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We improve upon a recently introduced efficient quantum state reconstruction procedure targeted to states
well approximated by the multiscale entanglement renormalization ansatz (MERA), e.g., ground states of critical
models. We show how to numerically select a subset of experimentally accessible measurements which maximize
information extraction about renormalized particles, thus dramatically reducing the required number of physical
measurements. We numerically estimate the number of measurements required to characterize the ground state of
the critical one-dimensional Ising (resp. XX) model and find that MERA tomography on 16-qubit (resp. 24-qubit)
systems requires the same experimental effort as brute-force tomography on 8 qubits. We derive a bound
computable from experimental data which certifies the distance between the experimental and reconstructed
states.
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The understanding of many-body quantum systems has
dramatically progressed recently, theoretically and experimen-
tally. New efficient numerical methods use the properties of
entanglement in many-body states, such as the area law of
entanglement entropy [1], to describe efficiently the many-
body wave function of physical systems [2]. In parallel,
experimentalists achieve a very high degree of control over
larger and larger systems [3,4]. However, efficient methods to
quantitatively compare theoretical predictions to experimental
realizations are few.

Quantum state tomography [5] is a paradigm that aims
to reconstruct the quantum state of a system by performing
multiple measurements on identically prepared copies of
the system. Since measurements perturb a quantum system,
many copies of the system are needed to extract information
about the many-body wave function. Once the experimental
data are extracted, a numerical procedure determines which
density matrix fits best the measurements. This quantum state
reconstruction can be performed using different approaches,
the most used being maximum likelihood estimation [6].

Generally, both the number of measurements and the
postprocessing time of quantum state reconstruction grow
exponentially with the system size. This is not surprising
since the dimension of the Hilbert space of n particles grows
exponentially in n. Note that we generically refer to the
fundamental experimental objects of the physical system of
interest as particles. For instance, for cold atoms in an optical
potential, “particles” would correspond to cold atoms. In an
arbitrary many-body wave function, there is an exponen-
tial number of coefficients to estimate. Furthermore, for a
(Haar-)random quantum state, most coefficients have expo-
nentially small amplitudes in a local basis, so to distinguish
any one of those amplitudes from zero, one must take an
exponential number of samples. This simple reasoning hints
towards an experimental and numerical effort that scales
exponentially with system size.
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However, physical quantum states, for instance ground
states of local Hamiltonians, only constitute a very small
subset of all states in the Hilbert space [7]. A general and
very fruitful idea is to approximate those states of interest by
a suitable variational family of states. An efficient family of
states not only allows for a concise description of states—
the number of parameters needed to represent them grows
only polynomially with system size—but also allows us to
efficiently compute physical quantities, such as expectation
values of local observables in polynomial time.

Tensor network (TN) states are variational families of states
which are strong candidates to parametrize the physical part
of the Hilbert space [2]. TN states are built to accommodate
the structure of entanglement for various physical states. For
instance, the matrix product states (MPS) representation is
based on the property that the entropy of a block of particles
grows with the boundary of the block. This property is
called an area law; see [8] for a review. Ground states of
one-dimensional (1D) gapped systems follow an area law [1]
and are well approximated [9] by MPS [10–13]. Moreover,
convenient numerical methods exist to find such a MPS
approximation, such as the density matrix renormalization
group (DMRG) method [14,15]. However, this area law is
violated by critical systems, i.e., ground states of quantum
systems near a quantum phase transition [16]. Indeed, in 1D
critical systems, the entanglement of a block of n particles
diverges as log(n). To reproduce this entanglement scaling, the
multiscale entanglement renormalization ansatz (MERA) was
introduced in [17]. A MERA state is the output of a specific
type of quantum circuit whose gates arrangement generates
an amount of entanglement which grows logarithmically with
block size.

Recently, the use of variational states has been applied
to tomography [18–20] and explicit state reconstruction
methods have been given. The pioneering work on MPS
tomography [19] provided the first demonstration that varia-
tional tomography could be performed efficiently. Subsequent
work [20] demonstrated that variational tomography was also
possible for 1D critical systems described by MERA states.
MERA tomography offers the perspective to be an extremely
valuable tool in the experimental characterization of quantum
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simulators, finely controlled systems which experimentalists
can tune to reproduce the dynamics of a model Hamiltonian.
Indeed, the MERA can be straightforwardly extended to study
critical 2D models which are precisely the Hamiltonians that
quantum simulators [21,22] offer to probe experimentally.

In this paper, we revisit the idea of MERA tomography
in 1D and explicitly investigate some of the challenges left
open in the original proposal [20]. The original article gave a
proof of principle that the tomography protocol only required
a numerical and experimental effort scaling polynomially with
the size of the system. Schematically, the idea is that the MERA
transforms a highly entangled state into a trivial product
state by applying a logarithmic number of renormalization
steps, each corresponding to a layer of gates in a quantum
circuit. To identify each gate, it suffices to identify the density
matrix on a block of renormalized particles of constant size.
However, inferring information about renormalized particles is
done through renormalized observables. These renormalized
observables are accessed using measurements on the physical
states and the knowledge of the previous renormalization steps.
To maintain accuracy about the estimation value of a renormal-
ized observable, the number of repeated measurements at the
physical level is multiplied by a constant, the scaling factor, for
each renormalization step. Since there are only a logarithmic
number of renormalization steps, the overhead in the number
of measurements grows only polynomially with system size.

While this result is crucial theoretically, it does not
guarantee that the number of measurement and the processing
time is reasonable in practice for moderately small systems
within experimental reach. Indeed, the polynomial growth
governs the asymptotic scaling in the limit of very large
system size, but experimentalists are interested in the actual
number of measurements required to characterize a system
of interest. Thus, identifying the precise polynomial and in
particular the power of the leading term, along with its constant
multiplicative coefficient, is of paramount importance.

The analysis of [20] focused only on the scaling factor
λ of single-particle observables and found that the overhead
in repeated physical measurements scaled as λ ∼ 6 for the
critical Ising model. This naively led to an estimate of the
total number of measurements needed that increases slowly
with system size. However, this analysis failed to take into
account that one needs to measure many-body observables
for MERA tomography. For a ternary MERA on qubits, one
needs to measure 5-body observables whose scaling factor is
λ5, resulting in an overhead on repeated measurements which
is beyond experimental capacities, even for moderately large
systems.

Here, we (i) assess the reasons why the overhead in the num-
ber of measurements is much larger than naively anticipated,
(ii) suggest strategies to minimize it, and (iii) numerically
demonstrate that those strategies lead to a reasonable total
number of measurements for the critical Ising model on system
size of experimental interest.

The article is organized as follows. In Sec. I, we recall
the idea of variational tomography focusing on MERA
tomography. We discuss the concepts in the main body of the
article. The technical discussion about our improved numerical
algorithm for MERA tomography is available in Appendix A
for the interested reader. In Sec. II, we investigate the scaling

of the total number of experimental measurements needed to
characterize an experimental state close to the ground state
of a critical Ising 1D chain. We show that the naive approach
of [20] requires an unreasonable (yet polynomial) amount of
measurements. In Sec. III, we suggest two possible solutions
to resolve the issue. In Sec. IV, we numerically show that
the combinations of those two solutions significantly reduces
the number of experimental measurements. In Sec. V, we
provide an analysis of the source of errors in our tomography
scheme and infer the bound of the distance between exper-
imental and reconstructed states, based on a more detailed
analysis provided in Appendix B.

I. MERA TOMOGRAPHY

A. Variational tomography

The core idea of variational tomography is to take advantage
of the succinct description of variational states in order
to devise an efficient learning method. A learning method
consists of three parts: (i) the measurement prescription which
identifies the measurements to perform, (ii) the data acquisition
when the measurements are performed, and (iii) the state
reconstruction that infers the compatible quantum state via
postprocessing. Note that the measurement prescription can
change adaptively due to data acquisition as preliminary data
can improve the choice of measurements. This is the case for
MERA tomography.

As mentioned in the introduction, the idea of variational
tomography has been demonstrated on two variational class
of states: MPS and MERA. In both cases, quantum state
tomography is performed on small systems and numerical
processing is used to stitch the density matrices of those small
systems into a global state. While this stitching is efficient for
both MPS and MERA, this procedure is expected to be very
hard for arbitrary states in the Hilbert space. Recent progress
has been made to understand the structure of quantum states for
which local measurements are informationally complete [23].

In MPS tomography [19], reduced density matrices σi on
all blocks of a constant number (independent of system size)
of particles are estimated. Then, a classical algorithm, inspired
from ideas of compressed sensing, is used to reconstruct the
global state. Alternatively, one could learn the quantum circuit
preparing the state. Indeed, any MPS can be prepared using a
staircase circuit with linear depth (see Fig. 1).

