E
Eχ

(r′) = |r′〉EO
〈r′| ⊗ 1EA

⊗ 1EB
, (85)

which describes the projection of subsystem EO onto a P ′-
mode position eigenvector |r′〉EO

and projection of subsystems
EA and EB onto maximally mixed states, which gives Eve
no information on the state of the two subsystems. Recall
that the latter measurements on subsystems EA and EB can
be seen as Gaussian measurements (8) with seed elements
given by thermal states in the limit of infinite temperature.
By performing the measurement (85) on the subsystem Eχ

of the purification (84), we then arrive using Eq. (82) at the
conditional state of the form

TrEχ

[|χ〉〈χ |�̃E
Eχ

(r′)
] = q(r′)

⊗
j=A,B

χjinjout

[
(W r′)jinjout

]
,

(86)

which is the desired product state with respect to the
AinAout|BinBout splitting. Here,

χjinjout

[
(W r′)jinjout

] ≡ Djinjout

[
(W r′)jinjout

]
χjinjout

×D
†
jinjout

[
(W r′)jinjout

]
, (87)

where

(W r′)AinAout ≡ [
(W r′)Ain1,(W r′)Ain2, . . . ,(W r′)Ain2N,

(W r′)Aout1,(W r′)Aout2, . . . ,(W r′)Aout2Nout

]T
,

(W r′)BinBout ≡ [
(W r′)Bin1,(W r′)Bin2, . . . ,(W r′)Bin2M,

(W r′)Bout1,(W r′)Bout2, . . . ,(W r′)Bout2Mout

]T
.

(88)

Before going further, let us note that any trace-preserving
Gaussian operation E is represented by an unphysical (in-
finitely squeezed) density matrix χ . This is because the matrix
is obtained by an action of the operation E on one part of an un-
physical maximally entangled state |�̃〉 [38]. The unphysical
states can nevertheless be dealt with rigorously in the context of
positive forms [43] or by using the limiting procedure proposed
in Ref. [36]. The latter approach consists of the replacement
of the state |�̃〉 by its physical approximation |�̃(r)〉 given
by a tensor product of identical two-mode squeezed vacuum
states with squeezing parameter r . The operation E is then
represented by a quantum state χ (r) obtained by action of the
operation on one part of the state |�̃(r)〉, which is a physical
approximation of the exact state χ . For a quantum operation
E , which can be prepared by local operations and classical
communication, the density matrix χ (r) is separable and hence
the above formulas remain valid also for quantum state χ (r).
The sought exact result is recovered and the limiting procedure
is thus accomplished by taking the limit r → ∞ at the end of
our calculations.
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LADISLAV MIŠTA, JR. AND RICHARD TATHAM PHYSICAL REVIEW A 91, 062313 (2015)

Returning to the monotonicity proof, consider now the
probability density

P̃ (dA,dB,dEρ
,r′) = Tr

[|�E 〉〈�E |�E
Aout

(dA) ⊗ �E
Bout

(dB)

⊗ �Eρ
(dEρ

) ⊗ �̃E
Eχ

(r′)
]
, (89)

which is obtained from the probability density (78) by
replacing the optimal measurement �E

EρEχ
(dEρ

,dEχ
) with a

product measurement �Eρ
(dEρ

) ⊗ �̃E
Eχ

(r′). Here, �Eρ
(dEρ

) is

the optimal measurement with the CM �I
E on the minimal

purification |�〉ABEρ
of the state ρI

AB and �̃E
Eχ

(r′) is the

measurement (85) with the CM �̃E
Eχ

, which projects the purifi-

cation (84) onto the product state (86). At given CMs γ E
π , �E

A,
and �E

B the product measurement with the CM �I
E ⊕ �̃E

Eχ
does

not generally minimize the function f (γ E
π ,�E

A,�E
B,�E) with

respect to the CM �E and hence the function f corresponding
to the distribution P̃ (dA,dB,dEρ

,r′) [Eq. (89)] satisfies

EG
↓
(
ρE

AB

)
� f

(
γ E

π ,�E
A,�E

B,�I
E ⊕ �̃E

Eχ

)
. (90)

What is more, one can show that there exist Gaussian
measurements �̃A(d̃A) and �̃B(d̃B) on the subsystems A and
B of the normalized conditional state

ρAB|Eρ
(dEρ

) = TrEρ

[|�〉ABEρ
〈�|�Eρ

(dEρ
)
]

P
(
dEρ

) (91)

obtained by the optimal measurement �Eρ
(dEρ

) on subsystem
Eρ of the minimal purification |�〉ABEρ

, which are charac-
terized by the CMs �̃A and �̃B , such that the conditional
distribution

p̃
(
d̃A,d̃B |dEρ

) = Tr
[
ρAB|Eρ

(
dEρ

)
�̃A(d̃A) ⊗ �̃B(d̃B)

]
(92)

yields the function f defined in Eq. (60), which is greater or
equal than the function on the RHS of inequality (90), i.e.,

f
(
γ E

π ,�E
A,�E

B,�I
E ⊕ �̃E

Eχ

)
� f

(
γ I

π ,�̃A,�̃B,�I
E

)
. (93)

This can be shown as follows. The function on the
RHS of inequality (90) is the mutual information of
the conditional Gaussian distribution P̃ (dA,dB |dEρ

,r′) =
P̃ (dA,dB,dEρ

,r′)/P̃ (dEρ
,r′), where the distribution

P̃ (dA,dB,dEρ
,r′) is given in Eq. (89). The conditional

distribution is the distribution of outcomes of Gaussian
measurements with CMs �E

A and �E
B on subsystems A and

B of the conditional state (≡ ρE
AB|E) obtained by Gaussian

measurement �Eρ
(dEρ

) ⊗ �̃E
Eχ

(r′) (with CM �I
E ⊕ �̃E

Eχ
) on

the purification (77), where the state |χ〉 is given in Eq. (84).
Substituting from Eqs. (77), (84), and (86) into the explicit
expression for the (unnormalized) conditional state

ρ̃E
AoutBout|E = TrEρEχ

[|�E 〉〈�E |�Eρ

(
dEρ

)⊗ �̃E
Eχ

(r′)
]
, (94)

one arrives after some algebra at the conditional state in the
form

ρ̃E
AoutBout|E = P (dEρ

)q(r′)
p0

TrAAinBBin

{
ρAB|Eρ

(dEρ
)

×
⊗

j=A,B

χjinjout

[
(W r′)jinjout

]

×
⊗

k=A,B

| ˜{0}〉kkin〈 ˜{0}|
}

, (95)

where the state ρAB|Eρ
(dEρ

) is defined in Eq. (91). Here and
in what follows, we do not write explicitly in some places
the dependence of the conditional states on the measurement
outcomes for brevity.

Expressing the operator | ˜{0}〉jjin〈 ˜{0}| on the RHS of the
latter equation using Eq. (76) and carrying out the trace over
the subsystems A and B, we further get

ρ̃E
AoutBout|E = P (dEρ

)q(r′)
p0

×TrAinBin

⎧⎨
⎩
⊗

j=A,B

χjinjout

[
(W r′)jinjout

]

×ρT
AinBin|Eρ

(dEρ
) ⊗ 1AoutBout

⎫⎬
⎭ . (96)

Let us assume now that the considered separable operation
E is GLTPOCC, i.e., it can be decomposed into Gaussian
local trace-preserving operations on subsystems A and B, and
the addition of classical Gaussian noise. The density matrices
χjinjout , j = A,B, representing the local operations then satisfy
the trace-preservation constraints (72), i.e.,

Trjout

[
χjinjout

] = 1jin , j = A,B (97)

which imply fulfillment of the trace-preservation constraints
for the states (87):

Trjout

{
χjinjout

[
(W r′)jinjout

]} = 1jin , j = A,B. (98)

As a consequence, one finds the trace of the conditional
state (96) to be

TrAoutBout

[
ρ̃E

AoutBout|E
] = P̃ (dEρ

,r′) = P (dEρ
)q(r′)

p0
, (99)

and therefore the normalized conditional state reads as

ρE
AoutBout|E = TrAinBin

⎧⎨
⎩
⊗

j=A,B

χjinjout

[
(W r′)jinjout

]

