
PHYSICAL REVIEW A 91, 062125 (2015)

Extended necessary condition for local operations and classical communication:
Tight bound for all measurements

Scott M. Cohen*

Department of Physics, Portland State University, Portland, Oregon 97201, USA
(Received 2 December 2014; revised manuscript received 29 April 2015; published 24 June 2015)

We give a necessary condition that a separable measurement can be implemented by local quantum operations
and classical communication (LOCC) in any finite number of rounds of communication, generalizing and
strengthening a result obtained previously. That earlier result involved a bound that is tight when the number of
measurement operators defining the measurement is relatively small. The present results generalize that bound
to one that is tight for any finite number of measurement operators, and we also provide an extension which
holds when that number is infinite. We apply these results to the famous example on a 3 × 3 system known as
“domino states,” which were the first demonstration of nonlocality without entanglement. Our extended necessary
condition provides another way of showing that these states cannot be perfectly distinguished by (finite-round)
LOCC. It directly shows that this conclusion also holds for their related rotated domino states. We also introduce
a class of problems involving the unambiguous discrimination of quantum states, each of which is an example
where the states can be optimally discriminated by a separable measurement, but according to our condition,
cannot be optimally discriminated by LOCC. These examples nicely illustrate the usefulness of the present
results, since our earlier necessary condition, which the present result generalizes, is not strong enough to reach
a conclusion in any of these cases.
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I. INTRODUCTION

In a recent publication [1], we proved a necessary condition
such that a quantum measurement can be implemented by
local operations on subsystems and classical communication
between parties (LOCC) in any finite number of rounds
of communication.1 We also demonstrated that there exist
examples of separable measurements for which the condition
is extensively violated, this violation growing without limit
as the number of parties increases. A class of the examples
given in [1] was later shown [2] to be applicable to the optimal
unambiguous discrimination of certain sets of quantum states,
and includes an infinite number of cases for any number of
parties where each case is such that separable measurements
are strictly better than finite-round LOCC. We also discussed
in [1] why we believe that these results apply to all LOCC,
including those using an infinite number of rounds, but to date
a proof remains elusive.

Each quantum measurement involves a set of operators
Kj where, for the j th outcome of the measurement, the state
of the measured system changes as ρ → KjρK

†
j /pj , with

pj = Tr(ρKj ), where the associated “positive operator-valued
measure (POVM) element” is defined as Kj := K

†
jKj . A

measurement on P parties is separable [3] if and only if each
Kj is a product operator, in which case the POVM elements
are also products, Kj = K(1)

j ⊗ · · · ⊗ K(P )
j . It is well known

that every LOCC measurement is separable, but there exist
separable measurements that are not of LOCC type [4–7]. In
an effort to better understand the difference between separable
measurements and LOCC [8–15], we have undertaken a series
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1We define each round of communication as consisting of one party

broadcasting the result of her measurement to all the other parties.

of works [1,2,16,17] aimed at finding conditions on the sets of
POVM elements that could serve to distinguish between these
two important classes of quantum measurements.

In [16], we showed how to construct a LOCC protocol
for a given bipartite separable measurement whenever such a
protocol exists in a finite number of rounds. This result was
generalized to any number of parties in [17]. The approach in
these papers involves looking for intersections of convex cones
generated by subsets of the local operators K(α)

j associated
with the measurement under consideration, and the starting
point is to consider subsets that each consist of a single
operator. Each operator K(α)

j generates a ray {λK(α)
j |λ � 0},

any collection of these rays generates a convex cone, and
the extreme rays of these cones are those associated with
operators in that collection which cannot be written as a
positive linear combination of the others in the same collection.
Clearly, if for each party α every K(α)

j is extreme in the cone
of the full set of these operators for a given measurement
and no two K(α)

j are proportional, then the starting point
mentioned above will fail, as no two cones involving just
a single operator will intersect. More generally, it appeared
that (loosely speaking) too many extreme rays would make it
difficult to find enough intersections to build a full LOCC
protocol for the measurement. Motivated by this idea, we
proved the following theorem in [1].

Theorem 1. [1]. For any finite-round LOCC protocol of P

parties implementing a separable measurement correspond-
ing to the N distinct POVM elements {Kj = K(1)

j ⊗ · · · ⊗
K(P )

j }Nj=1, it must be that

P∑
α=1

eα � 2(N − 1), (1)
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where eα is the number of distinct extreme rays in the convex
cone generated by operators {K(α)

j }Nj=1, and the sum includes
only those parties for which at least one of these local operators
is not proportional to the identity. The upper bound in (1) can
be achieved with equality when N � 2P .

The last line in this theorem, that the upper bound in (1)
is tight for N � 2P , is rather restrictive. In general, N will
be larger, in many cases significantly so. For example, any
measurement aimed at discriminating a full basis of states
will consist of N = d1d2 · · · dP operators (dα is the dimension
of the Hilbert space Hα for subsystem α), which exceeds 2P

unless all subsystems are qubits, the smallest nontrivial system.
Therefore, it would be of interest to have an upper bound that
is tight for N > 2P , as well. At the time of writing of [1], we
had been able to prove that, for bipartite systems,

∑
α eα �

3N/2, which is a tight bound whenever N � 2P = 4. We had
suspected that an upper bound of 2N (1 − 2−P ) might be valid
for all P , but our method of proof for bipartite systems could
not be generalized to more than two parties and at the time
we saw no way of approaching it differently. Recently, we
realized that the techniques of [1] could be used to prove this
conjectured upper bound, which is tight for N � 2P and any
P . We present the results of this approach in Theorems 2, 3,
and 4, below, where the latter two theorems apply to the case
of infinite N .