We now describe MPS tomography in more detail as it
bears many similarities with MERA tomography, which will
be discussed in the next section. One can learn the rightmost
quantum gate U� of Fig. 1 by performing tomography on a
small number of particles and then identifying a unitary gate
which disentangles the bottom particle and puts it in the state
|0〉. We then repeat this procedure on state U

†
� |ψ〉. To learn

U�−1, the original proposal of [19] was to experimentally
apply the gate U

†
� . However, one can use the knowledge

of U� to see how it modifies the physical observables on
the physical state |ψ〉. In other words, the knowledge of U�

allows us to translate measurements on the physical state |ψ〉
into what would be obtained by performing the measurement
of some renormalized observables on the renormalized state
U

†
� |ψ〉. Each physical observable will be associated with a
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FIG. 1. A matrix product state is obtained from a product state by
applying a staircase circuit. This structure allows us to sequentially
infer the quantum gates.

renormalized observable. As long as renormalized observables
span the support of the density matrix, they are informationally
complete. The power of renormalized observables was not
immediately realized in [19], but became apparent when
MERA tomography was devised [20]. We now describe
MERA tomography in great detail as our work builds upon
it.

B. Learning MERA states

1. Quantum circuit for MERA states

The MERA is a variational family of states [17] arising from
a real-space renormalization group approach called entan-
glement renormalization [24]. Entanglement renormalization
creates a sequence of quantum states {ρτ }τ=0...T where ρ0 is the
physical state (which we will also refer to as the experimental
state in the context of tomography) and ρτ>0 are coarse-grained
versions of the physical state which encode entanglement on
a larger scale. Intuitively, one can think of each renormalized
state ρτ as a state of a 1D chain of n/(kτ ) spins where k = 2
for binary MERA and k = 3 for ternary MERA. The crucial
insight of MERA is that for critical states, it is important to get
rid of short-scale entanglement before each renormalization
step. Otherwise, the short-scale entanglement accumulates
and the renormalization cannot be carried anymore. This
renormalization approach translates into a quantum circuit,
depicted in Fig. 2, that turns the physical state ρ0 on n particles
into the all-zero state |0〉⊗n (in the case of a pure state).

This MERA circuit consists of two sets of quantum gates.
The disentanglers are unitary transformations, depicted by
squares in Fig. 2 and denoted u, whose goal is to remove short-
scale entanglement. The isometries, depicted by triangles in
Fig. 2 and denoted w, map several particles into a single
renormalized particle by applying a unitary transformation
v followed by projection operator P ; see bottom of Fig. 2.
For instance, in binary MERA, two particles whose individual
quantum dimension is χ , i.e., whose total quantum dimension
is χ2, are mapped into a single particle of quantum dimension
χ . Note that this transformation is only possible if the density
matrix before the isometry is (approximately) supported on
a space of dimension χ rather than having full rank χ2. In
other words, the purpose of the disentanglers is precisely to

FIG. 2. (Color online) Top: Example of binary 1D MERA for a
lattice of 16 particles. (periodic boundary) u is a disentangler and w is
an isometry. Bottom: An isometry w can be decomposed into unitary
v followed by a projector P. Uτ−1→τ is the isometry of layer τ which
coarse-grains a state at level τ − 1 to a state at level τ whereas Uτ

τ−1

is the unitary part of Uτ−1→τ . oτ−1 is an operator at level τ − 1 and it
is mapped into oτ at level τ .

locally rotate the Hilbert space to concentrate the support of the
density matrices. This remark is at the heart of the numerical
method to identify disentanglers.

Another important notion of a MERA circuit is the past
causal cone of a quantum gate and the future causal cone of
particles. Imagine that time flows from the bottom of Fig. 2 to
the top. In other words, the level index τ plays the role of time.
Level 0 corresponds to the physical state while τ > 0 indices
the states and lattices obtained after τ step of renormalization.
The transformation Uτ from ρτ−1 to ρτ corresponds to a layer
of quantum gates; see Fig. 2. For any given quantum gate of the
circuit (disentangler or isometry), its past causal cone is the set
of physical particles whose change would induce a change of
the quantum gate. For any set of physical particles, its future
causal cone is the set of quantum gates such that a particle
belongs to the past causal cone of at least one of the gates in
the set.

2. MERA tomography procedure

Let us briefly describe the MERA tomography procedure,
taking the binary MERA geometry (see Fig. 2) as an example.
The goal is to find a MERA circuit representing a given
experimental state. To do this, MERA tomography repeatedly
measures local observables to obtain the reduced density
matrices of 4 renormalized particles in lattice Lτ which are
the past causal cone of each isometry mapping Lτ to Lτ+1

(see Fig. 3). We will often refer to renormalized particles as
sites on the renormalized lattices. Hence, a density matrix on
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FIG. 3. (Color online) Each past causal cone of the isometry wi

is the 4 sites in state ρi . The choice of the disentangler ui affects both
isometries wi to its left and wi+1 to its right.

4 renormalized particles will be referred to as a 4-site density
matrix.

For the physical level, i.e., τ = 0, those reduced density
matrices are obtained by brute-force quantum state tomog-
raphy. This is efficient since brute-force tomography is only
performed on a block of constant size. For higher layers, the
density matrices can be inferred from physical measurements
and the knowledge of the quantum gates in the previous layers.
We will describe the procedure in more detail in Sec. II. For
the moment, let us assume that we know every 4-site density
matrix ρi corresponding to the past causal cones of every
isometry i in layer τ + 1.

Given {ρτ
i }

i
, the goal is to find the disentanglers in layer

τ + 1. Let us focus on a single disentangler u = ui , supposing
that all other disentanglers in the layer are fixed. The choice
of u will affect the isometries, wi and wi+1, respectively to the
left and the right of u; see Fig. 3.

Thus, the objective function g splits into two parts,

g
(
u,ρτ

i ,ρτ
i+1

) = fL

(
u,ρτ

i

) + fR

(
u,ρτ

i+1

)
, (1)

where fL(u,ρi) corresponds to minimizing the rank of the 2-
site reduced density matrix that is the input of wi and similarly
for fR with respect to wi+1.

After applying the optimal disentanglers, the two-site
reduced density matrix at the input of the isometry wi should
have a rank at most χ so that the isometry keeps the χ

eigenvectors with largest eigenvalues. In other words, we
want the probability weight to be supported on the χ largest
eigenvalues. Thus, we maximize the objective function,

fL,R

(
u,ρτ

i

) =
∑
k�χ

λk, (2)

where ρτ
i is the reduced density matrix for the ith block at

level τ and λk is kth eigenvalue of the reduced density matrix
after the disentangler u has been applied.

Once all disentanglers have been obtained, the isometries
wi are obtained by diagonalizing the reduced density matrices
σi = tr14[ρi] at the input of the isometries where tr14 implies
tracing over site i1 and i4 after disentanglers (see Fig. 12).
Indeed, one can decompose the isometry wi as a unitary
transformation vi followed by a projector P of rank χ . Given

the diagonalization

σi =
∑
k�χ

λk|φk〉〈φk| +
∑
k>χ

λk|φk〉〈φk|, (3)

the unitary vi maps the first k eigenvectors |φk〉 to |k〉 ⊗ |0〉.
The way it acts on the other eigenvectors is arbitrary, as long as
vi is unitary. Afterwards, the projector P = Iχ ⊗ |0〉〈0| throws
away the irrelevant eigenvectors. This procedure is repeated
over each layer of the MERA circuit.

In the original MERA tomography procedure described
in [20], a conjugate gradient method was used to maximize the
objective function given by Eq. (2). In this paper, an alternative
approach inspired by [25] is used for this maximization. This
numerical procedure is discussed in detail in Appendix A.

II. SCALING OF THE NUMBER OF EXPERIMENTAL
MEASUREMENTS

A. Ascending superoperator

As explained in Sec. I, MERA tomography infers the
quantum circuit preparing the experimental state from a
product state. To identify each gate, the numerical procedure
takes as input the reduced density matrix on a small block of
particles. For the physical layer, denoted L0 in Fig. 2, those
particles correspond to experimentally measurable particles.
However, this is not the case for higher renormalized levels,
Lτ for τ > 0. To get access to the density matrices on a
block of renormalized particles, we will assess how physical
measurements will be mapped into effective measurements at
higher levels. This mapping depends on the disentanglers and
isometries between the physical level L0 and the current level
τ . Thus, it depends on the information acquired by tomography
on the previous layers.