×ρT
AinBin|Eρ

(dEρ
) ⊗ 1AoutBout

⎫⎬
⎭ . (100)

If we further substitute here for the operators
χjinjout [(W r′)jinjout ] from Eq. (87) and we use the relation
DT (d) = D(−�d), where T stands for the transposition
in Fock basis and the diagonal matrix � ≡ diag(1,−1,

1,−1, . . . ,1,−1) realizes the transposition operation on the
CM level, we get the conditional state (100) in the form

ρE
AoutBout|E = DAoutBout

[
(W r′)AoutBout

]
(EA ⊗ EB)

(
ρ ′

AinBin|Eρ

)
×D

†
AoutBout

[
(W r′)AoutBout

]
. (101)

Here,

ρ ′
AinBin|Eρ

≡ DAinBin

[− �(W r′)AinBin

]
ρAinBin|Eρ

(dEρ
)

×D
†
AinBin

[− �(W r′)AinBin

]
, (102)
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and Ej , j = A,B, is the local Gaussian trace-preserving
operation represented by the density matrix χjinjout , i.e.,

(EA ⊗ EB)
(
ρ ′

AinBin|Eρ

)
= TrAinBin

{
χAinAout ⊗ χBinBout

(
ρ ′

AinBin|Eρ

)Tin ⊗ 1AoutBout

}
. (103)

We have already said that the RHS of Eq. (90) is the mutual
information of the conditional distribution

P̃
(
dA,dB |dEρ

,r′) = TrAoutBout

[
ρE

AoutBout|E�E
Aout

(dA) ⊗ �E
Bout

(dB)
]

(104)

of the outcomes of Gaussian measurements �E
Aout

(dA) and
�E

Bout
(dB) (characterized by CMs �E

A and �E
B) on the con-

ditional state (101). Substituting into the RHS of the latter
equation for the conditional state from Eq. (101), one finds
after some algebra that

P̃ (dA,dB |dEρ
,r′) = P̃

[
dA−(W r′)Aout,dB−(W r′)Bout |dEρ

,r′],
(105)

where

(W r′)jout ≡ [(W r′)jout1,(W r′)jout2, . . . ,(W r′)jout2Jjout

]T
,

where JAout = Nout and JBout = Mout, and

P̃
(
dA,dB |dEρ

,r′)
= TrAoutBout

[
(EA ⊗ EB)

(
ρ ′

AinBin|Eρ

)
�E

Aout
(dA) ⊗ �E

Bout
(dB)

]
.

(106)

The mutual information of the distribution in Eq. (105) does
not depend on the displacements −(W r′)jout , j = A,B, and
hence it is equal to the mutual information of the distribution
(106). The tensor product EA ⊗ EB of Gaussian local trace-
preserving operations Ej , j = A,B, appearing on the RHS
of Eq. (106), transforms the (N + M)-mode Gaussian state
ρ ′

AinBin|Eρ
[Eq. (102)] onto an (Nout + Mout)-mode Gaussian

state. More precisely, the operation Ej , j = A,B, transforms
Jjin modes jin1,jin2, . . . ,jinJjin

of the state (102) onto Jjout output
modes jout1,jout2, . . . ,joutJjout

, where JAin = N and JBin = M .
As each operation Ej is Gaussian and trace preserving, it can
be realized in three steps encompassing (1) a Gaussian unitary
interaction Uj between the Jjin input modes and Jjanc ancillary
modes in vacuum states, where JAanc = Nanc and JBanc = Manc,
followed by (2) discarding of Jjdisc ≡ Jjin + Jjanc − Jjout modes,
and (3) addition of classical Gaussian noise [44,45]. The noise
can be created by a random displacement of the output state
in phase space distributed according to a zero mean Gaussian
distribution. The addition of the zero mean Gaussian noise
acts only on the level of the CMs where it is represented by
the addition of a positive-semidefinite matrix Fj to the CM of
the output state. Similarly, the measurement �E

jout
(dj ) on the

subsystem is on the level of the CM represented by the addition
of a CM �E

j to the CM of the measured state. Denoting as γ2

the 2(Nout + Mout)-dimensional CM of the state obtained by
propagation of the input state ρ ′

AinBin|Eρ
through steps (1) and

(2) of the implementation of the operations EA and EB , the
CCM of the distribution (106) reads as

γ2 + FA ⊕ FB + �E
A ⊕ �E

B = γ2 + (�E
A + FA

)⊕ (�E
B + FB

)
.

(107)

Therefore, the addition of local classical Gaussian noise into
subsystems Aout and Bout followed by the local Gaussian
measurements �E

Aout
(dA) and �E

Bout
(dB) on the subsystems can

be viewed just as more noisy local Gaussian measurements
�̄E

Aout
(dA) and �̄E

Bout
(dB) characterized by the CM �̄E

A ≡
�E

A + FA and �̄E
B ≡ �E

B + FB . Consequently, the conditional
distribution (106) can be expressed as

P̃
(
dA,dB |dEρ

,r′)
= TrAoutBout

[
(ĒA ⊗ ĒB)

(
ρ ′

AinBin|Eρ

)
�̄E

Aout
(dA) ⊗ �̄E

Bout
(dB)

]
,

(108)

where ĒA and ĒB are local Gaussian trace-preserving opera-
tions which can be implemented using steps (1) and (2) but
which do not require addition of classical noise. If we now
express the latter two operations via local Gaussian unitary
transformations UA and UB on a larger system consisting
of N -mode subsystem Ain, M-mode subsystem Bin, Nanc

auxiliary vacuum modes denoted as a subsystem Aanc, and
Manc auxiliary vacuum modes denoted as a subsystem Banc,
the distribution (108) attains the form

P̃(dA,dB)

= TrAoutBout TrAdiscBdisc

[
(UA ⊗ UB)ρ ′

AinBin|Eρ
⊗ |{0}〉Aanc〈{0}|

⊗|{0}〉Banc〈{0}|(U †
A ⊗ U

†
B)�̄E

Aout
(dA)

⊗�̄E
Bout

(dB) ⊗ 1Adisc ⊗ 1Bdisc

]
, (109)

where here and in what follows we omit the dependence of
the distribution on the variables dEρ

and r′ for brevity. Here,
Trjdisc , j = A,B, is the trace over the discarded Jjdisc -mode
subsystem jdisc (JAdisc = N + Nanc − Nout and JBdisc = M +
Manc − Mout), |{0}〉janc is the tensor product of Jjanc vacuum
states, and 1jdisc is the identity operator on the space of the
discarded subsystem jdisc. Next, the linearity of the Gaussian
unitary transformation UA ⊗ UB allows us to transform the
displacement DAinBin [−�(W r′)AinBin ] in Eq. (102) through
the transformation which will result, together with utilization
of the invariance of the trace under cyclic permutations, in
a displacement of the measurement outcomes dA and dB .
However, as we have already said, such a displacement is irrel-
evant from the point of view of mutual information and hence
we can replace in what follows the displaced state ρ ′

AinBin|Eρ
on

the RHS of Eq. (109) with the undisplaced state ρAinBin|Eρ
(dEρ

)
defined in Eq. (91). Further, the distribution (109) can be seen
as the reduction

P̃(dA,dB ) =
∫

P(dA,d ′
A,dB,d ′

B)d2JAdisc d ′
Ad2JBdisc d ′

B (110)

of the following distribution:

P(dA,d ′
A,dB,d ′

B)

= TrAoutBout TrAdiscBdisc

[
(UA ⊗ UB)ρAinBin|Eρ

⊗ |{0}〉Aanc〈{0}|
⊗ |{0}〉Banc〈{0}|(U †

A ⊗ U
†
B)�̄E

Aout
(dA)

⊗�̄E
Bout

(dB) ⊗ �Adsic (d
′
A) ⊗ �Bdisc (d

′
B)
]
, (111)

where �jdsic (d
′
j ), j = A,B, is a Gaussian measurement on

the discarded subsystem jdisc with the measurement out-
come d ′

j and where we have omitted the dependence of
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the state ρAinBin|Eρ
on the measurement outcome dEρ

for
simplicity. As discarding variables cannot increase the mu-
tual information [46], one obtains that the mutual infor-
mation I (A; B) of the distribution (109) and the mutual
information I (A,A′; B,B ′) of the distribution (111) satisfy
the inequality I (A; B) � I (A,A′; B,B ′). Now, making use
of the invariance of the trace under cyclic permutations
and the equality U †(S )�(d)U (S ) = �S (S −1d), where
�S (d) is a component of a Gaussian POVM with the seed
element U †(S )�0U (S ) and U (S ) is a Gaussian unitary
transformation corresponding to the symplectic matrix S , we
can write down the distribution (111) as

P(dA,d ′
A,dB,d ′

B) = P
[(

S −1
A �A

)T
,
(
S −1

B �B

)T ]
.