Theorem 2 is quite similar in form to Theorem 1, which
may give the impression that the former represents only a very
small improvement over the latter. This is misleading, however,
as the newer theorem is able to prove LOCC impossibility
for a much wider range of problems since, as just observed,
N � 2P is a quite restrictive condition. In Sec. III, we give
examples of separable measurements for which Theorem 1
is too weak a condition and does not allow one to reach
a conclusion, but where Theorem 2 directly demonstrates
that these measurements cannot be implemented by finite-
round LOCC. We do this in the context of (i) a well-known
problem commonly referred to as the domino states [4], along
with its generalization, the rotated domino states [12]; and
(ii) a continuous class of problems involving the optimal
unambiguous discrimination of states on two qubits.

In unambiguous state discrimination, a quantum system
is prepared in one of a set of possible nonorthogonal states,
and the aim is to measure the system in a way that identifies
the chosen state without ever making an error. Since the
states are not mutually orthogonal, this cannot be achieved
with unit probability, so there must be an outcome of the
measurement that leads to an inconclusive result; that is, for
this outcome, the state of the system remains unknown, but for
all other outcomes, the state can be identified with certainty.
The study of unambiguous state discrimination was pioneered
by Ivanovic [18], Dieks [19], and Peres [20], with important
further results obtained in [21], where it was shown that the
set of states must be linearly independent. This study was
extended to the case of LOCC in [22], and further results
for LOCC in this context were obtained in [23–25]. The
study of optimal unambiguous state discrimination, where the
probability of obtaining an inconclusive result is minimized,
received attention in [26–28]. In [26], it was shown that
LOCC is as good as global measurements for discriminating
any set of two states that are given with equal a priori

probability, and this was generalized [27] to the case of any
a priori probabilities, again with only two states. A two-qubit
example involving a specific, symmetric set of states given
with equal a priori probabilities and for which LOCC is as
good as general separable measurements but weaker than
global measurements, was given in [28]. The examples we
introduce here go beyond these earlier results in that they each
involve a set of four (nonsymmetric) states on two qubits,
where the a priori probabilities for each example can vary
over a continuous range, and for which we can use Theorem 2
to demonstrate that the best separable measurement is better
than the best LOCC protocol, while Theorem 1 does not lead
to a conclusion for any of these examples. We have elsewhere
[2] given a different class of unambiguous state discrimination
problems for each of which the best separable measurement
is also better than LOCC, but this is shown by a violation of
Theorem 1, so that our present generalization to Theorem 2 is
not needed for those cases.

In the following section, we state and prove the finite-N
result, Theorem 2. Its infinite-N counterparts, Theorems 3
and 4, are also stated in this section, and their proof is given
in Appendix A. In Sec. III, we present physically motivated
tasks for which Theorem 2, but not Theorem 1, can be used to
demonstrate directly that these tasks cannot be accomplished
by finite-round LOCC. Finally, in Sec. IV, we offer our
conclusions. As with Theorem 1, we also conjecture that these
theorems need not be restricted to finite-round LOCC, but
rather apply to infinite-round LOCC, as well.

II. MAIN RESULTS

Our starting point in obtaining Theorem 2 is to represent
any given LOCC measurement by a canonical LOCC tree,
as defined in [1], a representation which is possible for any
measurement implemented by LOCC. In these trees, each
node is labeled by the POVM element corresponding to the
cumulative action, to that point in the protocol, of the party
for whom that node represents one outcome of a measurement
by that party. If the party who measured is α, we refer to that
node as an α node. A canonical LOCC tree is then one where
every nonleaf node has exactly two child nodes, and for any
given node, the pair of POVM elements labeling its two child
nodes are not proportional to each other.2 Given this structure,
these are full binary trees, so if they have N leaf nodes, they
will also have a total of 2N − 1 nodes in all [29].

In [1], we showed how any canonical LOCC tree can
be pruned down to a full binary tree that has one and only
one leaf for each distinct Kj in the corresponding separable

2A brief reminder about terminology: A tree is a collection of nodes;
each node has one parent node except the root, which has no parent,
and every node has some number of children. Siblings are a set of
nodes that are children of the same parent. A leaf node terminates a
branch and so has no children. A subtree consists of a node in the tree,
which is the root of that subtree, along with all descendants of that
root node, where a descendant of a given node is a node that can be
reached by starting at the given node and repeatedly proceeding from
parent to child. An ancestor is defined similarly, but in this case, one
repeatedly proceeds in the opposite direction, from child to parent.
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FIG. 1. Illustration of the two types of removals used in pruning
a canonical LOCC tree. (a) A type-1 removal, where the parent np

is removed along with the maximal keeperless subtree T . This type
of removal is used when there is at least one K̂j leaf in T whose
corresponding keeper is not in T ’s sibling subtree T ′. The root of T ′

is nc, which may be the only node in T ′, in which case it turns out
that nc is itself a keeper leaf. (b) A type-2 removal where nc, which
is the root of the sibling subtree of T , is removed with T . This type
of removal is used when every leaf in T has its corresponding keeper
leaf in either T1 or T2. Under these circumstances, nc cannot be a leaf.
Figure reproduced from Ref. [1].

measurement, but nonetheless still has at least one appearance
of each of the K(α)

j that is an extreme ray, for every party
α. In addition, the method of pruning the tree is such that
descendants of a given node in the final tree were also
descendants of that node in the original tree. We now briefly
review this method of pruning. For each j , find the rightmost
Kj leaf and choose this as the keeper leaf for that j . Then,
starting from the leftmost nonkeeper leaf in the full tree,
determine the largest complete subtree containing that leaf
and not containing a single keeper leaf. Remove this “maximal
keeperless” subtree along with one other node. The latter node
is chosen to ensure that the remaining tree is still full binary,
and such that there is still at least one instance of every extreme
ray in the fully pruned tree. There are two types of removals,
illustrated in Fig. 1 and determined by which additional node
is removed with the maximal keeperless subtree. See Ref. [1]
for additional details of the pruning procedure, along with an

explanation of why the two types of removals must be chosen
in this way.