1. First layer of renormalization

Let us consider the first layer of renormalization. Let us
define U 1

0 as the product of all the disentanglers u and all
unitary transformations v (see Fig. 2). Note that U 1

0 is a unitary
transformation since it does not contain P , the projection part
of isometries, which reduces the dimension of the Hilbert
space. Thus, before truncation, the observable O0 at the
physical level is mapped to the semirenormalized observables
U 1

0 O0(U 1
0 )† since

tr(ρ0O0) = tr
[
U 1

0 ρ0
(
U 1

0

)†
U 1

0 O0
(
U 1

0

)†]
, (4)

where ρ0 is a density matrix at the physical level.
However, the crucial step of the renormalization scheme is

to reduce the dimension of the Hilbert space. Formally, the
idea is that ρ̃1 = U 1

0 ρ0(U 1
0 )† is not full rank but has the form

ρ̃1 = ρ1 ⊗ |00 . . . 0〉〈00 . . . 0|. Thus, one can keep only the
relevant degrees of freedom by applying a projector P which
removes the superfluous degrees of freedom (see Fig. 2); i.e.,

P ρ̃1P
† = ρ1. (5)
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Hence, the expectation value of the physical operator O0 can
be written as

tr(ρ0O0) = tr
[
P ρ̃1P

†PU 1
0 O0

(
U 1

0

)†
P †] (6)

= tr
(
ρ1A1

0[O0]
)
, (7)

where A1
0[O0] is a renormalized observable. The action of an

ascending superoperator A1
0 is defined by

A1
0[...] = PU 1

0 [...]
(
U 1

0

)†
P †. (8)

2. Multiple layers of renormalization

The reasoning to go from the physical level to the first
renormalized level can be iterated. In that way, one defines
an ascending superoperator from level 0 to level mAm

0 =∏m
k=1 Ak

k−1, which maps operators at the physical level O0

to operators acting at level m obeying the equation

tr(ρ0O0) = tr
(
ρmAm

0 [O0]
)
. (9)

Equation (9) allows us to relate the renormalized state ρm

to the measurements tr(ρ0O0) once we know the ascended
observable Am

0 [O0].
We can express the superoperator Am

0 as a matrix Mij

by choosing bases of observables {Oi
0} at the physical level

and {Oj
m} at level m. Inferring the physical measurement

corresponding to an effective measurement on renormalized
particles then reduces to inverting this matrix to get M−1,

Am
0

(
O

j

0

) =
∑

i

MijO
i
m, (10)

tr
(
ρmOi

m

) =
∑

i

M−1
ij tr

(
ρ0O

j

0

)
. (11)

B. Overhead on the number of physical measurements

The strategy to infer information about the renormalized
state at level m is now clear: one performs measurements O0

at the physical level and then uses the knowledge of the gates
in the circuit to compute the ascending superoperator Am

0 and
thus the renormalized observables Am

0 [O0].
Let us illustrate this approach for scale-invariant MERA

in critical systems. In that case, translation invariance and
scale invariance guarantee that isometries and disentanglers
at all levels and sites are the same, which means that the
scaling behavior of operators does not depend on the level
considered. Moreover, in ternary 1D MERA, we can use
one-site physical operators which are mapped into one-site
renormalized operators (see Fig. 4). If O0 has a support in
that site, then the tensor network contraction for A(O0) can
be simplified as in Fig. 4. This simplifies the tomography
procedure. Indeed, to calculate the scaling, we only need
information about the isometry w.

We studied a few 1D critical models including Ising, XX,
and Potts using a ternary MERA code to study the scaling
behaviors of observables. Let us focus on the case of the critical
Ising model. Choosing the Pauli basis, {Oi} = {I,σx,σy,σz}
for observables, the matrix representation of the descending

FIG. 4. (Color online) Ascending superoperator and renormal-
ized observable for a ternary MERA. The tensor network contraction
turns a single-site operator Oi at level τ into a single-site operator
A(Oi) at level τ + 1.

superoperator M−1 reads

(
M−1

ij

) =

⎛
⎜⎜⎜⎜⎝

1 1.1 0 1.7

0 2.01 0 1.55

0 0 2.41 0

0 0.3 0 2.41

⎞
⎟⎟⎟⎟⎠. (12)

Let us focus on the observable σy which is an eigenvector
of the ascending superoperator since

A1
0

[
σ

y

0

] = 1√
λy

σ
y

1 , (13)

where
√

λy = 2.41. Using Eq. (9), one gets that

tr
(
ρ1σ

y

1

) = √
λy tr

(
ρ0σ

y

0

)
. (14)

One crucial point to worry about is the statistical error on the
expectation values due to the finite number of measurements.
Due to statistical fluctuations, the measured expectation value
〈σy

0 〉ρ0 will be equal to the proper expectation value tr(ρ0σ
y

0 )
up to some error ε0 which scales like N

−1/2
0 where N0 is the

number of repeated measurements; i.e.,〈
σ

y

0

〉
ρ0

= tr
(
ρ0σ

y

0

) ± ε0. (15)

When inferring the expectation value tr(ρ1σ
y

1 ), the uncertainty
will also be multiplied:〈

σ
y

1

〉
ρ1

= √
λy

〈
σ

y

0

〉
ρ0

(16)

= √
λy tr

(
ρ0σ

y

0

) ± √
λyε (17)

= tr
(
ρ1σ

y

1

) ± √
λyε. (18)

Thus, to maintain the accuracy ε0 at the renormalized level,
one needs to perform a number of measurements

N = λyN0. (19)

More generally, if O
j

1 is not an eigenvector of the ascending
superoperator, the total number of measurements needs to be
multiplied by

∑
i |M−1

ij |2.
This overhead in the number of measurements (i) will multi-

ply with the number of particles unto which the observables act
nontrivially and (ii) will multiply between each layer. From a
theoretical point of view, points (i) and (ii) are not catastrophic
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since they only correspond to a polynomial overhead. Indeed,
for point (i), the number of particles in a tomography block
is a constant, independently of system size. For point (ii), the
overhead depends on system size but is only polynomial. To
go from level 0 to level m, the multiplicative factor will be
λm

0 = ∏m
k=1 λk

k−1 but there is only a logarithmic number of
layers in the MERA circuit. Thus, from an asymptotic scaling
point of view, the method induces only a polynomial overhead.
However, for a finite-size system of interest, this overhead on
the number of physical measurements can be dramatic. We
will now see that the naive approach outlined here leads to
overhead which is unreasonable for experimentalists, before
suggesting two improvements that will keep the total number
of measurements reasonable.

C. Prohibitive experimental cost for 1-site observables

Returning to the example of the Ising model at criticality,
we see from Eq. (12) that maintaining the accuracy at
the renormalized level requires λ ≈ 6 times the number of
measurements as the one at the physical level. However, this
analysis is appropriate only for one-site observables. This fact,
which was not appreciated in [20], has dramatic consequences.

Let us now briefly describe a way to perform brute-force
tomography, before returning to MERA tomography. In order
to estimate the expectation value of observables, a practical
method is the so-called 3n method [6], where one measures
observables which are tensor product operators by measuring
each individual operator on the same copy of the system and
then postprocessing classically the information. For instance,
suppose we are interested in a chain of qubits and want to
estimate the expectation value of σ z

1 ⊗ σ z
2 , an operator which

acts nontrivially, but as a tensor product, on qubits 1 and 2.
Rather than measuring σ z

1 ⊗ σ z
2 at once, we can measure σ z

1 ,
record the eigenvalue s1 we measured, and then measure σ z

2
on the same copy and record the eigenvalue s2. That way, we
get a sample not only of σ z

1 σ z
2 , but also some information on

σ z
1 ⊗ I. This method only requires performing measurements

of 3n operators which are nontrivial on all n particles of the
chain, rather than 4n. Of course, there is additional information
in the partial measurements. The key property here is that
observables are tensor products of single-body observables.

In MERA tomography using the ternary geometry, we
can use this procedure since renormalized observables can
be chosen to be tensor products of renormalized single-body
observables. To measure renormalized operators, one only
needs to measure the corresponding physical observables
on the physical state. However, the number of repeated
measurements will be multiplied by λ, for each single-body
observable. Thus, for an observable which is the tensor product
of 5 single-body observables, the overhead Sblock in the number
of repeated measurements for block Sblock will be

Sblock = λ5. (20)

Thus, to obtain the five-site reduced density matrix on
renormalized particles while keeping the same precision as
brute-force tomography on physical particles, the number of
repeated measurements is multiplied by λ5.

Furthermore, for a block of renormalized particles at the
third layer, the multiplicative overhead is (λ2)5. For λ = 6 as

in our case, this amounts to 610 � 6 × 107. This lead to an
unreasonable overhead on the number of measurements for
experimentalists. Thus, the approach for MERA tomography
needs to be improved in order to be of practical interest for
experimentalists.

In the next section, we will suggest two improvements
to limit the overhead on the number of measurements. We
will then see in Sec. IV that those improvements dramatically
reduce the overhead for the critical Ising model.

III. IMPROVED APPROACH FOR MERA TOMOGRAPHY

A. Optimizing the choice of physical observables

While using tensor products of physical observables which
are eigenvectors of the ascending superoperator is appealing
from a theoretical point of view, this choice leads to an
unreasonable number of measurements for accuracy. Instead,
one can vary over the physical observables and select a subset
of them which maximizes information extraction. From a to-
mography point of view, any set of physical observables whose
renormalized versions span the space of density matrices on
the renormalized block is admissible. We expect that many
sets of admissible physical observables exist since the number
of physical particles in the past light cone of a renormalized
block is much larger than the number of renormalized particles
in the block. The problem thus becomes to pick the optimal
admissible set.