Here, SA and SB denote the symplectic matrices correspond-
ing to the local Gaussian unitaries UA and UB , respectively,
�j = (dT

j ,d ′T
j )T , j = A,B, and

P(dA,d ′
A,dB,d ′

B)

= TrAinAancBinBanc

[
ρAinBin|Eρ

⊗|{0}〉AancBanc〈{0}|�′
AinAanc

(dA,d ′
A) ⊗ �′

BinBanc
(dB,d ′

B )
]
,

(112)

where |{0}〉AancBanc = |{0}〉Aanc ⊗ |{0}〉Banc and �′
jinjanc

(dj ,d
′
j ),

j = A,B, is the Gaussian measurement on the subsys-
tem (jin,janc) with the seed element �′

0jinjanc
≡ U

†
j �̄

E
0jout

⊗
�0jdiscUj , where �̄E

0jout
and �0jdisc are the seed elements of the

Gaussian measurements �̄E
jout

(dj ) and �jdsic (d
′
j ), respectively,

which appear on the RHS of Eq. (111). From the invariance
of the mutual information under local symplectic transfor-
mations, it then follows that the mutual information of the
distribution (111) and the distribution (112) are equal and
hence we can further work with the distribution (112).

Let us denote now the CM of the conditional state ρAinBin|Eρ

as γ c
AB and the CMs of the measurements �′

AinAanc
(dA,d ′

A)
and �′

BinBanc
(dB,d ′

B) as �′
A and �′

B , respectively. The mutual
information of the distribution (112) then attains the form [33]

I (A,A′; B,B ′) = 1

2
ln

(
detσ ′

Adetσ ′
B

detσ ′
AB

)
, (113)

where

σ ′
AB = γ c

AB ⊕ 1anc + �′
A ⊕ �′

B, (114)

with σ ′
j being the CM of the reduced state of the sub-

system (jin,janc), j = A,B, and 1anc is the 2(Nanc + Manc)-
dimensional identity matrix describing the CM of the vacuum
state |{0}〉AancBanc . Further, it is convenient to express the CMs
�′

A and �′
B with respect to in|anc splitting as

�′
A =

(
Ain CA

CT
A Aanc

)
, �′

B =
(

Bin CB

CT
B Banc

)
. (115)

Consider now the determinant formula [29]

det(M) = det(D)det(A − BD−1C ), (116)

which is valid for any (n + m) × (n + m) matrix

M =
(

A B
C D

)
, (117)

where A , B, and C are, respectively, n × n, n × m, and m × n

matrices and D is an m × m invertible matrix. Applying the
formula to the RHS of Eq. (113) we can bring it after some
algebra into the form

I (A,A′; B,B ′) = 1

2
ln

(
detμAdetμB

detμAB

)
, (118)

where

μAB = γ c
AB + �̃A ⊕ �̃B (119)

and μA,B are CMs of the reduced states of the subsystems A

and B. Here,

�̃A = Ain − CA

(
Aanc + 1Aanc

)−1
CT

A (120)

is the N -mode CM,

�̃B = Bin − CB

(
Banc + 1Banc

)−1
CT

B (121)

is the M-mode CM, 1Aanc is the 2Nanc × 2Nanc identity matrix,
and 1Banc is the 2Manc × 2Manc identity matrix. Hence, we can
interpret the mutual information I (A,A′; B,B ′) as the mutual
information of a new conditional Gaussian probability density
p̃(d̃A,d̃B |dEρ

) given in Eq. (92), which is obtained by the
Gaussian measurements �̃A(d̃A) and �̃B(d̃B) with CMs �̃A

and �̃B on the conditional state ρAinBin|Eρ
defined in Eq. (91).

If we now take into account the fact that the CM γ c
AB of the

state reads as

γ c
AB = γAB − γ I

ABE

(
γ I

E + �I
E

)−1(
γ I

ABE

)T
, (122)

where γ I
ABE and γ I

E are the respective blocks of the CM γ I
π ,

we find that the mutual information (118) is equal to

I (A,A′; B,B ′) = f
(
γ I

π ,�̃A,�̃B,�I
E

)
, (123)

and thus the inequality I (A; B) � I (A,A′; B,B ′) translates
into the inequality (93) as we wanted to prove.

Finally, as at given CMs γ I
π and �I

E , the CMs �̃A and �̃B

given in Eqs. (120) and (121) generally do not maximize the
function f (γ I

π ,�A,�B,�I
E) with respect to CMs �A and �B

one gets

f
(
γ I

π ,�̃A,�̃B,�I
E

)
� f

(
γ I

π ,�I
A,�I

B,�I
E

) = EG
↓
(
ρI

AB

)
, (124)

where �I
A and �I

B are CMs of the optimal measurements
�A(dA) and �B(dB) which maximize f and the equality
follows from Eq. (73).

In summary, combining inequalities (90), (93), and (124),
the monotonicity of GIE [Eq. (61)] under GLTPOCC can be
expressed by the following chain of inequalities:

EG
↓
(
ρE

AB

)
� f

(
γ E

π ,�E
A,�E

B,�I
E ⊕ �̃E

Eχ

)
� f

(
γ I

π ,�̃A,�̃B,�I
E

)
� EG

↓
(
ρI

AB

)
, (125)

which accomplishes the monotonicity proof.
Before moving to an explicit evaluation of GIE, let us

note that an important subset of GLTPOCC operations is
the class of Gaussian local unitary operations (≡UA ⊗ UB)
which transform the input Gaussian state ρI

AB to ρU
AB ≡ (UA ⊗

UB)ρI
AB(U †

A ⊗ U
†
B). Inequality (125) and the reversibility of

unitary operations then implies the invariance of GIE with
respect to the local Gaussian unitary operations EG

↓ (ρU
AB) =

EG
↓ (ρI

AB). When calculating GIE, we can therefore assume
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without any loss of generality that the CM γAB of the
considered state is in the standard form [47]

γAB =

⎛
⎜⎝

a 0 c1 0
0 a 0 c2

c1 0 b 0
0 c2 0 b

⎞
⎟⎠ , (126)

where c1 � |c2| � 0, which can greatly simplify our
calculations.