For our present result, consider an arbitrary canonical
LOCC protocol represented as a canonical LOCC tree. We
want to count the number of extreme rays in this tree. The first
step will be to prune the tree as described in [1], after which
we rearrange the remaining nodes as follows: If a node is an
extreme ray and at least one of its children is not extreme, swap
the positions of these two nodes, which moves the extreme
node closer to the leaves of the tree. If both children are
nonextreme, just choose either one to swap with its parent.
Continue this process until no extreme node has a child that is
not extreme, which means that any descendant of an extreme
node must itself be extreme.

The resulting tree remains full binary and every extreme
node lies in a subtree within which every node is extreme.
Using the integer index s, denote each maximal such subtree
as Ts . If, for given s, Ts has ls leaf nodes, then as it is still
full binary, it also has 2ls − 1 nodes in total, each of which
is extreme. Suppose there are S of these subtrees. Then the
total number of extreme nodes in this tree is equal to the total
number of nodes in the collection of these subtrees, which is

S∑
s=1

(2ls − 1) = 2
S∑

s=1

ls − S � 2N − S, (2)

where we have used the fact that the total number N of leaf
nodes is at least

∑
s ls (this sum can be strictly less than N

if there is one or more subtrees that have no extreme rays in
them at all, since in this case the leaves in these subtrees are not
counted in the sum). Even though no two leaves are the same
Kj , it is still possible that some extreme rays are repeated at
different nodes in this tree.3 However, since every extreme ray
appears at least once in the tree, the number of extreme rays is
no greater than the number of extreme nodes, which is itself
no greater than the quantity 2N − S on the right-hand side of
(2). Therefore, we have that

P∑
α=1

eα � 2N − S. (3)

If we can find the smallest possible value of S, this will give
a good upper bound on the total number of distinct extreme
rays. Recall from [1] that the root node of the original tree is
always present in the pruned tree and is not extreme. It should
be clear that this node is still the root of the entire pruned
and rearranged, final tree, implying S � 2. In fact S = 2 is
possible, occurring when the root is the only non-extreme node
in the pruned tree, and then no re-arrangement is necessary. In
this case,

∑
α eα � 2(N − 1), and we recover Theorem 1.

It turns out, however, that S = 2 is not always possible,
depending on how many parties are involved in the protocol.

3For example, it may be that K(1)
1 = K(1)

2 is a (single) extreme ray,
and these operators appear as two different leaves, one being the
unique K1 leaf, the other being the unique K2 leaf. In this case, both
these leaf nodes represent the same extreme ray in the first party’s set
of rays, and the number of extreme nodes in the tree is strictly greater
than the number of extreme rays.
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We will presently show that the number of leaf nodes in any
one of these subtrees cannot exceed 2P−1. Now,S is minimized
when each subtree has this maximum number of leaf nodes,
which occurs for these full binary subtrees when every branch
has the same maximum height (height is the number of edges
between the root and the leaf). The height of these subtrees is
limited by the fact that every node in each of them is extreme,
along with the fact that extreme α nodes have no α-node
descendants. The latter point is true of the original tree, by
Lemma 5 of [1], and, as is pointed out there, this remains true
for the pruned tree. It also applies to the final, rearranged tree,
since our rearrangement, like the pruning, does not create new
descendants of any extreme node, but rather only turns some
of its descendants into nondescendants. Therefore, no branch
in these subtrees can have more than one α node, for each
of the P parties α, which directly implies that there are no
more than P nodes along any branch within any one of these
subtrees, whose height h must therefore satisfy h � P − 1. It
is well known for a binary tree with l leaves and height h that
l � 2h [30], so we can conclude that the number of leaves in
any one of these subtrees cannot exceed 2P−1. Since there are
a total of N leaves in the full collection of these subtrees, there
must be at least N/2P−1 subtrees in this collection. Hence,

S �
⌈

N

2P−1

⌉
, (4)

where �x� is the smallest integer not less than x, and from (3)
we have

P∑
α=1

eα � 2N −
⌈

N

2P−1

⌉
, (5)

Combining this with Theorem 1, we have the following
theorem.

Theorem 2. For any finite-round LOCC protocol of P par-
ties implementing a separable measurement corresponding to
the N distinct POVM elements {Kj = K(1)

j ⊗ · · · ⊗ K(P )
j }Nj=1,

it must be that
P∑

α=1

eα � 2N − �2Nδ�, (6)

where δ = max(N−1,2−P ), eα is the number of distinct
extreme rays in the convex cone generated by operators
{K(α)

j }Nj=1, and the sum includes only those parties for which
at least one of these local operators is not proportional to the
identity. The upper bound in (6) can be achieved with equality
for any finite N and P .

We showed in [1] how the upper bound can be achieved
when N � 2P . The discussion above indicates how it can
be done for all finite N . First consider the special case that
N = 2P−1n with integer n � 3. One party measures first with
n distinct outcomes. For each of her outcomes, each of the
other P − 1 parties measures once with a two-outcome mea-
surement along every branch, conditioning their measurements
on the previous parties’ outcomes. As a result, descended from
each of the n outcomes of that initial measurement, there is a
full binary subtree having 2P−1 leaf nodes and 2P − 1 nodes.
This gives a total of N = 2P−1n leaves in the entire tree,
which also has a total of (2P − 1)n = 2N (1 − δ) nodes, not

counting the root of the tree. The parties can choose their
measurements so that all of their local outcomes are distinct
from each other, and so that each such outcome is extreme in
the cone of its collection of local outcomes. Then every node
in the tree is extreme apart from the root of the tree, and the
bound is achieved with equality.