Of course, one needs to vary over physical observables
which are experimentally accessible. In the case of qubits,
we restrict ourselves to Pauli observables, i.e., tensor products
of Pauli operators. When we map those Pauli observables to
renormalized operators, they will become a set of nonorthogo-
nal operators, each of which has different length and direction
in the operator space. Among those renormalized operators,
we can find a set of operators that give maximum information
about the renormalized layer.

This procedure is schematically explained in Fig. 5. In
this example, we assume the physical Hilbert space with two
qubits is renormalized into a Hilbert space with one qubit.
Without loss of generality, we choose the Pauli observables
P = {Ik,Xk,Yk,Zk} as a basis of observables for each qubit
k ∈ {1,2}. By taking tensor products, we obtain 16 orthogonal
operators of the form {Oi

1 ⊗ O
j

2 }, where Oi
1,O

j

2 ∈ P . Each of
those 16 operators will be mapped to a renormalized operator
{A(Oi

1 ⊗ O
j

2 )}. Each of those 16 operators will be mapped to
a renormalized operator {A(Oi

1 ⊗ O
j

2 )}.
In order to span the renormalized Hilbert space, we only

need four renormalized operators out of the sixteen available
renormalized operators. Since A(I1 ⊗ I1) = I , we already
have the renormalized identity operator so we need three
more. Along with the identity operator, the three additional
renormalized operators need to span the renormalized Hilbert
space. Furthermore, we would like them to have a large
determinant so that they cover the renormalized Hilbert space
“well,” in the sense that an arbitrary state in the renormalized
Hilbert space can be reconstructed tomographically by a small
number of repeated measurements. Thus, we choose the most
informationally efficient set of operators to be the one with
maximal determinant. In the example of Fig. 5, the set of
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FIG. 5. (Color online) Schematic diagram for the selection of
optimal renormalized operators. In this example, two qubits are
mapped unto a single renormalized qubit. Without loss of generality,
we choose the Pauli observables as a basis of observables for
each qubit. The Pauli observables are represented as arrows on the
Bloch spheres in (a). By taking the tensor product, we obtain 16
orthogonal operators. Each of those 16 operators will be mapped
to a renormalized operator. The identity operator (represented by
big dot at origin) is mapped to the identity operator, but all the
other 15 operators are mapped into some renormalized operators
with different directions and magnitude, which are represented on
the Bloch sphere of the renormalized qubit in (b). Our task is to
find 4 renormalized operators which span the renormalized Hilbert
space and which are the most efficient in tomographic procedures.
Intuitively, this optimal choice corresponds to the 4 renormalized
operators whose determinant is the largest, which are represented in
red in (b).

operators with red-colored arrows maximizes the determinant.
As we will see in Sec. IV, we will face the problem of
renormalizing operators on 8 qubits into operators on 4 qubits;
i.e., we will have to choose 44 observables out of 48. The task
of choosing the set of operators with maximal determinant
turns out to be numerically intensive. In Sec. IV, we will
introduce a heuristic to perform this task and show that this
approach significantly reduces the overhead on the number of
physical measurements.

B. Changing the MERA geometry

Another possible improvement to MERA tomography is to
use the binary MERA geometry rather than the ternary MERA
geometry. The ternary MERA geometry is unfavorable since
it requires identifying the 5-site reduced density matrix in the
past light cone of each isometry, while for the binary MERA,
one needs to identify only the 4-site reduced density matrix
(see Fig. 3). This can make a significant difference in the
number of measurements needed.

Moreover, the binary MERA geometry has a structure
which is well suited to apply the algorithm to select the optimal
set of renormalized observables. Indeed, the past light cone
of the 4-site reduced density matrix at level τ is 10 sites at
level τ − 1 for the binary MERA geometry, much fewer than
the 17 sites required in the ternary MERA geometry. Thus,

FIG. 6. (Color online) Tensor contraction in a binary MERA
geometry. The observable Oτ−1 acting on 8 sites at level τ − 1 is
renormalized into a four-site operator Oτ = A(Oτ−1).

we choose to select among the 410 Pauli observables on 10
qubits a subset of 44 which give maximal information about
the 4-qubit density matrix at the next level using a heuristic
which will be presented in detail in Sec. IVA1. Numerically,
we find that restricting the Pauli observables to act only on
the 8 qubits indicated in Fig. 6 gives satisfactory results and
makes the running time and memory requirements of the
heuristic more reasonable. In the next section, we describe
the numerical results obtained by optimizing the choice of
physical observables on a binary MERA geometry.

IV. NUMERICAL RESULTS

A. Optimizing the choice of physical observables

To optimize the choice of physical observables, we use a
heuristic approach. We test our approach on a 24-qubit ground
state of the critical Ising and XX models. The state used to
represent the experimental state is a χ = 2 binary MERA
approximation to the ground state, which is obtained by a
MERA energy minimization program.

1. Greedy algorithm to maximize the determinant

Given the disentanglers and isometries between levels τ −
1 and τ (which would have been identified thanks to tomog-
raphy procedures), we calculate the 48 renormalized operators
corresponding to Fig. 6. The task is now to choose a subset of
44 renormalized operators that (i) span the space of the 4-qubit
density matrix and (ii) span it in a way that maximizes the
information acquisition (and thus minimizes the number of
repeated measurements). Criterion (ii) would be interesting to
investigate from a theoretical point of view. In our work, we
choose to maximize the absolute value of the determinant of
the set of renormalized operators as a proxy to maximizing
the information acquisition. The intuition is that a large
determinant will correspond to a set of renormalized operators
which spans well the space of the 4-qubit density matrix.

To maximize the determinant, we use the following
heuristic. We first choose the renormalized observable with
the largest norm (choosing the norm induced by the Hilbert
Schmidt inner product). Then, we vary over the remaining
renormalized observables to find one that maximizes the
determinant with the first one. We repeat this procedure
over and over, obtaining a greedy algorithm to select the
44 renormalized operators. This algorithm, named “longest
residual vector selection (LRV)” in [26], is one approach for
the classic signal-processing problem called matching pursuit.
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The LRV algorithm is a heuristic which can be suboptimal.
Let us illustrate such a situation by considering a simple two-
dimensional space spanned by the orthonormal vectors ê1 and
ê2. Consider the candidate set {ê1,

(1−ε)√
2

(ê1 + ê2), (1−ε)√
2

(ê1 −
ê2)} where ε > 0 is small. We want to choose 2 vectors which
maximize the absolute value of the determinant. By inspection,
the best choice is { (1−ε)√

2
(ê1 + ê2), (1−ε)√

2
(ê1 − ê2)} which has

determinant (1 − ε2). However, the LRV algorithm will first
select ê1 which has maximal norm and then select either one of
the two remaining vector resulting in the choice {ê1,

(1−ε)√
2

(ê1 +
ê2)} which has determinant 1−ε√

2
. For a nonzero small ε, the

choice made by the LRV algorithm is dramatically worse than
the optimal choice. In [26], an algorithm called “one-by-one
replacement” is introduced to improve a (suboptimal) set of
vectors by iteratively identifying bad choices in the current set
and replacing it by a better vector from the candidate set of
vectors.

In our work, we first use the LRV algorithm to select 44

renormalized operators from the candidate set made of 48

operators A(Oτ−1) of Fig. 6. We then use the “one-by-one
replacement” algorithm to improve this initial choice. We now
discuss how the choice of renormalized operators impacts the
number of repeated measurements of physical observables
needed to maintain accuracy.

2. Maintaining the accuracy level using renormalized operators

From now on, let us consider the set of chosen renormalized
operators {Oi

1} = {A(Oi
0)}. Since the renormalized operators

Oi
1 are not orthogonal, it is convenient to construct a set

of orthogonal operators, following the approach introduced
in [20]. We first define the Gram matrix Gij = tr[Oi

1(Oj

1 )†],
and diagonalize it to obtain the matrices Z and D such that
G = ZDZ†. Then, we obtain a set of orthogonal operators
{Ri,i = 1,2,3, . . .}, which are eigenvectors of G; i.e.,

Ri
1 = 4√

Dii

∑
j

Z
†
ijO

j

1 =
∑

j

βijO
j

1 , (21)

where we introduced a normalization factor of 4 in order for
the operators Ri

1 to have the same trace norm as 4-site Pauli
observables. Using Eq. (21), we can relate the expectation
value of the orthogonal operators Ri

1 to the expectation values
of the physical observables by

tr
(
ρ1R

i
1

) =
∑

j

βij tr
(
ρ1O

j

1

) =
∑

j

βij tr
(
ρ0O

j

0

)
. (22)

To assess how the number of repeated physical measurements
Nj on O

j

0 is increased, consider that the measurement of Ri
1 is

a random variable whose variance is V(Ri
1). Since physical

measurements are performed on different copies of the
states, the physical measurements correspond to independent
variables and

V
(
Ri

1

) =
∑

j

|βij |2V
(
O

j

0

)
. (23)

Let Mi(ε) be the number of measurements needed to
achieve a desired variance ε for ith renormalized observable.
The variance V(Oj

0 ) is proportional to the inverse of the

number of physical measurements Nj of O
j

0 . Thus, Eq. (23)
becomes

∀i [Mi(ε)]−1 =
∑

j

|βij |2N−1
j . (24)

Let us define the matrix Bij = |βij |2. We want to minimize
the total number of measurements

N =
∑

j

Nj (25)

while maintaining the minimum precision 1/M0 for any
orthogonal operator Ri

1. We thus want to minimize N under
the condition

∀i
∑

j

BijN
−1
j � 1

M0
Nj > 0. (26)

Note that we cannot simply choose to minimize the Nj

independently since the precision level of different operators
is not independent under the condition Ni > 0. We find
numerically that in most instances that we see, we cannot avoid
the situation in which some observables have better precision
than others.