VII. GIE FOR PURE STATES

As a first example, we calculate GIE for the class of
pure Gaussian states ρp with CM γ

p
AB . For these states, any

purification is a product state with respect to the AB|E splitting
and therefore the block γABE in CCM (42) is a matrix of
zeros. This implies that the Schur complement (59) reads
as σAB = γ

p
AB + �A ⊕ �B and the GIE coincides with the

Gaussian classical mutual information (≡IG
c ) of a quantum

state ρp [48,49]:

EG
↓ (ρp) = IG

c (ρp) ≡ sup
�A,�B

1

2
ln

(
detσAdetσB

detσAB

)
. (127)

From the results of Ref. [49] it then follows that the supremum
is attained by double homodyne detection which gives [21]

EG
↓ (ρp) = 1

2 ln(detγA) = ln[cosh(2r̃)], (128)

where γA is the CM of the reduced state ρA of mode A of the
state ρp and r̃ � 0 is the squeezing parameter characterizing
the latter state, which is defined by the equation cosh(2r̃) =√

detγA. Interestingly, the RHS of Eq. (128) is equal to the
Gaussian Rényi-2 (GR2) entropy S2(ρA) which is nothing but
the GR2 entanglement EG

2 (ρp) [24]. This means that for all
pure Gaussian states it holds that EG

↓ = EG
2 . Comparing, on

the other hand, GIE with the entropy of entanglement E(ρp) =
S(ρA) [1,50], where [51]

S(ρA) = cosh2(r̃) ln[cosh2(r̃)] − sinh2(r̃) ln[sinh2(r̃)] (129)

is the marginal von Neumann entropy, one finds that the
inequality E � EG

↓ is satisfied for all pure Gaussian states [21].
However, the equality to the entropy of entanglement is
restored for true IE E↓ [Eq. (5)], which admits also non-
Gaussian measurements on modes A and B. Namely, E↓(ρp) =
Ic(ρp) ≡ sup�A⊗�B

I (A; B), where the RHS is the classical
mutual information of a quantum state ρp [48] with I (A; B)
being the mutual information of a distribution of outcomes of
generally non-Gaussian measurements �A and �B on modes
A and B of the state ρp. The quantity Ic(ρp) is invariant
with respect to local unitaries and thus ρp can be replaced by
the locally unitarily equivalent two-mode squeezed vacuum
(TMSV) state ρp(λ) = |ψ(λ)〉〈ψ(λ)|, where

|ψ(λ)〉 =
√

1 − λ2
∞∑

n=0

λn|n,n〉AB (130)

with λ = tanh r̃ . Non-Gaussian local photon counting on
modes A and B of the state |ψ(λ)〉 then yields a probability
distribution with I (A; B) = S(ρA) [49], which is the highest
mutual information one can achieve [52]. Thus, we find that
E↓ = E holds for all pure Gaussian states as required. A
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FIG. 1. (Color online) GIE EG
↓ (solid red curve), entropy of

entanglement E (dashed blue curve), and logarithmic negativity EN
(dotted black curve) for pure Gaussian states versus the squeezing
parameter r̃ .

comparison of GIE (128), entropy of entanglement (129), and
logarithmic negativity [53,54] EN (ρp) = 2r̃ [55] as functions
of the squeezing parameter r̃ is depicted in Fig. 1.

VIII. GIE FOR A TWO-MODE REDUCTION
OF THE THREE-MODE CV GHZ STATE

Despite the complexity of optimization in Eq. (61) it is
possible to calculate GIE analytically for some mixed two-
mode Gaussian states. In what follows, we illustrate this by
calculating GIE for a two-mode Gaussian state (≡ρGHZ

AB ) with
CM

γ GHZ
AB =

(
α κ

κ α

)
, (131)

which is a reduction of the three-mode CV GHZ state [23]
having CM

γ GHZ
ABE =

⎛
⎝α κ κ

κ α κ

κ κ α

⎞
⎠ . (132)

Here, α = diag(x+,x−) and κ = (x− − x+)σz, where x± =
(e±2r + 2e∓2r )/3 and r � 0 is a squeezing parameter. This
calculation will be accomplished in two steps. First, we will
calculate an easier computable upper bound [≡U (ρGHZ

AB )]
on EG

↓ (ρGHZ
AB ). In the second step, we will show, that for

homodyne detections on modes A,B with CMs �x ′
A and

�x ′
B homodyne detection on mode E with CM �x ′

E mini-
mizes the mutual information (60), i.e., f (γπ ,�x ′

A ,�x ′
B ,�x ′

E ) =
inf�E

f (γπ ,�x ′
A ,�x ′

B ,�E), and simultaneously the upper bound
U (ρGHZ

AB ) is saturated, i.e.,

U
(
ρGHZ

AB

) = f
(
γπ ,�x ′

A ,�x ′
B ,�x ′

E

)
, (133)

where γπ denotes the CM of the purification of the state ρGHZ
AB .

The quantity f (γπ ,�x ′
A ,�x ′

B ,�x ′
E ) is thus the largest possible

minimal mutual information with respect to all Gaussian
measurements on mode E, which finally yields

EG
↓
(
ρGHZ

AB

) = f
(
γπ ,�x ′

A ,�x ′
B ,�x ′

E

)
. (134)

Let us start by noting that from the max-min inequality [22]
it follows that GIE satisfies inequality EG

↓ (ρGHZ
AB ) � U (ρGHZ

AB ),
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where

U
(
ρGHZ

AB

) ≡ inf
�E

sup
�A,�B

f (γπ ,�A,�B,�E). (135)

Next, consider the quantity

IG
c (ρAB|E) = sup

�A,�B

f (γπ ,�A,�B,�E), (136)

which is the Gaussian classical mutual information of the
conditional quantum state ρAB|E of modes A and B after a
measurement with CM �E on mode E of the purification
with CM γπ [49]. Let us take as the CM γπ the CM (132),
γπ = γ GHZ

ABE , and denote as γAB|E the CM of the conditional
state ρAB|E . As the CM γπ is symmetric under exchange of
any pair of modes, the CM γAB|E is also symmetric for any
CM �E . To calculate the expression on the RHS of Eq. (136)
it is convenient first to express the CM γAB|E in the standard
form (126) where a = b due to the symmetry, i.e.,

γ st
AB|E =

⎛
⎜⎝

a 0 c1 0
0 a 0 c2

c1 0 a 0
0 c2 0 a

⎞
⎟⎠ . (137)

The mutual information f (γπ ,�A,�B,�E) is then given by
Eq. (60) where σAB = γ st

AB|E + �A ⊕ �B . Further, in Ref. [49]
it was shown that for symmetric states with CM (137)
the optimal measurements on modes A and B are always
symmetric with CMs of the form �A = �B = diag(e−2t ,e2t ),
t � 0. From Eqs. (60) and (137), it then follows that

f (γπ ,�A,�B,�E) = − ln
√

h, (138)

where

h =
[

1 − c2
1

(a + e−2t )2

][
1 − c2

2

(a + e2t )2

]
. (139)

In order to maximize the function (138) with respect to CMs
�A and �B , we have to minimize the function on the RHS
of Eq. (139) with respect to t � 0. This can be done by the
following chain of inequalities:[

1 − c2
1

(a + e−2t )2

][
1 − c2

2

(a + e2t )2

]

�
[

1 − c2
1

(a + e−2t )2

][
1 − c2

1

(a + e2t )2

]

= 1 − c2
1

a2
+ c2

1

a2[1 + a2 + 2a cosh(2t)]

×
[

2 + a2c2
1 − (a2 − 1)2

1 + a2 + 2a cosh(2t)

]

� 1 − c2
1

a2
. (140)

Here, the first inequality is a consequence of inequality
c1 � |c2| and the second inequality is fulfilled if

(2a + 1)2 � a2
(
a2 − c2

1

)
. (141)

Importantly, the lower bound 1 − c2
1/a

2 in inequalities (140)
is tight because it can be achieved in the limit t → +∞ which
corresponds to the homodyne detection of x quadratures on

both modes A and B. We have thus arrived to the finding
that, for all symmetric states with CM (137) for which the
parameters a and c1 satisfy inequality (141), the optimal
measurement in Gaussian classical mutual information (136)
is double homodyne detection of x quadratures. Hence, one
gets

IG
c (ρAB|E) = 1

2
ln

a2

a2 − c2
1

. (142)

Before going further, let us note that the inequality (141) has
been derived in Ref. [49] as a condition under which, for
two-mode squeezed thermal states which possess CMs (137)
with c2 = −c1, the optimal measurement in (136) is double ho-
modyne detection. The present analysis thus extends the result
of Ref. [49] to all symmetric states satisfying condition (141).