If the last measurement along a single branch of the
preceding protocol is omitted, this removes two leaf nodes,
but the node that was the parent of those two removed leaves
becomes a new leaf, so N is decreased by 1 to N = 2P−1n − 1.
At the same time, the total number of nodes is decreased
by 2, as is the total number of extreme rays. Now, �2Nδ� =
�2N/2P � does not change when N decreases by 1, so the upper
bound in (6) also decreases by 2, and is again achieved with
equality. This process can be continued sequentially, at each
step omitting a single measurement in the same chosen subtree.
The quantity �2Nδ� remains unchanged as N decreases by 1
and the number of extreme rays decreases by 2, with the upper
bound always being achieved with equality, until there is only
one node left in that subtree. When that subtree’s last node is
removed, N has decreased by 2P−1 in all, which is the point at
which �2Nδ� decreases by 1. This last removal decreases N by
1, the number of extreme rays also by 1 and the upper bound
by 1, so the upper bound is again achieved with equality. At
this point we are effectively back where we started but with
one fewer outcome in the first party’s initial measurement,
so start again omitting measurements in another subtree. By
continuing this process even into the last remaining subtree,
we see that the bound is tight for any finite N .

Let us now turn to the case of a separable measurement
having an infinite number of distinct POVM elements. Begin
by choosing an ordering of these POVM elements. Let eαN be
the number of distinct extreme rays for party α in the first N of
those POVM elements. Define the density of extreme rays as

De = lim
N→∞

1

N

P∑
α=1

eαN , (7)

and we include in the sum on the right only those parties for
which at least one of its local operators is not proportional to
the identity. This quantity De depends on the ordering chosen.
Then we have the following theorem.

Theorem 3. For any finite-round LOCC protocol of P

parties implementing a separable measurement corresponding
to an infinite number of distinct POVM elements {Kj =
K(1)

j ⊗ · · · ⊗ K(P )
j }, there exists an ordering of those POVM

elements such that

De � 2(1 − 2−P ). (8)

There exist separable measurements with an infinite number
of distinct POVM elements for which the upper bound in (8)
can be achieved with equality.

The proof is given in Appendix A. The idea is that the
LOCC protocol that implements the measurement induces an
ordering for which De satisfies the bound. One first prunes
and rearranges the tree in a way similar to what was done
for finite N , and then the leaves of the resulting tree can be
enumerated. This enumeration provides the desired ordering.
Actually, there is a great deal of freedom in choosing this
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enumeration, so our proof actually demonstrates that there are
an infinite number of orderings for which (8) is satisfied, and
we can strengthen Theorem 3 to some degree as follows.

Theorem 4. Consider any finite-round LOCC protocol of P

parties implementing a separable measurement corresponding
to an infinite number of distinct POVM elements {Kj = K(1)

j ⊗
· · · ⊗ K(P )

j }. Then, for any finite integer M , and for any choice
and ordering of the first M of these POVM elements, there
exists an ordering of the remaining POVM elements such that
De � 2(1 − 2−P ).

The proof of this result is included in Appendix A. One
can show that the bound in (8) is tight by the following
discussion, which closely mirrors that given above on how to
achieve the upper bound with equality in the case of finite
N . The first party makes an initial measurement with an
infinite number of outcomes, each of which is followed by
a sequence of P − 1 (one for each of the other parties)
two-outcome measurements along every branch. This means
each outcome of that initial measurement has descended
from it 2P−1 leaf nodes and a total of 2P − 1 nodes in its
descendant subtree. Choose these measurements such that all
nodes are extreme rays and distinct from each other—this is
not difficult to do—and then order the POVM elements in
the overall separable measurement by following a right-to-left
enumeration of the leaves of this LOCC tree. Considering
the subtrees descendant from the rightmost S outcomes of
the initial measurement, one has N = 2P−1S leaf nodes and
(2P − 1)S extreme rays for all P parties. As S → ∞, also
N → ∞, and we see thatDe of (7) is equal to (2P − 1)/2P−1 =
2(1 − 2−P ) for this P -round LOCC protocol, saturating the
upper bound in (8).

III. APPLICATION TO RANK-1 MEASUREMENTS

For finite-N measurements in which every operator is
rank 1, it is a simple process to apply Theorem 2 to determine
if these measurements are candidates for LOCC. Each rank-1
product operator is a product of rank-1 local operators, and
rank-1 operators, being extreme rays in the full set of positive
semidefinite operators, are necessarily extreme in any subset
of that full set. Therefore, one need only count the number
of distinct local operators in these measurements, and then
violation of the bound in Theorem 2 automatically rules out
any possibility of implementation by finite-round LOCC.

Rank-1 measurements arise in the context of quantum
state discrimination of a full basis of any multipartite Hilbert
space. When the basis is mutually orthogonal, the only4

measurement that can perfectly discriminate the set of states
consists of rank-1 projectors onto the states of that basis. When
the basis is nonorthogonal, it may still be the case that an
optimal measurement consists of rank-1 operators. Clearly,

4We restrict consideration to measurements acting only on the
original Hilbert space. While enlarging the Hilbert space creates the
possibility of using other measurements, these other measurements
are effectively identical to the “only” measurement discussed here;
see Lemma 5 of [2]. Therefore, enlarging the Hilbert space does not
allow accomplishment by LOCC of a task that is impossible by LOCC
acting only on the original Hilbert space.

these measurement operators must be product for there to be
any hope of accomplishing this task by LOCC, and if they
are product, Theorem 2 further restricts what may be possible.
Examples illustrating the usefulness of Theorem 2 are given
in the following two sections.

A. Domino states

A well-known example of perfect discrimination of a full
product basis where our results can be profitably applied is
that of Bennett et al., which was the first demonstration of the
existence of separable measurements that are not LOCC [4].
This set of nine states on a 3 × 3 system, often referred to as
domino states, is (omitting normalization factors)

|�1〉 = |1〉|1〉, |�2〉 = |0〉(|0〉 + |1〉),
|�3〉 = |0〉(|0〉 − |1〉), |�4〉 = |2〉(|1〉 + |2〉),
|�5〉 = |2〉(|1〉 − |2〉), |�6〉 = (|1〉 + |2〉)|0〉, (9)

|�7〉 = (|1〉 − |2〉)|0〉, |�8〉 = (|0〉 + |1〉)|2〉,
|�9〉 = (|0〉 − |1〉)|2〉.