Introducing the normalized variables Ñj = Nj/M0, we are
faced with the optimization problem of minimizing∑

j

Ñj (27)

under the constraint

∀i
∑

j

Bij Ñ
−1
j � 1 Ñj > 0. (28)

For the 44 × 44 matrix Bij , considering the maximal
element γj = maxi Bij for every column, we know that

∀j
∑

i

Bij (γj )−1 � 44. (29)

Thus, a naive choice of Ñj would be to choose 44γj .
Alternatively, we calculated Kj = ∑

i Bij (γj )−1 which is
guaranteed to be smaller than 44 and consider the biggest of
them K = maxj Kj . We can then take Ñj = Kγj to guarantee
that Eq. (28) is satisfied.

The total number of measurements N is

N =
∑

i

ÑiM0, (30)

where Ñi can be interpreted as a multiplicative factor which
ensures that the estimation of the expectation value using
renormalized operators has the same precision as the one
obtained using M0 measurements on physical Pauli mea-
surements. To report a single number, we introduce the
conditioning factor S, defined as the average multiplier in
the number of measurements

S ≡
∑

i Ñi

44
. (31)

3. Estimation of the conditioning factor

We wrote a simulation code to estimate the conditioning
factor Sk→k+1 corresponding to the multiplicative factor
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FIG. 7. (Color online) The tensor product of OA ⊗ OB renor-
malized under the superoperator A into the operator resulting from
the tensor network contraction. In the upper figure, the distributive
law (33) holds so that the renormalized operators A(OA) and A(OB )
can be computed independently and then multiplied. For the figure
below, disentanglers within the blue box mix the renormalized
operators and Eq. (33) does not hold.

needed to estimate the 4-site density matrix at level k + 1
using Pauli measurement at level k. Note that, experimentally,
we are interested in the multiplicative factor S0→τ between
physical Pauli measurement, i.e., measurement at level 0, and
renormalize operator {Ri

τ } at level τ > 0, defined by Eq. (21).
Let us consider τ = 2 for concreteness. We would like to argue
that

S0→2 � S0→1 × S1→2, (32)

where the approximation comes from the fact that the
ascending superoperator is not distributive, as we now explain.

Since the {Ri
1} are orthogonal operators with the same

normalization as Pauli operators {i
1}, there is a unitary

transformation mapping between those two set of operators.
Thus, mapping {Ri

1} or Pauli operators {i
1} at level 1 to {Ri

2}
will have the same overhead because of unitarity. However,
when mapping Pauli observables at level 1 to renormalized
operators at level 2, we take the tensor product of Pauli
operators on two blocks to compute S1→2. The renormalized
operators {Ri

1} on two neighboring blocks do not obey this
tensor product structure. This is illustrated in the bottom panel
of Fig. 7.

If the ascending superoperator were distributive, i.e.,

A(OA ⊗ OB) = A(OA) ⊗ A(OB) (33)

for physical operators OA and OB , Eq. (32) would be exact.
However, this is not true if OA and OB are 8-site Pauli operators
and there will be a deviation E from the distributive law

A(OA ⊗ OB) = A(OA) ⊗ A(OB) + E (34)

resulting from the mixing of operators at the blue box in Fig. 7.
However, since E results from the perturbation of 2 sites, we

expect its effect on Eq. (32) to be small since the operators
prior to normalization act on 16 sites. We will now see that
this intuition is backed by numerical simulations.

To test the quality of the approximation in Eq. (32),
we performed a simulation to get the exact scaling factor
S0→2 between the physical level and the second renormalized
level and compared it to the product S0→1 × S1→2 using a
16-qubit MERA approximation to the ground state of the
critical Ising model. The scaling factor S0→2 was obtained
by the following procedure (see Fig. 7): for each block
TA and TB , we considered the 46 six-site Pauli operators
Oi

A (resp. Oi
B) and their renormalized counterparts A(Oi

A)
[resp. A(Oi

B)] to find the optimal basis (44) maximizing
determinant. Then, we have two basis sets with 44 operators
{A(Oi

A),i = 1,2, . . . ,44} and {A(Oi
B),i = 1,2, . . . ,44}. Now,

to estimate the reduced density matrix on 4 sites at the second
renormalized level, we need to find the best 44 operators
out of {A(Oi

A ⊗ O
j

B)}. The distributive law (33) holds for
Oi

A and O
j

B since they were based on noninterfering six-site
operators at the physical level; we can easily calculate the
48 operators A(Oi

A ⊗ O
j

B) = A(Oi
A) ⊗ A(Oj

B). Now, out of
these 48 operators, we renormalize them again using the second
renormalized layer, and then find the 44 optimal operators.

We ran the simulation several times and obtained values for
the scaling factor S0→2 ranging between 23 and 27, which is
comparable to S0→1 × S1→2 which range between 25 and 36.
Therefore, we consider the approximation in Eq. (32) to be
valid. In fact, the method used to test this assumption gives
a scalable way to obtain the optimal set of physical Pauli
operators to estimate the reduced density matrix at higher
renormalized level.

Now that we have assessed the quality of the approximation
in Eq. (32), we will use the formula

S0→� �
�−1∏
k=0

Sk→k+1 (35)

to approximate the total number of measurements needed for
MERA tomography at level �.

We estimate the conditioning factor for MERA tomography
on a 24-qubit translation-invariant binary MERA approxima-
tion of the ground state of the critical Ising model with periodic
boundary condition. Note that the finite system size is too small
to reach scale invariance, which we expect to hold rigorously
in the thermodynamic limit. However, translation invariance
guarantees that disentangler and isometries are the same in
a given layer of the MERA circuit. Since a 24-qubit binary
MERA circuit contains 3 renormalization layers, we obtain
three conditioning factors Sk→k+1 for k = 0,1,2.

The results for S0→� for � = 1,2,3 are presented in Fig. 8
for 10 different MERA approximation of the ground state of
the critical Ising model for 24 qubits. Since the disentanglers
and isometries are different for every energy minimization, the
condition factors also vary.

The important feature of the numerical result is that our
improvements, in particular the heuristic choice of observ-
ables, dramatically improve the scaling of the number of
measurements. Indeed, the multiplicative overhead is about
λ = 6 between each layer, which is a dramatic improvement
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FIG. 8. (Color online) The behavior of conditioning factor S0→�

between level � = 1,2,3 and the physical level for different recon-
struction of a 24-qubit ground state of the critical Ising model. We can
see that S0→� scales roughly like 6�. Interestingly, the conditioning
factor S0→1 quantity between the physical level and the first level
is very uniform. This is much better than (λblock)k � 2400� scaling
obtained by using the naive ternary MERA approach.

over the the multiplicative overhead of 2400 in the case of the
naive ternary approach.

B. Estimates of the total number of measurements
required for MERA tomography

1. System size up to 100 qubits

We are now in position to give an estimate of the
total number of physical measurements needed to perform
MERA tomography. We estimate these numbers by using the
conditioning factor and by choosing the reference number
of measurements to be M0 = 100. This is the number of
measurements used to estimate the expectation value of every
physical Pauli operator in the tomography of an 8-qubit W
state on cold atoms [3].

In Fig. 9, we compare the total number of measurements N

for binary and ternary MERA, in both cases for the ground
state of the critical 1D Ising and critical 1D XX models,
as a function of the size of a quantum system n, i.e., the
number of qubits. For ternary MERA, we use the naive
approach based on observables which are eigenvectors of
the ascending superoperator of Fig. 4. For binary MERA, we
used the heuristic choice of observables which maximizes the
determinant, obtaining a condition factor S varying between
5 and 6 for critical Ising and between 3 and 3.5 for the XX
model.