Moving to the derivation of the upper bound (135) it is
first convenient to find a simpler condition under which the
state ρGHZ

AB with CM (137) satisfies inequality (141). For this
purpose, we first rewrite inequality (141) into an equivalent
form

2 + 1

a
− s � 0, (143)

where we have introduced s ≡
√

a2 − c2
1. Since a is a sym-

plectic eigenvalue of the local state of mode A, it satisfies the
inequality a � 1 > 0 and therefore 1/a > 0. Consequently,
for CMs (137) for which s � 2 the inequality (143) is always
satisfied. Let us denote now as amax the maximal value of
the parameter a of the CM (137) over all CMs �E of Eve’s
measurements. From the obvious inequality a � s, it then
follows that if

amax � 2, (144)

then s � a � amax � 2, and inequality (143) is therefore
always satisfied. By calculating amax for the state ρGHZ

AB and
using inequality (144), we can find easily a region of the
squeezing parameter r for which the Gaussian classical mutual
information (136) is given by formula (142).

To calculate the quantity amax we first calculate the local
symplectic eigenvalue a of CM (137). The CM describes a
conditional quantum state obtained by a Gaussian measure-
ment with CM �E on mode E of the purification of the state
ρGHZ

AB with CM (132). We further decompose the latter CM as

γ GHZ
ABE = SABE

(
γ TMSV

AE ⊕ γ
sq
B

)
ST

ABE, (145)

where

γ TMSV
AE =

(
ν12

√
ν2 − 1σz√

ν2 − 1σz ν12

)
(146)

is the CM of pure two-mode squeezed vacuum state with

ν = √
x+x− = 1

3

√
5 + 4 cosh(4r), (147)

γ
sq
B =diag(e−2r ,e2r ), and SABE=(UAB⊕1E)(SA⊕1B ⊕ SE),

where SA = S−1
E = diag( 4

√
x−/x+, 4

√
x+/x−) and

UAB = 1√
2

(
12 12

12 −12

)
. (148)

The decomposition (145) expresses the simple fact that the
CV GHZ state can be obtained by the mixing of mode A of
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the TMSV state with CM (146) transformed by the squeezing
operation described by the matrix SA ⊕ SE with the squeezed
state in mode B with CM γ

sq
B on a balanced beam splitter

described by the matrix UAB [31]. The conditional state ρAB|E
is then obtained by performing a Gaussian measurement with
CM �E on mode E of the purification. Since the maximization
of a is carried out over all CMs �E , we can integrate
the squeezing transformation SE into the CM �E and can
therefore drop the matrix SE from any further considerations.
Let us express now the CM of Eve’s measurement as �E =
U (ϕ)diag(Vx,Vp)UT (ϕ), where

U (ϕ) =
(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)
, (149)

where ϕ ∈ [0,π ), Vx � Vp � 0, and VxVp � 1. By performing
the Gaussian measurement with CM �E on mode E of
the TMSV state with CM (146), mode A collapses into
the Gaussian state with CM γ cond

A = UT (ϕ)diag(Vx,Vp)U (ϕ),
where

Vx = νVx + 1

ν + Vx

, Vp = νVp + 1

ν + Vp

. (150)

Hence, at given ν the quantities Vx and Vp will lie in the subset
M of the (Vp,Vx) plane characterized by the inequalities
1/ν � Vp � ν, 1/Vp � Vx � ν, andVx � Vp. In other words,
if Vp ∈ [1/ν,1], then Vx ∈ [1/Vp,ν], whereas if Vp ∈ (1,ν],
then Vx ∈ [Vp,ν].

Let us now return back to the derivation of the local
symplectic eigenvalue a. After the measurement on mode E of
the TMSV state, mode A collapses into a Gaussian state with
CM γ cond

A which is subsequently transformed by the squeezing
operation described by the matrix SA and then mixed with
the squeezed state with CM γ

sq
B on a balanced beam splitter

characterized by the matrix UAB . This gives the conditional
state ρAB|E with CM

γAB|E = UAB

(
SAγ cond

A ST
A ⊕ γ

sq
B

)
UT

AB. (151)

Expressing further the latter CM in block form with respect to
A|B splitting,

γAB|E =
(

A C

C A

)
, (152)

one can calculate the entry a of the CM (137) from the formula
a = √

detA in the form

a =
√

1 + VxVp + 2[V+ cosh(2q) + V− sinh(2q) cos(2ϕ)]

2
,

(153)

where V± = (Vx ± Vp)/2 and q = r + ln(
√

x−/x+)/2. As the
inequality V− � 0 holds a is maximized if ϕ = 0. Further,
the extremal equations ∂a/∂Vx = 0 and ∂a/∂Vp = 0 have no
solution in the interior of the set M and therefore the maximum
lies on the boundary of the set. On the boundary, the local
symplectic eigenvalue a attains the maximum

amax =
√

1 + ν2 + 2ν cosh(2q)

2
= ν (154)

for Vx = Vp = ν. Next, making use of the explicit expression
for the symplectic eigenvalue ν [Eq. (147)] and the inequal-

ity (144), one finds after some algebra that the inequality (144)
is fulfilled if the squeezing parameter r satisfies the inequality

r � rth ≡ 1
4 arccosh

(
31
4

) .= 0.684. (155)

Consequently, for the class of two-mode Gaussian states
ρGHZ

AB for which r satisfies inequality (155), the Gaussian
classical mutual information (136) of the conditional state
ρAB|E is for any Gaussian measurement on mode E given by
the formula (142). Later in this section we show explicitly
that the latter statement in fact holds for all r � 0. This
is because for derivation of the inequality (155), we used
the inequality (144) which is stronger than the original
inequality (143), and therefore the threshold squeezing for
which the latter inequality is satisfied is larger than rth. By
minimizing the left-hand side (LHS) of inequality (143) over
all CMs �E one finds that the LHS has a lower bound of the
form

2 + 1

a
− s � 2 + 1√

x+x−
− x−

er
√

x+
, (156)

where the parameters x± are defined below Eq. (132). Further,
the RHS of the latter inequality is a monotonously decreasing
function of the squeezing parameter r which approaches the
value 2 − 2/

√
3 in the limit of r → +∞. Hence, one finally

gets the following lower bound:

2 + 1

a
− s � 2 − 2√

3

.= 0.845 (157)

for the LHS of the inequality (143) and therefore the inequality
is indeed satisfied for any r � 0. Since the minimization of the
LHS of the inequality (143) is very similar to the minimization
needed for calculation of the upper bound (135), it is more
convenient first to carry out the latter minimization. Explicit
minimization of the LHS of the inequality (143) is postponed
until near the end of the present section.

In the last step of the calculation of the upper bound
U (ρGHZ

AB ) [Eq. (135)], we perform minimization on the RHS of
the following equation:

U
(
ρGHZ

AB

) = inf
�E

[
1

2
ln

(
a2

a2 − c2
1

)]
(158)

over all single-mode CMs �E . This amounts to the minimiza-
tion of the ratio c1/a, where a is given in Eq. (153). The
parameter c1 appearing in CM (137) can be calculated as a
larger eigenvalue of the matrix QCQT :

c1 = Tr(QCQT ) +
√

[Tr(QCQT )]2 − 4 detC

2
, (159)

where Q symplectically diagonalizes the matrix A, i.e.,
QAQT = a12, and where we have used the equality
det(QCQT ) = detC. If we calculate explicitly the CM (151)
we get after some algebra

detC = 1
2 (1 + VxVp) − a2, (160)

and the utilization of the expression Q = diag( 4
√

λ2/λ1,
4
√

λ1/λ2)U (θ )S−1
A , where U (θ )S−1

A A(ST
A )−1UT (θ ) =

diag(λ1,λ2), λ1 � λ2, yields

Tr(QCQT ) = aTr(CA−1) = (VxVp − 1)

2a
. (161)
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Substituting now from Eqs. (160) and (161) into Eq. (159),
one finds the ratio c1/a to be minimized in the form

c1

a
= K

a2
+
√(K

a2
− 1

)2

− 1

a2
≡ g (162)

with K = (VxVp − 1)/4.
The minimal value of the ratio (162) is easily found

by a direct substitution for r = 0 which corresponds to the
vacuum density matrix ρGHZ

AB . In this case, one has ν = 1
which implies Vx = Vp = 1 and therefore K = 0 which gives
g =

√
(a2 − 1)/a2. As for r = 0 one further gets q = 0 and we

see from Eq. (153) that a = 1 and thus g = 0. Consequently,
for r = 0 the upper bound (135) vanishes, U (ρGHZ