There are seven distinct local states for each of the P = 2
parties, so the N = 9 separable measurement that perfectly
discriminates these states involves seven distinct rank-1 local
projectors on each side. This means that, whereas e1 = 7 = e2

and e1 + e2 = 14, the upper bound on this sum in Theorem 2
is 2N − �N/2P−1� = 13. Hence, this measurement violates
Theorem 2, implying directly (the well-known result) that
this set of states cannot be perfectly discriminated by finite-
round LOCC. The same conclusion immediately follows
for any set of “rotated domino states” [12], for which
an arbitrary rotation is applied to each pair of superposi-
tion states [such as |0〉 + |1〉 → cos(θ )|0〉 + sin(θ )|1〉, |0〉 −
|1〉 → sin(θ )|0〉 − cos(θ )|1〉]. Note that for the result we
obtained previously in [1], in which δ = N−1 instead of
the value δ = 2−P > N−1 used here, we have a bound of
2(N − 1) = 16, which does not allow a conclusion to be drawn
for these states (rotated or not). Therefore, these examples
demonstrate the usefulness of the extension obtained in the
present paper.

B. Unambiguous state discrimination on two qubits

Here, we provide a class of unambiguous state discrimina-
tion problems that can be optimally solved by a unique4 sepa-
rable measurement that cannot be implemented by finite-round
LOCC, this latter conclusion requiring our generalization to
Theorem 2, because the conditions of Theorem 1 do not
allow for a conclusion to be reached. For unambiguous state
discrimination of a set of states {|�j 〉}Nj=1, we require a positive
operator-valued measure whose first N elements 	k satisfy

〈�j |	k|�j 〉 = pjδjk, (10)

and one last element

	N+1 = I −
N∑

k=1

	k � 0, (11)
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which represents the inconclusive outcome of the measure-
ment. Consider the following set of four linearly independent
states on two qubits, Q = {ηj ,|�j 〉}, each given with a priori
probability ηj ,

|�1〉 = 1√
|β3|2 + |α3β1|2

(β∗
3 β∗

1 |00〉+β∗
3 α∗

1 |01〉 − α∗
3β

∗
1 |10〉),

|�2〉 = 1√
|β3|2 + |α3β1|2

(β∗
3 β∗

1 |00〉−β∗
3 α∗

1 |01〉 − α∗
3β

∗
1 |10〉),

|�3〉 = |10〉,
|�4〉 = |11〉, (12)

where for j = 1,3 we require that αj �= 0, βj �= 0, and
|αj |2 + |βj |2 = 1, and we also require that |α1| � |β1| and
η1 = η2. Finally, we apply one additional restriction to
these coefficients, which, as shown in Appendix B, will
ensure that there is a unique measurement that is optimal
for unambiguously discriminating these states. This final
restriction is(

1 −
∣∣∣∣α1β3

β1

∣∣∣∣
2
)2

� η3

4η1

∣∣∣∣α3

β1

∣∣∣∣
2

(|β3|2 + |α3β1|2). (13)

We note that these restrictions leave a wide range of allowed
values for the coefficients.

Since the states of (12) form a basis of the full Hilbert space,
the only operators satisfying (10) are those proportional to a
projector onto one of the reciprocal set of states {|�k〉}, which
are uniquely determined by the condition

〈�k|�j 〉 = δjk. (14)

For the states of (12), the (generally non-normalized) recipro-
cal set consists of

|�1〉 = q|0〉(α1|0〉 + β1|1〉),
|�2〉 = q|0〉(α1|0〉 − β1|1〉),

(15)

|�3〉 =
(

α3

β3
|0〉 + |1〉

)
|0〉,

|�4〉 = |11〉,
where q =

√
|β3|2 + |α3β1|2/(2α∗

1β
∗
1 β∗

3 ). Therefore, the first
four POVM elements in any measurement that succeeds in
unambiguously discriminating Q must be proportional to a
projector onto one of these states. That is, our measurement
consists of operators

	k = pk[�k], k = 1, . . . ,4,
(16)

	5 = I −
4∑

k=1

pk[�k],

and we have defined [ψ] = |ψ〉〈ψ |. Optimization of our mea-
surement consists of minimizing the probability of obtaining
an inconclusive result, where this probability is given by

p5 =
4∑

j=1

ηj 〈�j |	5|�j 〉 = 1 −
4∑

j=1

ηjpj , (17)

and we have used (14) to obtain the final expression in the
preceding equation. Thus, we wish to maximize

∑
j ηjpj

subject to the constraint that 	5 � 0.
From (15) and the second line of (16), we can write 	5 in

the computational basis as

	5 =

⎛
⎜⎜⎜⎝

1 − |qα1|2(p1 + p2) − |α3/β3|2p3 −|q|2α1β
∗
1 (p1 − p2) −p3α3/β3 0

−|q|2α∗
1β1(p1 − p2) 1 − |qβ1|2(p1 + p2) 0 0

−p3α
∗
3/β

∗
3 0 1 − p3 0

0 0 0 1 − p4

⎞
⎟⎟⎟⎠. (18)

Now, 	5 � 0 if and only if every one of its principal
minors is non-negative. To begin with, it is clear that p4 �
1 and p1 + p2 � 1/|qβ1|2. Since all principal minors are
either independent of p4 or proportional to 1 − p4, we see
(unsurprisingly, since |�4〉 is orthogonal to all other |�j 〉) that
p4 = 1 is always achievable, no matter what values are taken
by the other pj .

Let us first consider what happens when p1 + p2 =
1/|qβ1|2. Then, the (1,2) principal minor (that involving
the first and second rows and columns) is negative unless
p1 = p2 = 1/2|qβ1|2, which must therefore hold. From the
(1,3) principal minor, we then have that

p3 � |β3|2[1 − |qα1|2(p1 + p2)]

1 − |qα1β3|2(p1 + p2)

= |β3|2(1 − |α1/β1|2)

1 − |α1β3/β1|2
≡ p̂3. (19)

Note that since |β3| < 1, the upper bound in this expression is
strictly less than unity, and one can readily check that 	5 is
positive semidefinite when p3 saturates this bound. When this
is the case, we have that

p5 = 1 − η1

|qβ1|2
− η3|β3|2(1 − |α1/β1|2)

1 − |α1β3/β1|2
− η4. (20)

In fact, it turns out that for these choices of the pj , 	5 =
[π5] ⊗ [0] is a rank-1 product operator, where

|π5〉 = μ|0〉 + ν|1〉, (21)

with

μ = eiθ

√
1 − |α1/β1|2 − |α3/β3|2p̂3,

(22)
ν = −eiφ

√
1 − p̂3.