For the system with total number of qubits N = D × 2m

and scaling factor S, the total number of measurements was
calculated through the formula

N = 100 ×
[

44
m−3∑
τ=0

2m−τ+1Sτ + 4DSm−2

]
, (36)

where m is the total number of layers, 2m−τ+1 is the number of
isometries between level τ and τ + 1, and the last term comes
from the fact that at level m − 2 there are D � 4 renormalized
particles. The formula was derived in the following way: we
assumed that each physical observable was measured with
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FIG. 9. (Color online) The number of measurements required
versus the number of qubits in MERA tomography. For binary
MERA, we select the renormalized operators using the heuristic
described in Sec. IV A 1 and for ternary MERA, we use the naive
approach of taking one-site operators. The error bars account for
the uncertainty in the condition factor. We use 5 < SIsing < 6 and
3 < SXX < 3.5.

an accuracy of 100 measurements and that this accuracy
was maintained for renormalized observables. Thus, for the
renormalized observables at layer τ , we need 100 × Sτ number
of measurements where S is the (average) scaling factor
between layers. For each layer, we need to perform brute-force
tomography on 2m−τ+1 number of 4-site density matrices, each
of which having 44 observables. This explains the term inside
the summation. The last term arises from the top level of the
MERA circuit whose number of sites D is smaller than 4.

In Fig. 9, we also indicated the scaling of brute-force
quantum state tomography using the 3n approach of [6]. The
figure confirms the asymptotic advantage of MERA tomog-
raphy whose polynomial scaling N ∝ nlog S outperforms the
exponential cost of brute-force tomography. Crucially, it also
shows this advantage for small system size.

2. Focus on system size up to 24 qubits

To better appreciate the performance of MERA tomography
for system size relevant to experiments, we plotted the total
number of measurements needed for binary MERA of the
critical Ising and XX models on Fig. 10. We compared the
number of measurements to the 656 000 measurements used
in the largest tomography experiment performed to date, on an
8-qubit system [3].

Figure 10 shows that MERA tomography outperforms
brute-force tomography for system sizes that are accessible
experimentally, and requires a reasonable experimental effort.
More specifically, using our scheme we can perform MERA
tomography on a 16-qubit ground state of the critical Ising
model and a 24-qubit ground state of the critical XX model
with at most twice the number of measurements of the qubyte
experiment [3] on 8 qubits. Hence, MERA tomography, for
a comparable experimental effort, allows to probe quantum
systems twice to three times larger than brute-force quantum
tomography. Moreover, the numerical processing required by
MERA tomography is very simple and requires at most a
few hours of running time, which is a dramatic improvement
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FIG. 10. (Color online) Magnified version of Fig. 9 for binary
MERA tomography on the critical Ising and XX models. The black
dotted line represents the number of measurements required for
qubyte (8 qubits) by brute-force tomography. By optimizing the
choice of physical observables, MERA tomography can perform
tomography on a 16-qubit system (Ising) and 24-qubit system (XX)
for a similar number of measurement as brute-force tomography on
8 qubits.

over the running time of the maximum likelihood estimation
(MLE) used to infer the quantum state compatible with the
experimental data [27].

V. PROPAGATION OF ERRORS

In this section, we analyze how errors accumulate and
propagate in our MERA tomography scheme. The MERA
tomography procedure aims to reconstruct a MERA state ρ tomo

that approximates the experimental state, defined by

ρ tomo = U
†
0→mρ trunc

m U0→m, (37)

where U0→m=∏m−1
τ=0 Uτ→τ+1

is the product of every layer transfor-
mation Uτ→τ+1, i.e, the global MERA circuit, and ρ trunc

m is the
output after the final mth layer. However, our reconstructed
state will deviate from the experimental state ρ0 due to
(1) imperfect estimation of expectation values of physical
observables and (2) truncation errors since each isometry
throws out part of the Hilbert space.

A detailed analysis of the impact of truncation errors is
presented in Appendix B. We will highlight the key results
in this section and we refer the reader to Appendix B for the
technical proofs.

Loss of information in the MERA circuit is due to truncation
errors. For every level τ � 1, consider ρτ to be the state
obtained from the experimental state ρ0 by applying every
gate of the quantum circuit before truncation at level τ . Define
ρ trunc

τ to be the normalized state obtained by keeping the
eigenvectors corresponding to the χ largest eigenvalues of
ρτ . Those different states are represented in Fig. 11.

We prove in Appendix B (see Lemma 1) that

D(ρ0,ρ
tomo) �

m∑
τ=1

D
(
ρτ ,ρ

trunc
τ

)
, (38)

where we use the trace distance D(ρ,σ ) = 1
2‖ρ − σ‖1 and

‖A‖1 is the sum of the singular values. However, the disen-

FIG. 11. (Color online) A single layer of a MERA circuit which
unitarily transforms the state ρ̂ trunc

τ−1 to ρτ before truncating it to ρ̂ trunc
τ .

Red line represents subspace thrown out by isometries.

tanglers and isometries are computed on blocks of the state
ρrec

τ which is reconstructed for evaluating how expectation
value physical observables relate to expectation values of
ascended operators on renormalized particles. Because of
truncation errors, the ascended operators will be erroneous
and the estimated ρrec

τ will differ from ρτ . We can use the
triangle inequality to get

D(ρ0,ρ
tomo) �

m∑
τ=1

D
(
ρτ ,ρ

rec
τ

) +
m∑

τ=1

D
(
ρrec

τ ,ρ trunc
τ

)
. (39)

The second term of Eq. (39) is straightforward. It is the
intrinsic error introduced by truncation errors and we prove
that

m∑
τ=1

D
(
ρrec

τ ,ρ trunc
τ

)
�

m∑
τ=1

∑
k

ετ
k , (40)

where k indexes the different isometries at level τ and ετ
k is

the probability weight being removed by the truncation. Note
that this term is simply the sum of all truncation errors and
will scale linearly with the size of the system.

The first term of Eq. (39) is due to the relations between
renormalized operators and physical observables. It will be
related not only to truncation errors at level τ but also to all
truncation errors at previous levels. We prove that

m∑
τ=1

D
(
ρτ ,ρ

rec
τ

)
� 1

2

m∑
τ=1

τ∑
�=1

∑
k

ε�
k

∥∥∥∥∥∥
∑
i,j

βijRi

∥∥∥∥∥∥
1

, (41)

where the matrix βij and the Ri are defined in Appendix A.
Note that this term will scale quadratically with system size
since truncation errors in previous levels influence truncation
errors in subsequent levels. However, since the truncation error
ε gets dramatically smaller for higher layers (see Fig. 13), and
we observed numerically that the summation ‖∑

ij βijRi‖ has
the order of unity for critical Ising, we expect this contribution
to be comparable to Eq. (40).

The final bound will simply be the sum of Eq. (41) and
Eq. (40). Crucially, every term that appears in this bound
can be estimated during the tomographic procedure. Thus,
it can be used as a certificate to check a posteriori whether the
reconstructed MERA state is indeed close to the experimental
state. We expect this to give reasonable bounds in the limit
where the truncation errors are very small. Alternatively, one
can directly estimate fidelity to assess the closeness between
the experimental state and the state obtained by MERA
tomography using Monte Carlo fidelity estimation [28,29].
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VI. CONCLUSION

In this work, we investigated and improved upon the
original MERA tomography method introduced in [20]. We
showed that the scaling of the number of measurements
required to maintain the accuracy presented in [20] was only
valid for single-site observables and that its straightforward
application to multisite observables led to an unreasonable
overhead. To circumvent this issue, we suggested using a
different MERA geometry, namely binary MERA, which
required performing brute-force tomography on a block of
4 renormalized sites (instead of 5 for the ternary MERA
case). Furthermore, we introduced a heuristic to identify the
physical measurement which gives the most information about
renormalized particles, in order to minimize the number of
physical measurements required. We tested this approach
numerically and found that the total number of physical
measurements needed to perform MERA tomography on
moderate-size systems is reasonable for experimentalists. For
instance, performing MERA tomography on the ground state
of the critical Ising model on 16 qubits requires only twice
the number of physical measurements needed to perform
brute-force quantum state tomography on 8 qubits. Finally,
we gave a deeper understanding of the propagation of errors
in MERA tomography. We bounded the distance between
the experimental state and the state reconstructed by MERA
tomography in terms of quantities that are estimated locally
throughout the tomography procedure. In particular, the
propagation of errors when using renormalized observables
was quantified, and turned out to be closely related to the
scaling factor S. Since the deviation of the reconstructed state
from the experimental state is bounded by a quantity which
can be estimated during the tomography procedure, this bound
can be used as a certificate to justify a posteriori that the
experimental state was close to a MERA state.
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APPENDIX A: NUMERICAL TECHNIQUE
TO IDENTIFY DISENTANGLERS

The conjugate gradient approach used in [20] to find a
disentangler and an isometry from a set of measurement
data is a standard method for such optimization problem.
However, the method is prone to identifying local minima
rather than global minima and is hard to extend to large
bond dimensions χ . Here, we improve the algorithm for
optimization by borrowing an algorithm developed for an
efficient MERA energy minimization procedure in [25]. In
this numerical technique, the objective function remains the

FIG. 12. (Color online) Tensor network contraction correspond-
ing to the objective function f on a ternary MERA. The blue box
surrounding the five circles represents the reduced density matrix ρi

on five sites. The tensor network outside the quantum gate u is the
environment �u (which includes u†).

same but we interpret it as a tensor contraction

f (u,ρi) = tr
(
u�R

u + u�L
u

)
, (A1)

where �u is the environment of disentangler u, shown in
Fig. 12. Since an isometry W keeps only the χ eigenvectors
with largest eigenvalues, contraction of this small part of a
MERA circuit gives the sum of first χ singular values of a
reduced density matrix for two sites.