AB ) = 0, and
therefore EG

↓ (ρGHZ
AB ) = 0 which is in accordance with our

previous finding that GIE vanishes on all separable states.
For r > 0 the minimization of g [Eq. (162)], with respect to

the variables ϕ, Vx , and Vp is best performed if we introduce
new variables τ = √VxVp and z = √Vx/Vp, where τ ∈ [1,ν]
and z ∈ [1,ν/τ ]. Then, the task is to minimize g in the subset
O of the three-dimensional space of the variables ϕ, τ , and
z characterized by the intervals ϕ ∈ [0,π ], τ ∈ [1,ν], and
z ∈ [1,ν/τ ]. Note that here and in what follows, we admit
for the sake of simplicity also phase ϕ = π , although it is not
necessary because the function g is π periodic. Calculating
now the extremal equations ∂g/∂ϕ = 0 and ∂g/∂z = 0 and
taking into account inequality c1 � 0 and inequality a2 − c2

1 �
1 which has to be satisfied for any CM of a physical quantum
state [56], one finds that the equations are equivalent to
the extremal equations ∂a/∂ϕ = 0 and ∂a/∂z = 0. The first
extremal equation ∂a/∂ϕ = 0 is satisfied if either ϕ = 0,

π/2,π or z = 1. Since for ϕ = π/2 the second equation
∂a/∂z = 0 has no solution z in the interval [1,ν] and all points
with ϕ = 0,π or z = 1 lie on the boundary of the set O the
function g has no stationary points in the interior of the set O.
A detailed analysis of the behavior of the function g on the
boundary of the set O reveals that the candidates for extremes
will lie on the following parts of the boundary:

(1) The segment (τ = ν, z = 1, ϕ ∈ [0,π ]) and the curves
(τ ∈ [1,ν], z = ν/τ, ϕ = 0) and (τ ∈ [1,ν], z=ν/τ, ϕ=π ),
where

U1 ≡ 1

2
ln

(
1

1 − g2

)
= ln

(
erx+√

x−

)
(163)

in all three cases. The value U1 can be obtained in various ways
including homodyne detection of quadrature pE on mode E,
i.e., �E = �

p

E ≡ �t→+∞
p , where �t

p ≡ diag(e2t ,e−2t ), or by
tracing out mode E.

(2) The segment (τ = 1, z = 1, ϕ ∈ [0,π ]) corresponding
to heterodyne detection on mode E, i.e., �E = 12, where

U2 = ln

⎛
⎝er 4

√
x−
x+

+ e−r 4

√
x+
x−

2

⎞
⎠ . (164)

(3) In the point τ = 1, z = ν, and ϕ = π/2 which cor-
responds to homodyne detection of quadrature xE on mode
E, i.e., �E = �x

E ≡ �t→+∞
x , where �t

x ≡ diag(e−2t ,e2t ), and

where

U3 = ln

(
x−

er
√

x+

)
. (165)

It remains to find the smallest of the three quantities U1, U2,
and U3. For this purpose it is convenient to express them as
Uj = ln[cosh(pj )], j = 1,2,3, where p1 = ln(er√x−), p2 =
ln(er 4

√
x−/x+), and p3 = ln(er/

√
x+). As for r > 0 it holds

that ν > 1, we have p1 − p3 = ln ν > 0 and therefore p1 > p3

which implies U1 > U3. Similarly, one gets p2 − p3 =
ln

√
ν > 0 and therefore p2 > p3 which gives finally U2 > U3.

Consequently, the sought upper bound (135) is equal to U3,
i.e.,

U
(
ρGHZ

AB

) = ln

(
x−

er
√

x+

)
(166)

and is achieved by triple homodyne detection of x quadratures.
In the final step of evaluation of the GIE we find for

some fixed measurements with CMs �A and �B on modes
A and B of the purification with CM (132) an infimum
over all CMs �E which saturates the upper bound (166),
inf�E

f (γπ ,�A,�B,�E) = U (ρGHZ
AB ). This means that this is

the largest infimum and hence GIE is equal to the up-
per bound (166). Let us denote as �x ′

j = S−1�x
j (ST )−1,

j = A,B, where the CM �x
j describes homodyne de-

tection of quadrature x on mode j and the single-
mode symplectic matrix S brings the CM (152) to the
standard form (137), i.e., (S ⊕ S)γAB|E(ST ⊕ ST ) = γ st

AB|E .

Then, IG
c (ρAB|E) = f (γπ ,�x ′

A ,�x ′
B ,�E) and as we have

shown above inf�E
f (γπ ,�x ′

A ,�x ′
B ,�E) = f (γπ ,�x ′

A ,�x ′
B ,�x ′

E ) =
U (ρGHZ

AB ), where �x ′
E = SE�x

EST
E . Thus, for measurements with

CMs �x ′
A and �x ′

B on modes A and B of the purification with
CM (132), the measurement on mode E with CM �x ′

E gives
the minimal mutual information f (γπ ,�x ′

A ,�x ′
B ,�E) which is at

the same time largest with respect to the CMs �A and �B as it
saturates the upper bound (166). Consequently,

EG
↓
(
ρGHZ

AB

) = U
(
ρGHZ

AB

) = ln

(
x−

er
√

x+

)
(167)

as we wanted to prove.
In the course of the derivation of the formula (167), we

have used the equality (142) which was shown to be valid for
all CMs �E when the inequality (155) is fulfilled. Hence, the
analytical expression of GIE in Eq. (167) is also valid for all
states ρGHZ

AB for which r � 0.684. However, by repeating the
previous minimization of the ratio g = c1/a [Eq. (162)], in the
subset O for function 1/a − s on the LHS of inequality (143),
we find that the inequality (143) and therefore also the
formula (167) holds for all r � 0.

In order to show this, consider first the case when r = 0.
From the previous results, it then follows that a = 1 and c1 = 0
which implies fulfillment of the inequality (143). For r > 0
we can proceed as follows. Note first that the minimization
of 1/a, which is the first part of the function 1/a − s, has
already been done by maximization of a. This gave the
minimum 1/amax = 1/ν = 1/

√
x+x− which is attained if Eve

projects her mode onto an infinitely hot thermal state which
is equivalent to dropping of mode E. Now, if it happens that
the function s defined below Eq. (143) attains its maximum
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(≡smax) also when Eve drops her mode, then 1/amax − smax

represents the sought lower bound for the function 1/a − s. If
we derive the function s with respect to ϕ and z and we use
the expressions (153) and (162), we arrive after some algebra
at the following expressions:

∂s

∂x
= −2

(τ 2 − 1)
(
a2 − c2

1

)
4a2c1 − (τ 2 − 1)a

∂a

∂x
, x = ϕ,z. (168)

Consequently, for τ > 1 the extremal equations ∂s/∂ϕ = 0
and ∂s/∂z = 0 are equivalent to the equations ∂a/∂ϕ = 0
and ∂a/∂z = 0. However, as it was shown before, the latter
equations have no solution in the interior of the set O and thus
the extremes will lie on the boundary of the set O. On the
boundary plane z = 1, ϕ ∈ [0,π ], and τ ∈ [1,ν] the function
s is independent of ϕ and it monotonously increases with τ

attaining the maximum

smax = x−
er

√
x+

(169)

at τ = ν which corresponds to dropping Eve’s mode E.
The second boundary plane τ = 1, ϕ ∈ [0,π ], and z ∈ [1,ν]
corresponds to pure-state Gaussian measurements on mode E

which yield pure conditional states ρAB|E for which s = 1. On
the boundary planes ϕ = 0 and π , τ ∈ [1,ν], and z ∈ [1,ν/τ ]
the extremal equation ∂a/∂z = 0 does not have any solution
for z ∈ [1,ν/τ ] and therefore the extremes of s will lie on the
boundary of the plane. Likewise, for the last boundary surface
z = ν/τ , ϕ ∈ [0,π ], and τ ∈ [1,ν] the extremal equations
∂s/∂ϕ = 0 and ∂s/∂τ = 0 have no solution in the interior
of the surface and therefore also in this case the extremes will
be on the boundary. We have already calculated the extremes
of s on the boundary curves of the surface except for the
curves z = ν/τ , ϕ = 0,π , and τ ∈ [1,ν], where s attains the
maximum (169) for τ = ν. In summary, there are two extremes
of the function s on the set O. One is equal to s = 1 and
it is localized on the boundary plane τ = 1, and the other
one is equal to smax [Eq. (169)], which lies on the segment
τ = ν, z = 1, and ϕ ∈ [0,π ] which corresponds to dropping
Eve’s mode E. Since one can easily show that smax � 1
we finally find that the function s attains the maximum
value (169) exactly in the same points where the function a

is also maximized. Thus, the function 1/a − s on the LHS of
inequality (143) has the lower bound given in inequality (156)
which is further restricted from below as in inequality (157).
From that it follows, finally, that the inequality (143) and hence
also the formula (167) for GIE of the state ρGHZ

AB are indeed
satisfied for all r � 0 as we wanted to prove.