Up to an unimportant overall phase, we may choose θ = 0,
and then −φ must be the same as the phase of α3/β3, yielding
a unique POVM for these choices of the pj . We can show
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(see Appendix B) that the value of p5 cannot be less than
that given in (20), and that this value of p5 requires that
p1 + p2 = 1/|qβ1|2. Therefore, the foregoing choices of the
pj yield the unique, optimal measurement for unambiguous
discrimination of the states in (12), which is a manifestly
separable measurement, as all POVM elements are product
operators. Hence, separable measurements are as good as
global ones for this task. On the other hand, we can use
Theorem 2 to immediately see that this separable measurement
cannot be implemented by finite-round LOCC. Since each of
the 	j is a rank-1 product operator, each is a tensor product
of two operators that are themselves each an extreme ray in
the full convex cone of positive operators for their respective
spaces. Therefore, we can simply count the number of distinct
such operators to obtain the desired number of extreme rays, e1

and e2. For the first party, we have operators [0], [π3], [1], and
[π5], where |π3〉 = α3|0〉 + β3|1〉, so e1 = 4. Similarly for the
second party, we have operators [π1], [π2], [0], and [1], with
|π1〉 = α1|0〉 + β1|1〉 and |π2〉 = α1|0〉 − β1|1〉, so e2 = 4, as
well. The measurement consists of N = 5 distinct operators,
so we have a violation of the conditions of Theorem 2 with
8 = e1 + e2 > 3N/2 = 7.5. On the other hand, 2(N − 1) = 8,
so the conditions of Theorem 1 are not violated. Hence, while
Theorem 1 is not strong enough to allow a conclusion to be
drawn about the LOCC implementation of this measurement,
Theorem 2 tells us that it is indeed impossible by finite-round
LOCC. As the αj and βj are constrained only by the conditions
given below (12), we thus have a continuous class of optimal
unambiguous state discrimination problems each achievable
by a separable measurement, but for which Theorem 2 tells us
directly that this is impossible by finite-round LOCC. Since
Theorem 1 is too weak to allow a conclusion to be drawn,
these examples demonstrate the importance of the extension
to Theorem 2. Note also that this class includes a wide range
of possible a priori probabilities for each set of the other
coefficients defining the set Q.

IV. CONCLUSIONS

In summary, we have proved a necessary condition for any
finite-round LOCC protocol, which provides an upper bound
on the number of extreme rays appearing in the collection
of POVM elements associated with a separable measurement;
see Theorem 2 and the accompanying discussion. We have
shown that the upper bound in Theorem 2 is tight for all
measurements having a finite number of distinct POVM
elements by providing examples of measurements for which
the upper bound is achieved with equality. This has been further
extended in Theorems 3 and 4 to cover cases of measurements
with an infinite number of distinct POVM elements, and the
bound in this case can also be achieved with equality. These
results extend a previous result obtained in [1], restated here as
Theorem 1, but the corresponding upper bound in that theorem
is tight only when there are relatively few distinct POVM
elements.

In Sec. III, we have shown that the well-known sepa-
rable measurement of [4] violates the necessary condition
of Theorem 2, providing one more way of showing that
this measurement cannot be implemented by finite-round
LOCC. We also introduced a class of unambiguous state

discrimination problems, each of which can be optimally
discriminated by a separable measurement, but for which
Theorem 2 implies they cannot be optimally discriminated
by finite-round LOCC. In all these cases, the corresponding
separable measurement does not violate the condition of
Theorem 1, demonstrating the importance of the extension
obtained in Theorem 2.

We have conjectured elsewhere that Theorem 1 also applies
to infinite-round LOCC protocols, and we continue to believe
that this conjecture holds. Similarly, we also believe that
Theorem 2 holds for infinite-round protocols, but we have
yet to find a proof. We feel less confident this will also be the
case for Theorems 3 and 4, though it is certainly a possibility.
If these conjectures turn out to be true, we will have found
yet another way of proving that there is a finite gap between
what can be achieved by the separable measurement which
successfully distinguishes the nine states of [4], as opposed to
what can be achieved by LOCC. We will also then have shown
a similar finite gap for each example in the class of optimal
unambiguous discrimination problems introduced in Sec. III.
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APPENDIX A: PROOF OF THEOREMS 3 AND 4

Our proof of Theorems 3 and 4 will be very similar to that
of Theorem 2, except that we will not start with a canonical
LOCC tree, since such a tree, being full binary, would require
the infinite-leaf tree to have infinite height, whereas we wish
to work with trees of finite height. According to Lemmas 2
and 4 of [17], we may nonetheless assume that our LOCC tree
is such that every nonleaf node has at least two children and
that, of the POVM elements labeling its children, no two are
proportional to each other.

Although the following lemma applies only to trees with a
finite number of leaf nodes, it will play an important role in
our arguments.