The optimization of tr(u�u) is analytically difficult as �u

also depends on the disentangler through u†. It is a quadratic
optimization problem but we will consider its linearized
version. We linearize the objective function by fixing u†

and thus �u and only varying the disentangler u. For a
fixed �u, the optimal u can be found by standard singular
value decomposition (SVD) technique. One finds the SVD
decomposition of the environment, �u = NSM†. The trace in
Eq. (A1) is extremized by the choice of u = MN †. Let u0 be an
initial guess (random) unitary transformation. Then, starting
with k = 1 and for increasing values k = 2,3, . . . , we obtain
uk from uk−1 by optimizing tr(uk�uk−1 ).

Optimizing a disentangler also depends on the neighboring
disentanglers. Thus, the optimization not only iterates the
above process to optimize the disentanglers, but also sweeps
over all the disentanglers of a given layer. An optimization
algorithm can choose to balance the number of iterations and
the number of sweeps in different ways. Numerically, we find
that a single iteration and multiple sweeps gave satisfactory
results. Although the objective function is not guaranteed to
improve at each step, or to converge, we find that this method
typically converges faster than the previous method based on
a conjugate gradient technique.

To check the validity of our algorithm, we generated
random MERA states by choosing the quantum gates of the
MERA circuit at random according to the Haar measure. We
then performed our quantum tomography algorithm to find
MERA circuits for the states. The algorithm was tested on
the binary MERA geometry with 24 qubits. In order to check
the numerical optimization algorithm, we assumed brute-force
tomography to be perfect, implying that the 4-site reduced
density matrices ρi are accurate. At the end, the fidelity

F (ρ0,ρr ) ≡ (tr
√√

ρ0ρ tomo
√

ρ0)2 (A2)

between the original state ρ0 and the reconstructed state ρ tomo

was computed. The infidelity 1 − F (ρ0,ρ
tomo) obtained on
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FIG. 13. (Color online) Convergence of the average value of the
objective function f (u) for different layers using MERA tomography
on 24 qubits and a binary geometry, as a function of the number of
sweeps. Top: Results for 10 random MERA states. Bottom: Results
for 10 superpositions of a MERA state and a Haar-random state of
magnitude δ = 0.1 [see Eq. (A3)].

average was 10−13. There were a few cases which took more
than a hundred seconds to reach that fidelity, but only one out of
twenty. In Fig. 13, we can see that 20 runs all gave convergence
in 100 iterations, which takes only ten seconds. We conclude
that, for states with an exact MERA representation, our method
requires reasonable processing time and yields a very accurate
reconstruction result.

Also, we examined how our algorithm performed if the ex-
perimental state does not admit an exact MERA representation.
For this, we considered the experimental state |ψ〉 to be the
superposition of a MERA state |ψMERA〉 and a Haar-random
state |ψe〉:

|ψ〉 =
√

1 − δ2|ψMERA〉 + δ|ψe〉. (A3)

Results for that case are given in the bottom plot of Fig. 13.
In that case, the optimization performs poorly on the first
layer, converging around 10−2, and improves for the second
layer (around 10−6) and the third (around 10−8). The infidelity
between the input state and the reconstructed state was
around 10−2 ≈ δ2, which is consistent with the intuition that
the reconstructed state is the MERA part of the state. Our
interpretation is that the isometries of the layers progressively
filter out the non-MERA part of the state.

APPENDIX B: ERROR ANALYSIS

We want to assess how the errors accumulate throughout the
tomography procedure. One source of errors is the imperfect

estimation of expectation values of physical observables due
to the finite number of repeated measurements, fluctuations
in the state preparation, and measurement errors. This source
of errors is common to all tomography schemes and putting
meaningful error bars on brute-force tomography is a complex
issue which is an active area of research [30,31]. We will not
address this issue here, assuming that expectation values of
physical observables are perfect. However, introducing those
errors would be straightforward in our analysis.

Instead, we will focus on the errors which are introduced
by the idea of MERA tomography itself. More precisely,
the truncation errors at the level of every isometry will
introduce (i) intrinsic errors since part of the information on
the state is thrown away and (ii) reconstruction errors since
the relationship between renormalized operators and physical
observables is not exact.

We will first focus on intrinsic errors by assuming that
any reduced density matrix in the circuit can be obtained
exactly in Sec. B 1. In a second step, we will estimate the
error introduced by using renormalized operators to extract
information about density matrices in higher levels of the
MERA circuit in Sec. B 2.

1. Intrinsic errors

We first analyze the error propagation at the level of a
single isometry in Sec. B 1 a in order to infer the propagation
of errors for a single layer in Sec. B 1 b and finally analyze the
error propagation for the global MERA circuit in Sec. B 1 a.

a. Error for a single isometry

The experimental state not being a MERA state or im-
perfection in the numerical optimization of the objective
function given by Eq. (2) results in the probability weight
of the density matrix not being fully in a χ -dimensional
subspace (remember that we are discussing the case χ = 2
in all numerical examples).

Let V be the Hilbert space for a particle of quantum
dimension χ ; i.e., V = Cχ . The isometry w maps V⊗k to
V⊗1 where k = 2 for a binary MERA. It can be conveniently
expressed as the product of a unitary transformation v followed
by a projector P which maps |0〉⊗k to V. In the ideal case,
the role of v is to rotate the basis so that a k-site reduced
density matrix ρ is diagonalized and only has support on the
space |0〉⊗k−1 ⊗ V. In practice, v rotates the first μ = 1 . . . χ

eigenvectors to |0〉⊗k−1|μ〉 as represented in Fig. 14.
Let ρ be the (virtual) k-site reduced density matrix

diagonalized through the isometry, ρr be the reduced density
matrix supported on |0〉⊗k−1 ⊗ V, and ρe = ρ − ρr be the
density matrix that would be thrown out by the isometry. Under
this setting, let 1 − f (u) = ∑

i>χ λi = ε.
The MERA reconstruction procedure does not lose any

information if all entries of ρe are zero, i.e., ε = 0. The
renormalization relation for observables, Eq. (9), was derived
under this assumption. However, if the renormalized state has
a nonzero ρe, i.e.,

ρ1 = u1ρ0u
†
1 = ρr + ρe, (B1)
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FIG. 14. (Color online) Tensor contraction for virtual two-site
reduced density matrix ρ. ρ represents the density matrix transformed
after it passes through the unitary parts of isometries which diagonal-
ize it. The blue box represents the part of the density matrix which
is kept and passed to the next layer of MERA while the red box
represents the density matrix that is truncated out.

the renormalized observable also has support on the virtual
space that is truncated by the MERA circuit

O1 = u1O0u
†
1 = A(O0) + E. (B2)

For convenience, let us consider the normalized states
ρ trunc ≡ ρr/(1 − ε) and ρ̂e ≡ ρe/ε. Then, in the imperfect
MERA setting, Eq. (9) is modified and reads

tr(ρ0O0) = (1 − ε)tr[ρ truncA(O0)] + εtr(ρ̂eE). (B3)

Because we truncate out ρe and measure ρ trunc in the next layer
for actual MERA tomography, there will be a discrepancy
|εtr(ρ̂eE)| between the measured quantity tr(ρ0O0) and the
quantity of interest tr[ρ truncA(O0)].

In the rest of the discussion, we consider εtr(ρeE) as a
random error about which only ε is known.

b. Error analysis for a layer

Having understood how an error ε affects a single isometry,
we will now assess how the errors for each isometry combine
inside a layer. Let us consider the global state ρ after it goes
through the isometries in Fig. 11. As we discussed above,
if the MERA circuit is not perfect, the global state ρ would
decompose as

ρ = ρr + ρe. (B4)

Since only ρr is passed through the MERA circuit and ρe is
thrown away, ρe is informationally inaccessible in the later
step of tomography. However, we want to quantify ρe in order
to bound the distance between ρ and ρr .

To achieve our purpose, we will divide ρe into smaller
parts. We will label the isometry with an index i = 1 . . . �.
Let Ci = |0〉⊗k−1 ⊗ V be the correct χ -dimensional subspace
kept by the MERA circuit, and Ei = V⊗k \ Ci be the incorrect
subspace, indicated by red lines in Fig. 11. Now let ρi be
the reduced density matrix before the ith isometry. Then, the
density matrix at the input of the ith isometry is

ρi = ρi
r + ρi

e = trī(ρ), (B5)

where trī represent the partial trace on all sites except the input
of the ith isometry, and ρi

r ∈ Ci and ρi
e ∈ Ei (cf. Fig. 14).