It might again be of interest to compare GIE for state ρGHZ
AB

with the GR2 entanglement. For a generally mixed two-mode
Gaussian state ρAB with CM γAB the GR2 entanglement is
defined as [24]

E2 (ρAB) = inf
θAB � γAB

detθAB = 1

1
2 ln(detθA), (170)

where the minimization is carried over all pure two-mode
Gaussian states with CM θAB smaller than γAB . The considered
state ρGHZ

AB is a reduced state of a pure three-mode state and
therefore it belongs to the class of Gaussian states with minimal
partial uncertainty [57] for which GR2 entanglement can be

expressed analytically [24]. Making use of the fact that the state
ρGHZ

AB is a reduction of the fully symmetric state with CM (132)
with local symplectic eigenvalue ν = √

x+x− [Eq. (147)],
GR2 entanglement reads explicitly as

E2
(
ρGHZ

AB

) = 1
2 ln g′ (171)

with

g′ =
{

1, if ν = 1
ζ

8ν2 , if ν > 1
(172)

where

ζ = 3ν4 + 6ν2 − 1 −
√

(ν2 − 1)3(9ν2 − 1). (173)

Consider first the case ν = 1. From Eqs. (171) and (172), it
then follows that E2(ρGHZ

AB ) = 0. Equation (147) further reveals
that the equality ν = 1 is equivalent with the equality r = 0
which implies EG

↓ (ρGHZ
AB ) = 0 and thus GIE coincides with

GR2 entanglement. Moving to the case ν > 1 we see that GR2
entanglement is equal to the RHS of Eq. (171) where g′ =
ζ/(8ν2), whereas from Eq. (167) it follows that EG

↓ (ρGHZ
AB ) =

(ln g̃)/2, where g̃ ≡ x2
−/(e2rx+). Expressing now e±2r using

Eq. (147) one gets

e±2r =
√

9ν2 − 1 ± 3
√

ν2 − 1

2
√

2
, (174)

which further gives

x± = e±2r + 2e∓2r

3
=

√
9ν2 − 1 ∓ √

ν2 − 1

2
√

2
. (175)

If we now rewrite the quantity g̃ as g̃ = x2
−(2ν2 − x2

−)/ν2

and substitute to the RHS for x− from Eq. (175) we finally
find that g̃ = ζ/(8ν2) = g′. In this way, we have arrived
at a surprising result: GIE also coincides with the GR2
entanglement for a one-parametric family of mixed two-
mode Gaussian states ρGHZ

AB , i.e., E2(ρGHZ
AB ) = EG

↓ (ρGHZ
AB ). A

comparison of EG
↓ (ρGHZ

AB ) [Eq. (167)] with other entanglement
measures is depicted in Fig. 2.

The results presented in this section lay the foundations
for further exploration of GIE which is deferred for further
research. This may include analytical or numerical evaluation
of GIE for other two-mode Gaussian states with a three-mode
purification or states with some symmetry such as two-mode
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FIG. 2. (Color online) GIE EG
↓ (solid red curve), entanglement

of formation EF (dashed blue curve), and logarithmic negativity EN
(dotted black curve) versus the squeezing parameter r for CM (131).
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squeezed thermal states with standard-form CM (126), where
a = b and c2 = −c1. With these results in hand, we can
also begin to explore the exciting question of the relation
of two seemingly very different quantities: GIE and GR2
entanglement.

IX. LOWER BOUND ON IE FOR THE
CONTINUOUS-VARIABLE NON-GAUSSIAN

WERNER STATE

So far, we have investigated the properties of IE [Eq. (5)]
only in the Gaussian scenario. Owing to the relative simplicity
of Gaussian states and measurements we were able to calculate
IE analytically for some nontrivial mixed Gaussian states and
there in principle do not seem to be any obstacles preventing its
evaluation, at least numerically, for other two-mode Gaussian
states. A natural question that then arises is whether IE can
be calculated also for some non-Gaussian states. It is apparent
that this case will be much more complicated. Indeed, the
calculation of IE for non-Gaussian states involves optimization
over all general non-Gaussian measurements and purifications
and therefore one is led to the apprehension that it will be
infeasible, both analytically and numerically. In this section,
we show that despite this complexity a nontrivial analytical
lower bound on IE can be found even in the case of some
mixed two-mode non-Gaussian states.

The states which we have in mind form the following
two-parametric subfamily of the continuous-variable Werner
states [25]

ρ0 = p|ψ(λ)〉AB〈ψ(λ)| + (1 − p)|00〉AB〈00|, (176)

where 0 � p � 1, which is just a mixture of a two-mode
squeezed vacuum state (130) with the vacuum. Making use
of the partial transposition separability criterion [58], one can
show easily [25] that for p > 0 the state (176) is entangled.
For calculation of IE we first need to find a purification of the
state (176), which can be taken in the form

|�〉ABE = √
p|ψ(λ)〉AB |0〉E +

√
1 − p|00〉AB |1〉E, (177)

where Eve’s purifying system is obviously a two-level quan-
tum system (qubit) with basis vectors |0〉E and |1〉E . As the
definition (5) of IE involves minimization with respect to all
purifications of the state (176), we need to know the form of
an arbitrary purification which can be expressed as

|� ′〉ABE′ = (1AB ⊗ V )|�〉ABE

= √
p|ψ(λ)〉ABV |0〉E +

√
1 − p|00〉ABV |1〉E,

(178)

where V is an isometry from a qubit Hilbert space HE to a
Hilbert space HE′ of another purifying system E′ and 1AB is
the identity operator on modes A and B. Instead of calculating
the full IE for the state (176), here we will calculate its lower
bound

L↓(ρ0) = inf
{�E,|�〉}

[I (A; B ↓ E)] (179)

for fixed photon-counting measurements on modes A and
B. Assume, therefore, that the projective measurements
{|m〉A〈m|,m = 0,1, . . .} and {|n〉B〈n|,n = 0,1, . . .} are carried

out on modes A and B of the purification (178), whereas the
subsystem E′ is exposed to some generalized measurement
{�E′(k)}. The outcomes of the measurements are then dis-
tributed according to the probability distribution

p(m,n,k) =
{

pE(k) − λ2p�00(k), if m = n = 0

p(1 − λ2)λ2mδmn�00(k), otherwise
(180)

where

pE(k) = p�00(k) +
√

p(1 − p)(1 − λ2)[�10(k) + �01(k)]

+ (1 − p)�11(k) (181)

is the probability distribution of measurement outcome k,
where

�ij (k) ≡ 〈i|V †�E′(k)V |j 〉, i,j = 0,1. (182)

By calculating the entropies H (A,B,E), H (A,E), and
H (B,E) for the distribution (180) and the marginal
distributions pAE(m,k) ≡∑∞

n=0 p(m,n,k) and pBE(n,k) ≡∑∞
m=0 p(m,n,k), we further observe that H (A,B,E) =

H (A,E) = H (B,E) and the conditional mutual informa-
tion (3) simplifies to

I (A; B|E) = H (A) − I (A; E), (183)

where I (A; E) = H (A) + H (E) − H (A,E) is the mutual
information of the marginal distribution pAE(m,k).