Lemma 1. For any tree of height h in which every nonleaf
node has at least two children, the ratio of the total number of
nodes n to the number of leaf nodes l in the tree satisfies

n

l
� 2(1 − 2−(h+1)), (A1)

as long as l, and hence n, is finite.
Proof. The proof is by induction on the height h. For

h = 1, the tree has a root node and l � 2 leaf nodes, for a
total of n = l + 1 nodes in all. Then n/l = 1 + 1/l � 3/2 =
2(1 − 2−(h+1)). Now assume (A1) holds for h = H − 1, and
let us show that it then holds for h = H . Let TH be a tree
of height H obtained from TH−1 by adding children to some
of the leaf nodes of TH−1. Those leaf nodes to which we do
not add children are terminal at H − 1; let there be tH−1 of
these terminal leaves. If we add the number of leaf nodes from
TH to the total number of nodes in TH−1, we overcount the
total number of nodes in TH because those terminal leaves
have been counted twice. Therefore, the total number of
nodes in TH is nH = nH−1 + lH − tH−1. In addition, since
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we consider only trees for which each nonleaf node has at
least two children, we have lH � 2(lH−1 − tH−1) + tH−1 =
2lH−1 − tH−1. Hence, defining x = tH−1/lH−1, we have

nH

lH
= 1 + nH−1 − tH−1

lH
� 1 + nH−1 − tH−1

2lH−1 − tH−1

= 1 + nH−1/lH−1 − x

2 − x

� 1 + 2(1 − 2−H ) − x

2 − x
= 2 − 2−(H−1)

2 − x
� 2 − 2−H

= 2(1 − 2−(H+1)), (A2)

where the first inequality on the second line is by the induction
assumption, and this completes the proof. �,

Proof of Theorem 3. Consider any finite-round LOCC tree
implementing a separable measurement defined by the infinite
set of POVM elements {Kj }. This tree has an infinite number
of leaf nodes, at least one for each Kj . We prune this tree
following the technique of [1], except that if at any stage
of this process we are removing a subtree whose root has
more than one sibling, then we simply remove that subtree
without removing an additional nonleaf node (since in [1] the
tree was full binary, the subtrees considered there always had
one and only one sibling; it was then necessary to remove
an extra nonleaf node in order to keep the tree full binary;
see [1] for details). If that subtree has only one sibling, then
remove it according to the rules used in [1]. The pruning is
complete when there is one and only one leaf for each of the
Kj . According to this procedure, every nonleaf node in the
resulting tree still has at least two children.

The next step is to rearrange the resulting tree in the same
way as we did for the finite-N case, exchanging an extreme
node with one of its nonextreme children, if there is one, and
continuing this process until no extreme node has a nonextreme
descendant. The tree that remains has all its extreme nodes in
subtrees within which every node is extreme, and just as in the
finite-N case, these subtrees can have height no greater than
P − 1.

Choose any one of these subtrees and set S = 1. If this is a
finite subtree we can include it in its entirety from the outset,
so add another subtree to the collection and increment S.
If instead it is an infinite subtree, we will need to count its
nodes using some kind of a limiting procedure. Hence for each
infinite subtree, instead of starting with the entire subtree, add
it in as a “skeleton” of itself, one which is a full binary tree.
Any such skeleton will do, as long as every branch in it is
also a branch in the original subtree. These skeletons may be
obtained from their corresponding subtree by removing all but
two children from every node that has more than two, while
also removing the complete branches descended from those
removed children. At each subsequent step, include another
subtree in the collection and increment S. At the same time,
for each skeleton of an infinite subtree Ts , add a full binary
branch to that skeleton, by which we mean a branch for which
every nonleaf node has two children, where the added branch
is either one that was in the original Ts , or a skeleton of one
that was. Add these skeletal branches in the order indicated
by index s, starting at the infinite subtree with smallest s and
proceeding to the one with next smallest s, and so on. Continue

this process of adding subtrees and branches indefinitely. In the
limit of an infinite number of steps of this procedure, each Ts

will be fully reconstructed and every subtree will be included in
the collection. If all subtrees are finite, there will be an infinite
number of subtrees to include, one at each step. Otherwise,
there may be a finite or infinite number of subtrees to include,
but reconstruction of the infinite subtrees will always require
an infinite number of steps. In any case, at each step of this
infinitely long process, we have a finite number S of subtrees,
each having ls leaf nodes and ns nodes in total, with both ls
and ns finite.

We need to identify a precise ordering of the Kj . Such
an ordering may be obtained directly from the procedure
described above of including more and more subtrees, while
at the same time reconstructing each infinite subtree in a
step-by-step fashion. In fact, this procedure generates an
infinite number of such orderings. The index s, which can be
assigned arbitrarily, provides a kind of coarse-grained order
for the Kj , indicating when each finite subtree is added, when
each infinite one is begun as a skeleton, and also the order
in which each additional skeletal branch is added to those
infinite subtrees previously begun. There still remains the
task of ordering the set of Kj within each of these “coarse-
grained” objects. Note that each of the Kj appears in one and
only one of the subtrees (recall that the pruned tree has one and
only one appearance of each Kj ), so this fine-grained ordering
will be unambiguous. For each skeletal branch then, choose
any ordering that has the Kj that appear within it ordered one
right after another, which then ensures that there is no more
than one branch at a time in the entire collection of (partially
reconstructed) subtrees that is not full binary. This means that
at each step of this procedure, every nonleaf node in the entire
collection has at least two children, except those nodes in the
branch that is presently being constructed.5

At any given point, let s∗ denote the one subtree that has a
branch that is not yet partially completed to full binary. Let δn

be the number of nodes on the skeletal branch in this subtree
that is presently being constructed and is not yet part of a full
binary skeleton, and let δl be the corresponding number of

5To be more precise about this, for each new subtree, start with any
one leaf that was at the end of a branch of height h � P − 1, the
same as that of the original subtree, adding this solitary leaf along
with its h − 1 ancestors, one of which is the root of that subtree. The
next leaf is chosen as one whose branch attaches to that preceding
branch (which will add no more than h − 1 nodes to this subtree,
including that leaf, since it must share at least one node with the
preceding branch to which it attaches). Subsequent leaves are chosen
to attach to this same skeleton in a way such that no node in it has
more than two children, and this continues until every nonleaf node
has two. Then move on to the next subtree. If a subtree has already
been started, then it has a full binary skeleton already present, so add
any additional leaf to start the next skeleton. This leaf attaches to that
full binary skeleton at a node that already had at least two children, so
will now have more than two, but in general, this new leaf will have
ancestors that have only one child node. Continue adding leaves to
the skeleton consisting of that leaf and its ancestors until it is also full
binary, and then move on to the next subtree, continuing this process
indefinitely.
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leaves. Given that these branches have height no greater than
P − 1, then the number of leaf nodes in the skeletal branch
that is not yet full binary must satisfy δl � 2P−1. Define nC =
ns∗ − δn and lC = ls∗ − δl. Then since nC and lC count the
nodes and leaves that lie in branches for which every nonleaf
node has at least two children, we have from Lemma A that
nC/lC � 2(1 − 2P−1). Now, each time one adds a leaf, one
adds no more than P nodes, and strictly fewer than this if
that leaf is attaching to a subtree already begun. Therefore,
δn/δl � P .