While the globally correct state ρr is locally in the correct
subspace Ci for all i, the globally incorrect state ρe contains

parts which are locally correct for some i and locally incorrect
for some nonempty set I ⊂ [1; �]. We will denote ρeI the part
of ρe having support on the subspace (⊗i∈IEi)(⊗i /∈ICi). Thus,

ρe =
∑

I

ρeI . (B6)

Note, however, that ρeI is locally correct for i /∈ I . The terms
of the density matrix at the input of the ith isometry of Eq. (B5)
decompose into

ρi
r = trī

(
ρr +

∑
i /∈I

ρeI

)
, (B7)

ρi
e = trī

(∑
i∈I

ρeI

)
. (B8)

The density matrices ρi are estimated by physical measure-
ments and the numerical optimization gives the trace of the
locally incorrect state tr(ρi

e) = 1 − f (U ) = εi . Knowing this
error for each isometry on the layer allows us to estimate the
weight of the globally incorrect state:

εe ≡ tr(ρe) =
∑

I

tr(ρeI ) (B9)

�
�∑

i=1

∑
i∈I

tr(ρeI ) (B10)

=
�∑

i=1

tr

(∑
i∈I

ρeI

)
=

∑
i

εi . (B11)

The normalized truncated state ρ trunc = ρr/(1 − εe) is the
one we are interested in learning in the next step of variational
tomography. The distance between the state before truncation
ρ and the normalized truncated state ρ trunc can be bounded in
fidelity and in trace distance.

For the fidelity, one can observe that

F (ρ,ρ trunc) = ‖
√

ρ trunc
√

ρ‖1 = ‖
√

ρ trunc
√

ρr‖1 =
√

1 − εe

(B12)
and for the trace distance

‖ρ − ρ trunc‖1 � εe

1 − εe

‖ρr‖1 + ‖ρe‖1 � 2εe. (B13)

Using those relations and Eq. (B11), we get

1 − F (ρ,ρ trunc) � 1

2

∑
i

εi , (B14)

1

2
‖ρ − ρ trunc‖1 �

∑
i

εi . (B15)

c. Error analysis of the global circuit

The final goal is to estimate the distance between the
physical state ρ0 and the reconstructed MERA state

ρtomo = U
†
0→mρ trunc

m U0→m, (B16)

where U0→m = ∏m−1
j=0 Uj→j+1 is the global MERA circuit and

ρ trunc
m is the output after the final mth layer. The idea is to relate

this distance to the truncation error d(ρj ,ρ
j
rec) introduced after
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each layer j of the MERA circuit when the state ρj is truncated
to ρ trunc

j . We will use the following lemma.
Lemma 1. For any distance d(σ,ρ) which obeys the property

d(UσU †,ρ) = d(σ,U †ρU †) and the triangle inequality, the
following inequality holds:

d(ρ0,ρ
tomo) �

m∑
τ=1

d
(
ρτ ,ρ

trunc
j

)
. (B17)

Proof. For m = 1, we have

d
(
ρ0,U

†
0→1ρ

rec
1 U0→1

) = d
(
U0→1ρ0U

†
0→1,ρ

1
rec

)
(B18)

= d
(
ρ1,ρrec

1

)
. (B19)

For arbitrary m > 1, we have

d
(
ρ0,U

†
0→mρ trunc

m U0→m

)
� d

(
ρ0,U

†
0→m−1ρ

trunc
m−1U0→m−1

)
+ d

(
U

†
0→m−1ρ

trunc
m−1U0→m−1,U

†
0→mρ trunc

m U0→m

)
. (B20)

The last term can be rewritten as

d
(
Um−1→mρ trunc

m−1U
†
m−1→m,ρ trunc

m

) = d
(
ρm,ρ trunc

m

)
. (B21)

Recursively applying this inequality proves the lemma. �
We will now apply this lemma to the distance corresponding

to the fidelity and the trace distance. The fidelity can be used
to define the distance

θ (ρ,σ ) = arccos F (ρ,σ ). (B22)

For every layer, we assume that the error is small enough for
the approximation cos(θ ) ≈ 1 − θ2/2 to hold. Combined with
Eq. (B15), we get

∀j θ
(
ρj ,ρ

trunc
j

) ≈
(∑

i

ε
j

i

)1/2

, (B23)

where ε
j

i is the error for the ith isometry in layer j . Applying
the lemma, we get

θ (ρ,ρ tomo) �
m∑

j=1

θ
(
ρj ,ρ

trunc
j

) ≈
m∑

j=1

(∑
i

ε
j

i

)1/2

. (B24)

To relate the distance to the fidelity, we use the inequality
cos(θ ) � 1 − θ2/2 which implies

1 − F (ρ,ρ tomo) � 1

2

⎡
⎣ m∑

j=1

(∑
i

ε
j

i

)1/2
⎤
⎦

2

(B25)

= 1

2

∑
ij

ε
j

i +
∑
j<j ′

√∑
i,i ′

ε
j

i ε
j ′
i ′ , (B26)

where the first term in Eq. (B26) is the incoherent sum of
all truncation errors whereas the second term of Eq. (B26) is
due to coherent interference of errors in different layers and
isometries.

We can also directly apply the lemma to the trace distance,
applying Eq. (B15) to relate the terms to the truncation errors
to obtain

D(ρ,ρ tomo) �
m∑

j=1

∑
i

ε
j

i . (B27)
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FIG. 15. (Color online) Fidelity between the experimental state
and the reconstructed state as a function of the amplitude ε of the
Haar-random state added to a 24-qubit random MERA state [see
Eq. (A3)]. The upper bound was calculated using values of ε

j

i obtained
through the tomographic procedure. Simulation was performed ten
times for each amplitude of error.

Figure 15 compares the upper bound obtained by Eq. (B25)
to the (in)fidelity between simulated experimental states which
are the superposition of a random MERA state with a Haar-
random state of magnitude ε. The results on the figure show
that the theoretical upper bound for 1 − F (ρ,ρ trunc) is a useful
proxy.

Note that the magnitude of the Haar-random state ε sets
the value of the (in)fidelity between the experimental state
and the tomographically reconstructed state since the MERA
tomography seems to reconstruct the MERA part of the
experimental state, leading to 1 − F ≈ ε2, which appears
clearly in Fig. 15.

The upper bounds of Eqs. (B25) and (B27) can be
estimated directly from tomographic data obtained during the
reconstruction. Thus, they are a certificate on the distance
between the experimental state and the one reconstructed by
MERA tomography.

The error analysis until now assumed that we had access to
perfect tomographic estimate of the reduced density matrices
on small blocks of particles. However, when we use the struc-
ture of the MERA circuit to relate physical measurements to
renormalized observables, the truncation error will inevitably
introduce errors on the tomographic estimates. We now discuss
those type of errors and see how they modify our error bounds.

2. Error introduced by renormalizing physical measurements

As described in Appendix B 1 a, the truncation errors
will not only introduce an intrinsic error, but also lead to
an erroneous reconstruction of the reduced density matrix in
the renormalized layer. Indeed, Eq. (B3), which relates the
expectation value of the physical observable tr[ρ0O

j

0 ] to the
expectation value of Aτ (Oj

0 ), the renormalized observable at
level τ , on the state we want to reconstruct ρ trunc

τ , contains a
random error term

�τ
j = ετ

e tr
[
ρ̂τ

e Ej
]
, (B28)
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where ετ
e is bounded thanks to Eq. (B11). This erroneous

reconstruction will introduce an additional term in the error
bound (B27) which we now analyze.

The reduced density matrix at a renormalized level ρτ will
be reconstructed using the the orthonormal operators Ri , see
Eq. (21), which span the entire Hilbert space for the density
operator. Due to the erroneous terms �

j
τ , we have

ρτ =
∑

i

tr[ρτRi]Ri =
∑
i,j

βij tr
[
ρτO

j
τ

]
Ri (B29)

=
∑
i,j

βij

(
tr
[
ρτ−1O

j

τ−1

] − �j
τ

)
Ri (B30)

=
∑
i,j

βij

(
tr
[
ρ0O

j

0

] −
τ∑

�=1

�
j

�

)
Ri (B31)

=
∑
i,j

βij tr
[
ρ0O

j

0

]
Ri −

∑
i,j

τ∑
�=1

�
j

�βijRi. (B32)

Thus, the density matrix reconstructed by our method ρ trunc
τ

will be

ρrec
τ =

∑
i,j

βij tr
[
ρ0O

j

0

]
Ri = ρτ +

∑
i,j

τ∑
�=1

�
j

�βijRi, (B33)

where the last term quantifies the error due to the erroneous
reconstruction, leading to the inequality

D
(
ρτ ,ρ

trunc
τ

) = 1

2

∥∥∥∥∥∥
∑
i,j

τ∑
�=1

�
j

�βijRi

∥∥∥∥∥∥
1

(B34)

� 1

2

τ∑
�=1

∑
k

ε�,k

∥∥∥∥∥∥
∑
i,j

βijRi

∥∥∥∥∥∥
1

. (B35)

Note that this error term depends not only on the truncation
errors at level τ , but also depends on all the truncation
errors in previous levels. Thus, this term will in general scale
quadratically with the size of the system. However, it appears
to be well behaved numerically.
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