Moving to the minimizations in Eq. (179), we see from
Eq. (183) that it boils down to the maximization of the mutual
information I (A; E) over all channels E → Ẽ, isometries V ,
and measurements {�E′(k)} on purifying subsystem E′. Since
sending a random variable E over a channel P (Ẽ|E) cannot
increase the mutual information, i.e., I (A; Ẽ) � I (A; E), it is
best for Eve to not apply any channel to her measurement
outcomes. Further, as the operators V †�E′(k)V appearing
in Eq. (182) are Hermitian, positive semidefinite, and sum
to a qubit identity operator, they comprise a qubit gener-
alized measurement. Therefore, in Eq. (179) we can omit
minimization with respect to all purifications and we can
minimize only over single-qubit measurements on the fixed
purification (177). The latter minimization can be carried out
with the help of the following upper bound on the classical
mutual information [52]

I (A; E) � min{S(ρA),S(ρE),Iq(ρAE)}, (184)

where S(ρA) and S(ρE) are marginal von Neumann entropies
of the reduced states ρA and ρE , respectively, of subsystems
A and E of the state (177) and Iq(ρAE) = S(ρA) + S(ρE) −
S(ρAE) is the quantum mutual information of the reduced state
ρAE of the subsystem (AE). From the purity of the state (177) it
further follows that S(ρAE) = S(ρB), whereas the symmetry
of the state (176) under the exchange of modes A and B

implies S(ρA) = S(ρB). As a consequence, we get Iq(ρAE) =
S(ρE), and for finding of the minimum on the RHS of the
inequality (184) we have to compare the marginal entropies
S(ρA) and S(ρE). Using once again the purity argument we
get S(ρE) = S(ρ0) and therefore we need to compare S(ρA)
with S(ρ0). In Ref. [60] it was already shown with the help
of the majorization theory [59] that S(ρA) � S(ρ0) and the
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entropy S(ρ0) has been calculated in the form

S(ρ0) = −
2∑

i=1

ei ln ei, (185)

where

e1,2 = 1 ±
√

1 − 4p(1 − p)λ2

2
(186)

are the eigenvalues of the state (176). Therefore, from Eq. (184)
it follows that the mutual information I (A; E) has an upper
bound equal to S(ρE) = S(ρ0) [Eq. (185)], which is achieved
by a measurement of the qubit E in the eigenbasis of the
reduced state

ρE = p|0〉E〈0| +
√

p(1 − p)(1 − λ2)(|0〉E〈1| + |1〉E〈0|)
+ (1 − p)|1〉E〈1|. (187)

Consequently, we get finally from Eqs. (179) and (183) the
analytical form of the lower bound on IE:

L↓(ρ0) = H (A) − S(ρE), (188)

where S(ρE) is given by the RHS of Eq. (185) and H (A) is the
Shannon entropy of the photon-number distribution in mode
A of the state (176) [60]:

H (A) = S(ρA) = −
{

ln(1 − pλ2) + pλ2 ln

[
p(1 − λ2)

1 − pλ2

]

+ 2pλ2 ln λ

1 − λ2

}
. (189)

The lower bound (188) is depicted by a solid red curve in
Fig. 3. For comparison, we have plotted into the figure also
cases when Eve just drops her qubit E or she measures it in
the {|0〉,|1〉} and {|±〉 = (|0〉 ± |1〉)/√2)} bases.

In the previous text, we have performed minimization on
the RHS of Eq. (5) for a particular fixed measurement on
modes A and B of the purification (177), which was given by
photon counting. In order to calculate the true IE, we would
have to carry out the minimization for arbitrary local projective
measurements on modes A and B and then we would have to
perform maximization over the measurements. Our derivation
given above thus yields only a lower bound on IE the actual
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FIG. 3. (Color online) Lower bound L↓ [Eq. (188)] (solid red
curve) and I (A; B|E) versus the parameter p for measurement in
the {|0〉,|1〉} basis (dashed-dotted magenta curve) and the {|±〉} basis
(dashed blue curve) and when Eve’s qubit E is dropped (dotted black
curve) for λ = 0.3.

value of which can in fact be larger and may not be reached
by photon counting. However, photon counting on modes A

and B of the state (176) gives I (A; B) = S(ρA) [60] which
is the highest classical mutual information one can get by
locally measuring the state. This leads us to the conjecture that
this measurement is in fact optimal and therefore the lower
bound (188) coincides with IE. The proof or disproof of this
conjecture as well as further analysis of IE for other non-
Gaussian states is already beyond the scope of this paper and
will be given elsewhere.

X. CONCLUSIONS

In this paper, we gave a detailed analysis of the properties of
GIE, which is a quantifier of bipartite Gaussian entanglement
introduced in Ref. [21]. The GIE is a Gaussian version
of a more general quantity IE which is a lower bound to
the “classical measure of entanglement” [7] obtained by
commuting the order of optimization in the definition of IE.

Initially, we have shown that the assumption of Gaussianity
of all channels, states, and measurements greatly simplifies
IE. First, we have proved that the classical channel on Eve’s
measurement outcomes can be integrated into her measure-
ment. In the next step, we have demonstrated that in the
definition of IE we can use an arbitrary fixed purification of a
considered state and that we can omit the minimization over all
purifications. As a result of these simplifications, the GIE boils
down to the optimized mutual information of a distribution of
outcomes of Gaussian measurements on subsystems A and B

of a conditional state obtained by a Gaussian measurement
on subsystem E of a Gaussian purification of the considered
state.

Next, the simple form of GIE enabled us to show that it
satisfies some properties of a Gaussian entanglement measure.
For this purpose, we have constructed for any Gaussian separa-
ble state a Gaussian purification and a Gaussian measurement
on the purifying part E, which projects the state onto a product
of states of subsystems A and B. This allowed us to prove two
important properties of GIE. First, making use of the result
we have shown that if a Gaussian state is separable, then GIE
vanishes. Second, combining the result with the realization of
LOCC operations by teleportation with a separable shared state
we have arrived to an important observation that GIE does not
increase under the GLTPOCC. In particular, the monotonicity
property implies that GIE is invariant with respect to all local
Gaussian unitary operations.

Finally, we have calculated analytically GIE for two simple
classes of two-mode Gaussian states. For pure Gaussian
states, GIE is equal to the GR2 entanglement [24] whereas
equality to the entropy of entanglement is established provided
that Alice and Bob are allowed to perform non-Gaussian
measurements. An analytical formula for GIE has been also
derived for one-parametric family of two-mode reductions of
the three-mode CV GHZ state, which was also found to be
equal to the GR2 entanglement. Last but not least, we have also
extended our analysis of the proposed entanglement quantifier
to a non-Gaussian case by calculating a lower bound on IE for
a particular subset of a set of two-mode continuous-variable
Werner states.
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The results obtained in this paper raise several questions
which remain open for further research. First, it is imperative
to know, whether GIE is monotonic under all (including trace-
decreasing) GLOCC operations. If answered in the affirmative,
we could call GIE a Gaussian entanglement measure. Another
important question concerns computability of GIE on other
Gaussian states. Knowing GIE for other Gaussian states, one
can then further investigate a rather surprising finding that GIE
and GR2 entanglement are equal on some Gaussian states.
A proof showing the equality of the two quantities on all
bipartite Gaussian states would link GR2 entanglement with
the secret-key agreement protocol [11] and, what is more, this
would also mean that GIE possesses all the properties of GR2

entanglement including, e.g., monogamy. Finally, GIE is a
faithful quantity [21] which is nonzero on all entangled states
and therefore it opens a possibility to quantify the amount of
entanglement in Gaussian bound entangled states [35].

We hope that the results presented here will further
stimulate research in the field of the computable and physically
meaningful entanglement measures.
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[37] M. M. Wolf, G. Giedke, O. Krüger, R. F. Werner, and J. I. Cirac,

Phys. Rev. A 69, 052320 (2004).
[38] A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972); M.-D. Choi,

Lin. Alg. Appl. 10, 285 (1975).
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