Define N = ∑
s ls , which is the number of distinct Kj ap-

pearing in the collection of subtrees at this stage of the process.
The total number of extreme rays appearing in this collection
is no greater than the total number of nodes,

∑
α eαN �

∑
s ns .

Then, for any ordering as described above, we have

1

N

∑
α

eαN �
S∑

s=1

ns

/ S∑
s=1

ls =
S∑

s �=s∗

ls

(
ns

ls

)/ S∑
s=1

ls

+ lC

(
nC

lC

)/ S∑
s=1

ls + δl

(
δn

δl

)/ S∑
s=1

ls

� 2(1 − 2−P )

⎛
⎝ S∑

s �=s∗

ls + lC

⎞
⎠/ S∑

s=1

ls

+Pδl

/ S∑
s=1

ls = 2(1 − 2−P )

+ (P − 2 + 2−(P−1))δl

/ S∑
s=1

ls � 2(1 − 2−P )

+ (P − 2 + 2−(P−1))2P−1

/ S∑
s=1

ls , (A3)

where the third line follows from Lemma A, which tells
us that ns/ ls � 2(1 − 2−P ) for all s �= s∗ and that nC/lC �
2(1 − 2−P ), along with the fact that δn/δl � P , as argued
above. The last line follows from δl � 2P−1, which was also
argued above. Now as S → ∞, N = ∑S

s=1 ls → ∞. Hence in
this limit, we see that the second term in the last line approaches
zero, and we recover De � 2(1 − 2−P ). This completes the
proof of Theorem 3. �

Proof of Theorem 4. Theorem 4 follows almost immediately
from the proof of Theorem 3. For any ordering of the first
M of the Kj , fill in the subtrees constructed from those M

leaves until they are full binary. Then, for the remaining leaves,
continue precisely as described in the proof of Theorem 3. The
result follows directly. �

APPENDIX B: PROOF OF OPTIMALITY FOR THE
MEASUREMENT FOUND AT THE END OF SEC. III B

We wish to show that the probability p5 given in (20)
is optimal for unambiguous discrimination of the states in
(12), and that the measurement found at the end of that
section, having p1 = p2 = 1/2|qβ1|2 and p3 = p̂3, is the
unique optimal measurement. To do this, let us consider all
other measurements, for which we can write

p1 = 1 + δ1

2|qβ1|2
, p2 = 1 + δ2

2|qβ1|2
, (B1)

and then 	5 becomes

	5 =

⎛
⎜⎜⎜⎝

1 − |α1/β1|2[1 + (δ1 + δ2)/2] − |α3/β3|2p3 −α1(δ1 − δ2)/2β1 −p3α3/β3 0

−α∗
1 (δ1 − δ2)/2β∗

1 −(δ1 + δ2)/2 0 0

−p3α
∗
3/β

∗
3 0 1 − p3 0

0 0 0 1 − p4

⎞
⎟⎟⎟⎠. (B2)

We first notice immediately that 	5 � 0 implies that δ1 + δ2 �
0, and if δ1 + δ2 = 0, then it also implies that δ1 = 0 = δ2, in
which case we are back to the measurement found in Sec. III B.
We are trying to determine if there exists a measurement
different from, but which performs at least as well as, the one
of Sec. III B. Therefore, let us assume that δ1 + δ2 < 0 and see
if there exist p3, δ1, and δ2 such that this new measurement
does at least as well as the previous one, which translates to
the condition

1 − η1

|qβ1|2
− η3|β3|2(1 − |α1/β1|2)

1 − |α1β3/β1|2

� 1 − η1

|qβ1|2
− η1(δ1 + δ2)

2|qβ1|2
− η3p3, (B3)

or

p3 � |β3|2(1 − |α1/β1|2)

1 − |α1β3/β1|2
− η1(δ1 + δ2)

2η3|qβ1|2
. (B4)

However, from the (1,3) principal minor of (B2), we also have
that

p3 � |β3|2[1 − |qα1|2(p1 + p2)]

1 − |qα1β3|2(p1 + p2)

= |β3|2{1 − |α1/β1|2[1 + (δ1 + δ2)/2]}
1 − |α1β3/β1|2[1 + (δ1 + δ2)/2]

. (B5)
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We thus have that the right-hand side of (B4) can be no greater than that of (B5), a condition which reduces to

(δ1 + δ2)|α1α3β3|2 � (δ1 + δ2)η1

|q|2η3
(1 − |α1β3/β1|2){1 − |α1β3/β1|2[1 + (δ1 + δ2)/2]}. (B6)

Since by assumption δ1 + δ2 < 0, this can be rearranged to give

(δ1 + δ2)

2

∣∣∣∣α1β3

β1

∣∣∣∣
2

� 1 −
∣∣∣∣α1β3

β1

∣∣∣∣
2

− η3|qα1α3β3|2
η1(1 − |α1β3/β1|2)

. (B7)

This is impossible, since the left-hand side of this is negative but by (13), the right-hand side is non-negative. We can thus
conclude that there is no measurement that does as well as that found at the end of Sec. III B, which is therefore the unique
optimal measurement for unambiguously discriminating the states of (12). This is the result we set out to prove, so we are done.
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